Optimization of Inulin Extraction from Chicory Roots and an Ultrafiltration Application to Obtain Purified Inulin and Hydrolyzed Fructooligosaccharides
Year 2024,
Volume: 30 Issue: 1, 166 - 178, 09.01.2024
Nihan Sağcan
Hasan Sağcan
Fatih Bozkurt
,
Ayşe Nur Bulut Güneş
Hüseyin Fakir
,
Enes Dertli
,
Osman Sağdıç
Abstract
Inulin and fructooligosaccharides (FOS) are prominent functional components in the food industry due to prebiotic and other pharmaceutical properties. Inulin is a storage polysaccharide in various plants. FOS are naturally present in various plants and can be obtained by partial hydrolysis of inulin. In this study, ground and sieved chicory roots (Cichorium intybus L.) were used as starting material for inulin extraction under optimized conditions determined by Response Surface Methodology (RSM) with a Box-Behnken design. Optimum inulin extraction conditions from chicory roots were; temperature of 90 °C, extraction time of 30 min., and liquid-to-solid (LS) ratio of 10:1 mL/g. Inulin extract was further hydrolyzed to FOS by enzymatic or acid treatment, separately. Purification of inulin extract and FOS hydrolysate was performed by ultrafiltration with a 10 kDa membrane under the pressure of 2 bar with continuous stirring. As a result, inulin and FOS were obtained at 90% and 76% purity, respectively.
Supporting Institution
Yildiz Technical University Scientific Research Projects (BAP) Coordination Unit
Project Number
FCD-2021-4573
References
- Albalasmeh A A, Berhe A A & Ghezzehei T A (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97(2): 253–261. https://doi.org/10.1016/j.carbpol.2013.04.072
- Apolinário A C, Lima Damasceno B P G, Macêdo Beltrão N E, Pessoa A, Converti A & Silva J A (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers 101(1): 368–378. https://doi.org/10.1016/j.carbpol.2013.09.081
- Ávila-Fernández Á, Galicia-Lagunas N, Rodríguez-Alegría M E, Olvera C & López-Munguía A (2011). Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chemistry 129(2): 380–386. https://doi.org/10.1016/j.foodchem.2011.04.088
- Balzarini M F, Reinheimer M A, Ciappini M C & Scenna N J (2018). Mathematical model, validation and analysis of the drying treatment on quality attributes of chicory root cubes considering variable properties and shrinkage. Food and Bioproducts Processing 111: 114–128. https://doi.org/10.1016/j.fbp.2018.07.005
- Barclay T G, Ginic-Markovic M, Cooper P D & Petrovsky N (2014). Inulin-A versatile polysaccharide with multiple pharmaceutical and food chemical uses. Journal of Excipients and Food Chemicals 1(3): 27-50. https://www.researchgate.net/publication/49597010
- Başaran U, Akkbik M, Mut H, Gülümser E, Doğrusöz M Ç & Koçoğlu S (2018). High-Performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Analytical Letters 51(1–2): 83–95. https://doi.org/10.1080/00032719.2017.1304952
- Beirão-Da-Costa M L, Januario I & Leitão A (2009). Characterisation of inulin from chicory and salsify cultivated in Portugal. Alim. Nutr. Araraquara 16(3): 221-225. https://www.researchgate.net/publication/49599872
- Chandra S, Kumar M, Dwivedi P & Arti K (2016). Studies on industrial importance and medicinal value of chicory plant (Cichorium intybus L.). International Journal of Advanced Research 4(1): 1060-1071.
- Dobre T, Bull C, Stroescu M, Stoica A, Draghici E & Antohe N (2008). Inulin extraction and encapsulation. Buletinul Ştiinţific al Universităţii “Politehnica” Din Timisoara 53: 215-217. http://mt.pub.ro
- Dominguez A L, Rodrigues L R, Lima N M & Teixeira J A (2014). An overview of the recent developments on fructooligosaccharide production and applications. Food and Bioprocess Technology 7: 324–337. https://doi.org/10.1007/s11947-013-1221-6
- El-Kholy W M, Aamer R A & Ali A N A (2020). Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences, 65(1): 59–67. https://doi.org/10.1016/j.aoas.2020.02.002
- Esmaeili F, Hashemiravan M, Eshaghi M R & Gandomi H (2021). Optimization of aqueous extraction conditions of inulin from the arctium lappa l. roots using ultrasonic irradiation frequency. Journal of Food Quality. https://doi.org/10.1155/2021/5520996
- Figueira G M, Park K J, Brod F P R & Honório S L (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. Journal of Food Engineering, 63(3): 273–280. https://doi.org/10.1016/j.jfoodeng.2003.06.001
- Fu Y P, Li L X, Zhang B Z, Paulsen B S, Yin Z Q, Huang C, Feng B, Chen X F, Jia R R, Song X, Ni X Q, Jing B, Wu F & Zou Y F (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193: 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065
- Grzybowski A, Tiboni M, Passos M, Baldo G R & Fontana D J (2014). Production of fructo-oligosaccharides (FOS) from inulin and applications. In: Fontana D J, Tiboni M & Grzybowski A (Eds.), Cellulose and Other Naturally Occurring Polymers, Brazil, pp. 49-54.
- Han Y Z, Zhou C C, Xu Y Y, Yao J X, Chi Z, Chi Z M & Liu G L (2017). High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered Yarrowia lipolytica strain. Carbohydrate Polymers 173: 592–599. https://doi.org/10.1016/j.carbpol.2017.06.043
- Karadag A, Pelvan E, Dogan K, Celik N, Ozturk D, Akalin K & Alasalvar C (2019). Optimisation of green tea polysaccharides by ultrasound-assisted extraction and their in vitro antidiabetic activities. Quality Assurance and Safety of Crops and Foods 11(5): 479–490. https://doi.org/10.3920/QAS2019.1579
- Khuenpet K, Fukuoka M, Jittanit W & Sirisansaneeyakul S (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering 194: 67–78. https://doi.org/10.1016/j.jfoodeng.2016.09.009
- Kralj S, Leeflang C, Sierra E I, Kempiński B, Alkan V & Kolkman M (2018). Synthesis of fructooligosaccharides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185. Carbohydrate Polymers 179: 350–359. https://doi.org/10.1016/j.carbpol.2017.09.069
- Kuhn R C, Mazutti M A, Albertini L B & Filho F M (2014). Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal. New Biotechnology 31(3): 237–241. https://doi.org/10.1016/j.nbt.2014.02.005
- Li J, Cheong K L, Zhao J, Hu D J, Chen X Q, Qiao C F, Zhang Q W, Chen Y W & Li S P (2013). Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection. Journal of Chromatography A 1308: 52–57. https://doi.org/10.1016/j.chroma.2013.08.012
- Li W, Li J, Chen, T & Chen C (2004). Study on nanofiltration for purifying fructo-oligosaccharides I. Operation modes. Journal of Membrane Science 245(1–2): 123–129. https://doi.org/10.1016/j.memsci.2004.07.021
- Lingyun W, Jianhua W, Xiaodong Z, Da T, Yalin Y, Chenggang C, Tianhua F & Fan Z (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering 79(3): 1087–1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028
- Lopes S M S, Krausová G, Carneiro J W P, Gonçalves J E, Gonçalves R A C & Oliveira A J B (2017). A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chemistry 225: 154–161. https://doi.org/10.1016/j.foodchem.2016.12.100
- Mavumengwana V B (2004). Isolation, purification and characterization of inulin and fructooligosaccharides from chicorium intybus and inulinase from aspergillus niger. M.Sc. Thesis, Rhodes University, South Africa
Muñiz-Márquez D B, Teixeira J A, Mussatto S I, Contreras-Esquivel J C, Rodríguez-Herrera R & Aguilar C N (2019). Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT 102: 75–79. https://doi.org/10.1016/j.lwt.2018.12.020
- Murtiningrum S P, Suryani A & Manguwidjaja D (2020). Determination of ultrafiltration resistance using series resistance model in inulin purification from red fruit (Pandanus conoideus L.) pedicel extract. IOP Conference Series: Earth and Environmental Science 443: 1. https://doi.org/10.1088/1755-1315/443/1/012086
- Nobre C, Filho E G A, Fernandes F A N, Brito E S, Rodrigues S, Teixeira J A & Rodrigues L R (2018). Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT 89: 58–64. https://doi.org/10.1016/j.lwt.2017.10.015
- Noori W O (2014). Selection of Optimal Conditions of Inulin Extraction from Jerusalem Artichoke (Helianthus Tuberosus L.) Tubers by using Ultrasonic Water Bath. Journal of Engineering 20: 110-119. https://www.researchgate.net/publication/328278566
- Öztürk B (2016). A rising star prebiotic dietary fiber: inulin and recent applications in meat products. Journal of Food and Health Science 3(1): 12–20. https://doi.org/10.3153/jfhs17002
- Perović J, Tumbas Šaponjac V, Kojić J, Krulj J, Moreno D A, García-Viguera C, Bodroža-Solarov M & Ilić N (2021). Chicory (Cichorium intybus L.) as a food ingredient – Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry 336. https://doi.org/10.1016/j.foodchem.2020.127676
- Qing Q, Li H, Kumar R & Wyman C E (2013). Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, John Wiley and Sons, pp. 391–415. https://doi.org/10.1002/9780470975831.ch19
- Redondo-Cuenca A, Herrera-Vázquez S E, Condezo-Hoyos L, Gómez-Ordóñez E & Rupérez P (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170. https://doi.org/10.1016/j.indcrop.2021.113726
- Ricca E, Calabrò V, Curcio S & Iorio G. (2009). Optimization of inulin hydrolysis by inulinase accounting for enzyme time- and temperature-dependent deactivation. Biochemical Engineering Journal 48(1): 81–86. https://doi.org/10.1016/j.bej.2009.08.009
- Sarchami T & Rehmann L (2014). Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass and Bioenergy 69: 175–182. https://doi.org/10.1016/j.biombioe.2014.07.018
- Singh R S & Singh T (2022a). Fructooligosaccharides production from inulin by immobilized endoinulinase on 3-aminopropyltriethoxysilane functionalized halloysite nanoclay. Catalysis Letters 152(7): 1927–1949. https://doi.org/10.1007/s10562-021-03803-5
- Singh R S & Singh T (2022b). Glutaraldehyde functionalization of halloysite nanoclay enhances immobilization efficacy of endoinulinase for fructooligosaccharides production from inulin. Food Chemistry 381. https://doi.org/10.1016/j.foodchem.2022.132253
- Singh R S, Singh T, Hassan M & Kennedy J F (2020). Updates on inulinases: Structural aspects and biotechnological applications. International Journal of Biological Macromolecules 164: 193–210. https://doi.org/10.1016/j.ijbiomac.2020.07.078
- Singh R S, Singh T & Kennedy J F (2020). Enzymatic synthesis of fructooligosaccharides from inulin in a batch system. Carbohydrate Polymer Technologies and Applications 1. https://doi.org/10.1016/j.carpta.2020.100009
- Singh R S, Singh T & Kennedy J F (2021). Understanding the interactive influence of hydrolytic conditions on biocatalytic production of fructooligosaccharides from inulin. International Journal of Biological Macromolecules 166: 9–17. https://doi.org/10.1016/j.ijbiomac.2020.11.171
- Singh R S, Singh T & Pandey A (2020). Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides. Bioresource Technology Reports 10. https://doi.org/10.1016/j.biteb.2020.100417
- Stökle K, Jung D & Kruse A (2023). Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Biomass Conversion and Biorefinery 13(1): 159–170. https://doi.org/10.1007/s13399-020-01108-y
- Tewari S, Ramalakshmi K, Methre L & Rao L J M (2014). Microwave-assisted extraction of inulin from chicory roots using response surface methodology. Journal of Nutrition & Food Sciences, 05(01). https://doi.org/10.4172/2155-9600.1000342
- Yi H, Zhang L, Hua C, Sun K & Zhang L (2010). Extraction and enzymatic hydrolysis of inulin from Jerusalem artichoke and their effects on textural and sensorial characteristics of yogurt. Food and Bioprocess Technology 3(2): 315–319. https://doi.org/10.1007/s11947-009-0247-2
- Zhang X, Zhu X, Shi X, Hou Y & Yi Y (2022). extraction and purification of inulin from jerusalem artichoke with response surface method and ıon exchange resins. ACS Omega 7(14): 12048–12055. https://doi.org/10.1021/acsomega.2c00302
- Zhu Z, Luo X, Yin F, Li S & He J (2018). Clarification of jerusalem artichoke extract using ultra-filtration: effect of membrane pore size and operation conditions. Food and Bioprocess Technology 11(4): 864–873. https://doi.org/10.1007/s11947-018-2054-0
Year 2024,
Volume: 30 Issue: 1, 166 - 178, 09.01.2024
Nihan Sağcan
Hasan Sağcan
Fatih Bozkurt
,
Ayşe Nur Bulut Güneş
Hüseyin Fakir
,
Enes Dertli
,
Osman Sağdıç
Project Number
FCD-2021-4573
References
- Albalasmeh A A, Berhe A A & Ghezzehei T A (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97(2): 253–261. https://doi.org/10.1016/j.carbpol.2013.04.072
- Apolinário A C, Lima Damasceno B P G, Macêdo Beltrão N E, Pessoa A, Converti A & Silva J A (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers 101(1): 368–378. https://doi.org/10.1016/j.carbpol.2013.09.081
- Ávila-Fernández Á, Galicia-Lagunas N, Rodríguez-Alegría M E, Olvera C & López-Munguía A (2011). Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chemistry 129(2): 380–386. https://doi.org/10.1016/j.foodchem.2011.04.088
- Balzarini M F, Reinheimer M A, Ciappini M C & Scenna N J (2018). Mathematical model, validation and analysis of the drying treatment on quality attributes of chicory root cubes considering variable properties and shrinkage. Food and Bioproducts Processing 111: 114–128. https://doi.org/10.1016/j.fbp.2018.07.005
- Barclay T G, Ginic-Markovic M, Cooper P D & Petrovsky N (2014). Inulin-A versatile polysaccharide with multiple pharmaceutical and food chemical uses. Journal of Excipients and Food Chemicals 1(3): 27-50. https://www.researchgate.net/publication/49597010
- Başaran U, Akkbik M, Mut H, Gülümser E, Doğrusöz M Ç & Koçoğlu S (2018). High-Performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Analytical Letters 51(1–2): 83–95. https://doi.org/10.1080/00032719.2017.1304952
- Beirão-Da-Costa M L, Januario I & Leitão A (2009). Characterisation of inulin from chicory and salsify cultivated in Portugal. Alim. Nutr. Araraquara 16(3): 221-225. https://www.researchgate.net/publication/49599872
- Chandra S, Kumar M, Dwivedi P & Arti K (2016). Studies on industrial importance and medicinal value of chicory plant (Cichorium intybus L.). International Journal of Advanced Research 4(1): 1060-1071.
- Dobre T, Bull C, Stroescu M, Stoica A, Draghici E & Antohe N (2008). Inulin extraction and encapsulation. Buletinul Ştiinţific al Universităţii “Politehnica” Din Timisoara 53: 215-217. http://mt.pub.ro
- Dominguez A L, Rodrigues L R, Lima N M & Teixeira J A (2014). An overview of the recent developments on fructooligosaccharide production and applications. Food and Bioprocess Technology 7: 324–337. https://doi.org/10.1007/s11947-013-1221-6
- El-Kholy W M, Aamer R A & Ali A N A (2020). Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences, 65(1): 59–67. https://doi.org/10.1016/j.aoas.2020.02.002
- Esmaeili F, Hashemiravan M, Eshaghi M R & Gandomi H (2021). Optimization of aqueous extraction conditions of inulin from the arctium lappa l. roots using ultrasonic irradiation frequency. Journal of Food Quality. https://doi.org/10.1155/2021/5520996
- Figueira G M, Park K J, Brod F P R & Honório S L (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. Journal of Food Engineering, 63(3): 273–280. https://doi.org/10.1016/j.jfoodeng.2003.06.001
- Fu Y P, Li L X, Zhang B Z, Paulsen B S, Yin Z Q, Huang C, Feng B, Chen X F, Jia R R, Song X, Ni X Q, Jing B, Wu F & Zou Y F (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193: 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065
- Grzybowski A, Tiboni M, Passos M, Baldo G R & Fontana D J (2014). Production of fructo-oligosaccharides (FOS) from inulin and applications. In: Fontana D J, Tiboni M & Grzybowski A (Eds.), Cellulose and Other Naturally Occurring Polymers, Brazil, pp. 49-54.
- Han Y Z, Zhou C C, Xu Y Y, Yao J X, Chi Z, Chi Z M & Liu G L (2017). High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered Yarrowia lipolytica strain. Carbohydrate Polymers 173: 592–599. https://doi.org/10.1016/j.carbpol.2017.06.043
- Karadag A, Pelvan E, Dogan K, Celik N, Ozturk D, Akalin K & Alasalvar C (2019). Optimisation of green tea polysaccharides by ultrasound-assisted extraction and their in vitro antidiabetic activities. Quality Assurance and Safety of Crops and Foods 11(5): 479–490. https://doi.org/10.3920/QAS2019.1579
- Khuenpet K, Fukuoka M, Jittanit W & Sirisansaneeyakul S (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering 194: 67–78. https://doi.org/10.1016/j.jfoodeng.2016.09.009
- Kralj S, Leeflang C, Sierra E I, Kempiński B, Alkan V & Kolkman M (2018). Synthesis of fructooligosaccharides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185. Carbohydrate Polymers 179: 350–359. https://doi.org/10.1016/j.carbpol.2017.09.069
- Kuhn R C, Mazutti M A, Albertini L B & Filho F M (2014). Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal. New Biotechnology 31(3): 237–241. https://doi.org/10.1016/j.nbt.2014.02.005
- Li J, Cheong K L, Zhao J, Hu D J, Chen X Q, Qiao C F, Zhang Q W, Chen Y W & Li S P (2013). Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection. Journal of Chromatography A 1308: 52–57. https://doi.org/10.1016/j.chroma.2013.08.012
- Li W, Li J, Chen, T & Chen C (2004). Study on nanofiltration for purifying fructo-oligosaccharides I. Operation modes. Journal of Membrane Science 245(1–2): 123–129. https://doi.org/10.1016/j.memsci.2004.07.021
- Lingyun W, Jianhua W, Xiaodong Z, Da T, Yalin Y, Chenggang C, Tianhua F & Fan Z (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering 79(3): 1087–1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028
- Lopes S M S, Krausová G, Carneiro J W P, Gonçalves J E, Gonçalves R A C & Oliveira A J B (2017). A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chemistry 225: 154–161. https://doi.org/10.1016/j.foodchem.2016.12.100
- Mavumengwana V B (2004). Isolation, purification and characterization of inulin and fructooligosaccharides from chicorium intybus and inulinase from aspergillus niger. M.Sc. Thesis, Rhodes University, South Africa
Muñiz-Márquez D B, Teixeira J A, Mussatto S I, Contreras-Esquivel J C, Rodríguez-Herrera R & Aguilar C N (2019). Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT 102: 75–79. https://doi.org/10.1016/j.lwt.2018.12.020
- Murtiningrum S P, Suryani A & Manguwidjaja D (2020). Determination of ultrafiltration resistance using series resistance model in inulin purification from red fruit (Pandanus conoideus L.) pedicel extract. IOP Conference Series: Earth and Environmental Science 443: 1. https://doi.org/10.1088/1755-1315/443/1/012086
- Nobre C, Filho E G A, Fernandes F A N, Brito E S, Rodrigues S, Teixeira J A & Rodrigues L R (2018). Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT 89: 58–64. https://doi.org/10.1016/j.lwt.2017.10.015
- Noori W O (2014). Selection of Optimal Conditions of Inulin Extraction from Jerusalem Artichoke (Helianthus Tuberosus L.) Tubers by using Ultrasonic Water Bath. Journal of Engineering 20: 110-119. https://www.researchgate.net/publication/328278566
- Öztürk B (2016). A rising star prebiotic dietary fiber: inulin and recent applications in meat products. Journal of Food and Health Science 3(1): 12–20. https://doi.org/10.3153/jfhs17002
- Perović J, Tumbas Šaponjac V, Kojić J, Krulj J, Moreno D A, García-Viguera C, Bodroža-Solarov M & Ilić N (2021). Chicory (Cichorium intybus L.) as a food ingredient – Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry 336. https://doi.org/10.1016/j.foodchem.2020.127676
- Qing Q, Li H, Kumar R & Wyman C E (2013). Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, John Wiley and Sons, pp. 391–415. https://doi.org/10.1002/9780470975831.ch19
- Redondo-Cuenca A, Herrera-Vázquez S E, Condezo-Hoyos L, Gómez-Ordóñez E & Rupérez P (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170. https://doi.org/10.1016/j.indcrop.2021.113726
- Ricca E, Calabrò V, Curcio S & Iorio G. (2009). Optimization of inulin hydrolysis by inulinase accounting for enzyme time- and temperature-dependent deactivation. Biochemical Engineering Journal 48(1): 81–86. https://doi.org/10.1016/j.bej.2009.08.009
- Sarchami T & Rehmann L (2014). Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass and Bioenergy 69: 175–182. https://doi.org/10.1016/j.biombioe.2014.07.018
- Singh R S & Singh T (2022a). Fructooligosaccharides production from inulin by immobilized endoinulinase on 3-aminopropyltriethoxysilane functionalized halloysite nanoclay. Catalysis Letters 152(7): 1927–1949. https://doi.org/10.1007/s10562-021-03803-5
- Singh R S & Singh T (2022b). Glutaraldehyde functionalization of halloysite nanoclay enhances immobilization efficacy of endoinulinase for fructooligosaccharides production from inulin. Food Chemistry 381. https://doi.org/10.1016/j.foodchem.2022.132253
- Singh R S, Singh T, Hassan M & Kennedy J F (2020). Updates on inulinases: Structural aspects and biotechnological applications. International Journal of Biological Macromolecules 164: 193–210. https://doi.org/10.1016/j.ijbiomac.2020.07.078
- Singh R S, Singh T & Kennedy J F (2020). Enzymatic synthesis of fructooligosaccharides from inulin in a batch system. Carbohydrate Polymer Technologies and Applications 1. https://doi.org/10.1016/j.carpta.2020.100009
- Singh R S, Singh T & Kennedy J F (2021). Understanding the interactive influence of hydrolytic conditions on biocatalytic production of fructooligosaccharides from inulin. International Journal of Biological Macromolecules 166: 9–17. https://doi.org/10.1016/j.ijbiomac.2020.11.171
- Singh R S, Singh T & Pandey A (2020). Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides. Bioresource Technology Reports 10. https://doi.org/10.1016/j.biteb.2020.100417
- Stökle K, Jung D & Kruse A (2023). Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Biomass Conversion and Biorefinery 13(1): 159–170. https://doi.org/10.1007/s13399-020-01108-y
- Tewari S, Ramalakshmi K, Methre L & Rao L J M (2014). Microwave-assisted extraction of inulin from chicory roots using response surface methodology. Journal of Nutrition & Food Sciences, 05(01). https://doi.org/10.4172/2155-9600.1000342
- Yi H, Zhang L, Hua C, Sun K & Zhang L (2010). Extraction and enzymatic hydrolysis of inulin from Jerusalem artichoke and their effects on textural and sensorial characteristics of yogurt. Food and Bioprocess Technology 3(2): 315–319. https://doi.org/10.1007/s11947-009-0247-2
- Zhang X, Zhu X, Shi X, Hou Y & Yi Y (2022). extraction and purification of inulin from jerusalem artichoke with response surface method and ıon exchange resins. ACS Omega 7(14): 12048–12055. https://doi.org/10.1021/acsomega.2c00302
- Zhu Z, Luo X, Yin F, Li S & He J (2018). Clarification of jerusalem artichoke extract using ultra-filtration: effect of membrane pore size and operation conditions. Food and Bioprocess Technology 11(4): 864–873. https://doi.org/10.1007/s11947-018-2054-0