Review
BibTex RIS Cite

Year 2025, Volume: 31 Issue: 3, 640 - 669, 29.07.2025
https://doi.org/10.15832/ankutbd.1622082

Abstract

References

  • Abbas S, Nasreen S, Haroon A & Ashraf M A (2020). Synthesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences 27: 1016-1023. https://doi.org/10.1016/j.sjbs.2020.02.011
  • Abd Elsalam S S, Taha R H, Tawfeik A M, El-Monem A, Mohamed O & Mahmoud H A (2018). Antimicrobial activity of bio and chemical synthesized cadmium sulfide nanoparticles. The Egyptian Journal of Hospital Medicine 70(9): 1494-1507
  • Abd Qasim M & Yaaqoob L A (2023). Evaluation of antibacterial activity of iron oxide nanoparticles synthesis by extracellular Lactobacillus against Pseudomonas aeruginosa. Journal of Medicinal and Chemical Sciences 6: 1100. https://doi.org/10.26655/JMCHEMSCI.2023.5.15
  • Abdulradha H A & Alhadrawi S W (2023). Biological and medical efficacy of zinc oxide nanoparticles manufactured using Saccharomyces boulardii against Burkholderia sp. isolated from diabetic foot patients. International Journal of Advanced Multidisciplinary Research and Studies 3(3): 703-708
  • Abo‐zeid Y & Williams G R (2020). The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(2): e1592. https://doi.org/10.1002/wnan.1592
  • Adelere I A & Lateef A (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews 5(6): 567-587. https://doi.org/10.1515/ntrev-2016-0024
  • Ahmad M Z, Alasiri A S, Ahmad J, Alqahtani A A, Abdullah M M, Abdel-Wahab B A, Pathak K, Saikia R, Das A, Sarma H & Alzahrani S A (2022). Green synthesis of titanium dioxide nanoparticles using Ocimum sanctum leaf extract: In vitro characterization and its healing efficacy in diabetic wounds. Molecules 27(22): 7712. https://doi.org/10.3390/molecules27227712
  • Ahmad R, Khatoon N & Sardar M (2014). Antibacterial effect of green synthesized TiO2 nanoparticles. Advanced Science Letters 20(7-8): 1616-1620. https://doi.org/10.1166/asl.2014.5563
  • Ahmed B, Tahir M B, Sagir M & Hassan M (2024). Bio-inspired sustainable synthesis of silver nanoparticles as next generation of nanoproduct in antimicrobial and catalytic applications. Materials Science and Engineering: B 301: 117165. https://doi.org/10.1016/j.mseb.2023.117165
  • Ahmed E, Kalathil S, Shi L, Alharbi O & Wang P (2018). Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. Journal of Saudi Chemical Society 22(8): 919-929. https://doi.org/10.1016/j.jscs.2018.02.002
  • Ahmed K B A, Kalla D, Uppuluri K B & Anbazhagan V (2014) Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydrate Polymers 112: 539-545. https://doi.org/10.1016/j.carbpol.2014.06.033
  • Ahmed T, Shahid M, Noman M, Niazi M B K, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y & Yan Chen J (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9(3): 160. https://doi.org/10.3390/pathogens9030160
  • Alam H, Khatoon N, Khan M A, Husain S A, Saravanan M & Sardar M (2020). Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science 31: 1003-1011. https://doi.org/10.1007/s10876-019-01705-6
  • Al-Asbahi M G, Al-Ofiry B A, Saad F A, Alnehia A & Al-Gunaid M Q (2024). Silver nanoparticles biosynthesis using mixture of Lactobacillus sp. and Bacillus sp. growth and their antibacterial activity. Scientific Reports 14(1): 10224. https://doi.org/10.1038/s41598-024-59936-1
  • Alghuthaymi M A, Almoammar H, Rai M, Said-Galiev E & Abd-Elsalam K A (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment 29(2): 221-236. https://doi.org/10.1080/13102818.2015.1008194 Al-Khattaf F S (2021). Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi Journal of Biological Sciences 28(6): 3624-3631. https://doi.org/10.1016/j.sjbs.2021.03.078
  • Alsaab H O, Al-Hibs A S, Alzhrani R, Alrabighi K K, Alqathama A, Alwithenani A, Almalki A H & Althobaiti Y S (2021). Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. International Journal of Molecular Sciences 22(4): 1631. https://doi.org/10.3390/ijms22041631
  • Alsaiari N S, Alzahrani F M, Amari A, Osman H, Harharah H N, Elboughdiri N & Tahoon M A (2023). Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1): 463. https://doi.org/10.3390/molecules28010463
  • Amini S M, Hadighi R, Najm M, Alipour M, Hasanpour H, Vosoogh M, Vosough A, Hajizadeh M & Badirzadeh A (2023) The therapeutic effects of curcumin-coated gold nanoparticle against Leishmania major causative agent of zoonotic cutaneous leishmaniasis (ZCL): an in vitro and in vivo study. Current Microbiology 80(4): 104. https://doi.org/10.1007/s00284-022-03172-1
  • Ammar H A, El Aty A A A & El Awdan S A (2021) Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzevii HA-NY2 and Saccharomyces uvarum HA-NY3, and their effective biomedical applications. Bioprocess and Biosystems Engineering 44: 841-854. https://doi.org/10.1007/s00449-020-02494-3
  • Ananthi V, Prakash G S, Rasu K M, Gangadevi K, Boobalan T, Raja R, Anand K, Sudhakar M, Chuturgoon A & Arun A (2018) Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. Journal of Photochemistry and Photobiology B: Biology 186: 232-242. https://doi.org/10.1016/j.jphotobiol.2018.07.021
  • Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A & Abbasi B H (2021). A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 13(11): 2818. https://doi.org/10.3390/cancers13112818
  • Anis S N S, Liew W C, Marsin A M, Muhamad I I, Teh S H & Khudzari A Z M (2023) Microwave-assisted green synthesis of silver nanoparticles using pineapple leaves waste. Cleaner Engineering and Technology 15: 100660. https://doi.org/10.1016/j.clet.2023.100660
  • Annamalai J, Ummalyma S B, Pandey A & Bhaskar T (2021) Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research 28(36): 49362-49382. https://doi.org/10.1007/s11356-021-15680-x
  • Arriaza-Echanes C, Campo-Giraldo J L, Valenzuela-Ibaceta F, Ramos-Zúñiga J & Pérez-Donoso J M (2024) Biosynthesis of Cu-In-S nanoparticles by a yeast isolated from Union glacier, Antarctica: A platform for enhanced quantum dot-sensitized solar cells. Nanomaterials 14(6): 552. https://doi.org/10.3390/nano14060552
  • Ashok B, Hariram N, Siengchin S & Rajulu A V (2020). Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. Journal of Bioresources and Bioproducts 5(3): 180-185. https://doi.org/10.1016/j.jobab.2020.07.003
  • Badoei-dalfard A, Shaban M & Karami Z (2019). Characterization, antimicrobial, and antioxidant activities of silver nanoparticles synthesized by uricase from Alcaligenes faecalis GH3. Biocatalysis and Agricultural Biotechnology 20: 101257. https://doi.org/10.1016/j.bcab.2019.101257
  • Bajpai V K, Kamle M, Shukla S, Mahato D K, Chandra P, Hwang S K, Kumar P, Huh Y K & Han Y K (2018a). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis 26(4): 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Bajpai V K, Shukla S, Kang S M, Hwang S K, Song X, Huh Y S & Han Y K (2018b). Developments of cyanobacteria for nano-marine drugs: Relevance of nanoformulations in cancer therapies. Marine Drugs 16(6): 179. https://doi.org/10.3390/md16060179 Bakkiyaraj R, Subramanian R, Balakrishnan M & Ravichandran K (2021). Biofabrication of CeO2 nanoparticles, characterization, photocatalytic, and biological activities. Inorganic and Nano-Metal Chemistry 1-9. https://doi.org/10.1080/24701556.2021.1983841
  • Balakrishnan S, Sivaji I, Kandasamy S, Duraisamy S, Kumar N S & Gurusubramanian G (2017). Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environmental Science and Pollution Research 24: 14758-14769. https://doi.org/10.1007/s11356-017-9065-7
  • Bandeira M, Giovanela M, Roesch-Ely M, Devine D M & da Silva Crespo J (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15: 100223. https://doi.org/10.1016/j.scp.2020.100223
  • Barabadi H, Honary S, Ali Mohammadi M, Ahmadpour E, Rahimi M T, Alizadeh A, Naghibi F & Saravanan M (2017). Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environmental Science and Pollution Research 24: 5800-5810. https://doi.org/10.1007/s11356-016-8291-8
  • Barabadi H, Vahidi H, Arjmand M, Abdorashidi M, Jahani R, Amidi S, Hosseini O, Sadeghian-Abadi S, Jounaki K & Ashouri F (2024). Exploring the biological properties of Saccharomyces cerevisiae-derived silver nanoparticles: In vitro structural characteristics, antibacterial, biofilm inhibition and biofilm degradation, antioxidant, anticoagulant, thrombolytic, and antidiabetic performance. Inorganic Chemistry Communications 162: 112291. https://doi.org/10.1016/j.inoche.2024.112291
  • Bhardwaj B, Singh P, Kumar A, Kumar S & Budhwar V (2020). Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin 10(4): 566. https://doi.org/10.34172/apb.2020.067
  • Bhuyar P, Rahim M H A, Sundararaju S, Ramaraj R, Maniam G P & Govindan N (2020). Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 9: 1-15. https://doi.org/10.1186/s43088-019-0031-y
  • Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová A B, Krivjanská A & Mackuľak T (2021). Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. Environmental Science and Pollution Research 28: 22203-22220. https://doi.org/10.1007/s11356-021-13270-5
  • Bisinoti M C, Moreira A B, Melo C A, Fregolente L G, Bento L R, dos Santos J V & Ferreira O P (2019). Application of carbon-based nanomaterials as fertilizers in soils, in do Nascimento R F, Ferreira O P, De Paula A J, Neto V O S (Eds.), Nanomaterials Applications for Environmental Matrices. Elsevier, Netherlands, pp. 305-333
  • Bloise N, Okkeh M, Restivo E, Della Pina C & Visai L (2021). Targeting the “Sweet Side” of tumor with glycan-binding molecules conjugatednanoparticles: Implications in cancer therapy and diagnosis. Nanomaterials 11(2): 289. https://doi.org/10.3390/nano11020289
  • Bolbanabad E M, Ashengroph M & Darvishi F (2020). Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochemistry 94: 319-328. https://doi.org/10.1016/j.procbio.2020.03.024
  • Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh N N & Bhattacharjee C R (2020). Algamediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Applied Organometallic Chemistry 34(5): e5597. https://doi.org/10.1002/aoc.5597
  • Borse V, Kaler A & Banerjee U C (2015). Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. International Journal of Emerging Trends in Electrical and Electronics 11(2): 26-31. https://doi.org/10.13140/RG.2.1.3132.5283
  • Buddhika M A A, Perumpuli P A B N & Kaumal M N (2021). Identification and characterization of acetic acid bacteria species isolated from various sources in Sri Lanka. Ceylon Journal of Science 50(4): 521-532. http://doi.org/10.4038/cjs.v50i4.7951
  • Bundschuh M, Seitz F, Rosenfeldt R R & Schulz R (2016). Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshwater Biology 61(12): 2185-2196. https://doi.org/10.1111/fwb.12701
  • Cai Y, Wu D, Zhu X, Wang W, Tan F, Chen J, Qiao X & Qiu X (2017) Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceramics International 43(1): 1066-1072. https://doi.org/10.1016/j.ceramint.2016.10.041
  • Caliskan G, Mutaf T, Agba H C & Elibol M (2022). Green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobiology Journal 39(1): 83-96. https://doi.org/10.1080/01490451.2021.2008549
  • Cassano R, Cuconato M, Calviello G, Serini S & Trombino S (2021). Recent advances in nanotechnology for the treatment of melanoma. Molecules 26(4): 785. https://doi.org/10.3390/molecules26040785
  • Castro-Longoria E, Vilchis-Nestor A R & Avalos-Borja M (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora https://doi.org/10.1016/j.colsurfb.2010.10.035
  • CFS Center for Food crassa. Colloids Safety (2017). and surfaces B: Biointerfaces (www.centerforfoodsafety.org) 83(1): Retrieved 42-48. from http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content content_item_KEY=14112%20#showJoin
  • Cha D S & Chinnan M S (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition 44(4): 223-237. https://doi.org/10.1080/10408690490464276
  • Chan M Z A & Liu S Q (2022). Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Current Opinion in Food Science 43: 216-224.https://doi.org/10.1016/j.cofs.2021.12.009
  • Chen H (2018). Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability 30: 123-134. https://doi.org/10.1080/09542299.2018.1520050
  • Chhipa H (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15: 15-22. https://doi.org/10.1007/s10311-016-0600-4
  • Chi N T L, Narayanan M, Chinnathambi A, Govindasamy C, Subramani B, Brindhadevi K, Pimpimon T & Pikulkaew S (2022). Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environmental Research 208: 112684. https://doi.org/10.1016/j.envres.2022.112684
  • Chohan K L, Siegler E L & Kenderian S S (2023). CAR-T cell therapy: the efficacy and toxicity balance. Current Hematologic Malignancy Reports 18(2), 9-18. https://doi.org/10.1007/s11899-023-00687-7
  • Chugh D, Viswamalya V S & Das B (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 126. https://doi.org/10.1186/s43141-021-00228-w
  • Cunha F A, Cunha M D C, da Frota S M, Mallmann E J, Freire T M, Costa L S, Paula A J, Menezes E A & Fechine P B (2018). Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: Antifungal, catalytic and cytotoxicity activities. World Journal of Microbiology and Biotechnology 34: 1-15. https://doi.org/10.1007/s11274-018-2514-8
  • Czyżowska A & Barbasz A (2022). A review: zinc oxide nanoparticles–friends or enemies? International Journal of Environmental Health Research 32(4): 885-901. https://doi.org/10.1080/09603123.2020.1805415
  • da Silva Ferreira V, ConzFerreira M E, Lima L M T, Frasés S, de Souza W & Sant’Anna C (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology 97: 114-121. https://doi.org/10.1016/j.enzmictec.2016.10.018
  • Das V L, Thomas R, Varghese R T, Soniya E V, Mathew J & Radhakrishnan E K (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4: 121-126. https://doi.org/10.1007/s13205-013-0130-8
  • De Bellis P & Rizzello C G (2024). Advances in the use of beneficial microorganisms to improve nutritional and functional properties of fermented foods. Foods 13(1): 155. https://doi.org/10.3390/foods13010155
  • de Oliveira J L, Campos E V R, Bakshi M, Abhilash P C & Fraceto L F (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances 32(8): 1550-1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
  • Dhabalia D, Ukkund S J, Syed U T, Uddin W & Kabir M A (2020). Antifungal activity of biosynthesized silver nanoparticles from Candida albicans on the strain lacking the CNP41 gene. Materials Research Express 7(12): 125401. https://doi.org/10.1088/2053-1591/abcc83
  • Doan V D, Huynh B A, Nguyen T D, Cao X T, Nguyen V C, Nguyen T L H, Nguyen H T & Le V T (2020). Biosynthesis of silver and gold nanoparticles using aqueous extract of Codonopsis pilosula roots for antibacterial and catalytic applications. Journal of Nanomaterials 8492016. https://doi.org/10.1155/2020/8492016
  • Dutta T, Chattopadhyay A P, Ghosh N N, Khatua S, Acharya K, Kundu S, Mitra D & Das M (2020). Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chemical Papers 74: 4089-4101. https://doi.org/10.1007/s11696-020-01216-z
  • EFSA (European Food Safety Authority) (2009). The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA Journal 7(3): 958. https://doi.org/10.2903/j.efsa.2009.958
  • Elamawi R M, Al-Harbi R E & Hendi A A (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control 28(1): 1-11. https://doi.org/10.1186/s41938-018-0028-1
  • Elegbede J A, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Oladipo I C, Adebayo E A, Beukes L S & Gueguim-Kana E B (2018a). Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnology 12(6): 857-863. https://doi.org/10.1049/iet-nbt.2017.0299
  • Elegbede J A, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Oladipo I C, Aina D A, Beukes L S & Gueguim-Kana E B (2018b). Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valorization 1-11. https://doi.org/10.1007/s12649 018-0540-2
  • El-Khawaga A M, Elsayed M A, Gobara M, Suliman A A, Hashem A H, Zaher A A, Mohsen M & Salem S S (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery 1-12. https://doi.org/10.1007/s13399-023-04827-0
  • Elmer W & White J C (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology 56: 111-133. https://doi.org/10.1146/annurev-phyto-080417-050108
  • natural extracts: El-Seedi H R, El-Shabasy R M, Khalifa S A, Saeed A, Shah A, Shah R & Guo W (2019). Metal nanoparticles fabricated by green chemistry using Biosynthesis, mechanisms, and applications. RSC Advances 9(42): 24539-24559. https://doi.org/10.1039/C9RA02225B
  • El-Sheekh M M, Shabaan M T, Hassan L & Morsi H H (2022). Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research 32(3): 616-627. https://doi.org/10.1080/09603123.2020.1789946
  • Emerich D F & Thanos C G (2006). The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomolecular Engineering 23(4): 171-184. https://doi.org/10.1016/j.bioeng.2006.05.026
  • Eszenyi P, Sztrik A, Babka B & Prokisch J (2011). Elemental, nano-sized (100-500 nm) selenium production by probiotic lactic acid bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics 1(2), 148.
  • Fadeel B & Garcia-Bennett A E (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews 62(3): 362-374. https://doi.org/10.1016/j.addr.2009.11.008
  • Fahmy S A, Preis E, Bakowsky U & Azzazy H M E S (2020). Platinum nanoparticles: green synthesis and biomedical applications. Molecules, 25(21), 4981. https://doi.org/10.3390/molecules25214981
  • Faramarzi S, Anzabi Y & Jafarizadeh-Malmiri H (2020). Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology 202(5): 1203-1209. https://doi.org/10.1007/s00203-020-01831-0
  • Fatemi M, Mollania N, Momeni-Moghaddam M & Sadeghifar F (2018). Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. Journal of Biotechnology 270: 1-11. https://doi.org/10.1016/j.jbiotec.2018.01.021
  • and its Fatima R, Priya M, Indurthi L, Radhakrishnan V & Sudhakaran R (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii antibacterial activity against fish pathogens. Microbial Pathogenesis 138: 103780. https://doi.org/10.1016/j.micpath.2019.103780
  • Fatimah I, Purwiandono G, Jauhari M H, Maharani A A A P, Sagadevan S, Oh W C & Doong R. A (2022). Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods. Arabian Journal of Chemistry 15(4): 103738. https://doi.org/10.1016/j.arabjc.2022.103738 oxide nanoparticles Fawcett D, Verduin J J, Shah M, Sharma S B & Poinern G E J (2017). A review of current research into the biogenic synthesis of metal and metal via marine algae and seagrasses. Journal of Nanoscience 2017(1): 8013850. https://doi.org/10.1155/2017/8013850
  • Fedotova A V, Snezhko A G, Sdobnikova O A, Samoilova L G, Smurova T A, Revina A A & Khailova E B (2010). Packaging materials manufactured from natural polymers modified with silver nanoparticles. International Polymer Science and Technology 37(10): 59-64. https://doi.org/10.1177/0307174X1003701010
  • Feng H, Liu S Y, Huang X B, Ren R, Zhou Y, Song C P & Qian D H (2017). Green biosynthesis of CdS nanoparticles using yeast cells for fluorescence detection of nucleic acids and electrochemical detection of hydrogen peroxide. International Journal of Electrochemical Science 12(1): 618-628. https://doi.org/10.20964/2017.01.57
  • Feroze N, Arshad B, Younas M, Afridi M I, Saqib S & Ayaz A (2020). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique 83(1): 72-80. https://doi.org/10.1002/jemt.23390
  • Fu X, Cai J, Zhang X, Li W D, Ge H & Hu Y (2018). Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews 132: 169-187. https://doi.org/10.1016/j.addr.2018.07.006
  • Gaba S, Varma A, Prasad R & Goel A (2022). Exploring the impact of bioformulated copper oxide nanoparticles on cytomorphology of Alternaria brassicicola. Current Microbiology 79(8): 244. https://doi.org/10.1007/s00284-022-02927-0
  • Gahlawat G & Choudhury A R (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances 9(23): 12944-12967. https://doi.org/10.1039/C8RA10483B
  • Gan L, Zhang S, Zhang Y, He S & Tian Y (2018). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology 48(7): 582-588. https://doi.org/10.1080/10826068.2018.1476880
  • Gavas S, Quazi S & Karpiński T M (2021). Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Research Letters 16(1): 173. https://doi.org/10.1186/s11671-021-03628-6
  • Gegechkori N, Haines L & Lin J J (2017). Long-term and latent side effects of specific cancer types. Medical Clinics 101(6): 1053-1073. https://doi.org/10.1016/j.mcna.2017.06.003
  • Gholami A, Mohkam M, Soleimanian S, Sadraeian M & Lauto A (2024). Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsystems & Nanoengineering, 10(1), 113. https://doi.org/10.1038/s41378-024-00743-z
  • Gholami-Shabani M, Shams-Ghahfarokhic M, Gholami-Shabanid Z, Akbarzadeh A, Riazi G, Ajdarif S, Amanig A & Razzaghi-Abyaneh M (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochemistry 50: 1076-1085. https://doi.org/10.1016/j.procbio.2015.04.004
  • Ghosh S, Ahmad R, Zeyaullah M & Khare S K (2021). Microbial nano-factories: Synthesis and biomedical applications. Frontiers in Chemistry 9: 626834. https://doi.org/10.3389/fchem.2021.626834
  • Ghosh S, Sarkar B, Kaushik A & Mostafavi E (2022). Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Science of the Total Environment 838: 156212. https://doi.org/10.1016/j.scitotenv.2022.156212 Gomaa E Z (2017). Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. The Journal of General and Applied Microbiology 63(1): 36-43. https://doi.org/10.2323/jgam.2016.07.004
  • Gomathi A C, Rajarathinam S X, Sadiq A M & Rajeshkumar S (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology 55: 101376. https://doi.org/10.1016/j.jddst.2019.101376
  • Gomez-Zavaglia A, Cassani L, Hebert E M & Gerbino E (2022). Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International 155: 111097. https://doi.org/10.1016/j.foodres.2022.111097
  • González-Ballesteros N, Prado-López S, Rodríguez-González J B, Lastra M & Rodríguez-Argüelles M (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces 153: 190 198. https://doi.org/10.1016/j.colsurfb.2017.02.020
  • Gopu M, Kumar P, Selvankumar T, Senthilkumar B, Sudhakar C, Govarthanan M, Kumar R S & Selvam K (2021). Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess and Biosystems Engineering 44: 217-223. https://doi.org/10.1007/s00449-020-02426-1
  • Govindappa M, Lavanya M, Aishwarya P, Pai K, Lunked P, Hemashekhar B, Arpitha B M, Ramachandra Y L & Raghavendra V B (2020). Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. BioNanoScience 10: 928-941. https://doi.org/10.1007/s12668-020-00719-z
  • Grasso G, Zane D & Dragone R (2020). Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 10: 11. https://doi.org/10.3390/nano10010011
  • Grillo R, Abhilash P C & Fraceto L F (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology 16(1): 1231-1234. https://doi.org/10.1166/jnn.2016.12332
  • Gu H, Chen X, Chen F, Zhou X & Parsaee Z (2018). Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrasonics Sonochemistry 41: 109-119. https://doi.org/10.1016/j.ultsonch.2017.09.006
  • Guleria A, Neogy S, Raorane B S & Adhikari S (2020). Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies. Materials Chemistry and Physics 253: 123369. https://doi.org/10.1016/j.matchemphys.2020.123369
  • Guo H, White J C, Wang Z & Xing B (2018). Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health 6: 77-83. https://doi.org/10.1016/j.coesh.2018.07.009
  • Gupta K & Chundawat T S (2019). Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Materials Research Express 6(10): 1050d6. https://doi.org/10.1088/20531591/ab4219
  • Gupte Y, Kulkarni A, Raut B, Sarkar P, Choudhury R, Chawande A, Kumar G R K, Bhadra B., Satapathy A, Das G, Vishnupriya B & Dasgupta S (2021). Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. Carbohydrate Polymers 266: 118176. https://doi.org/10.1016/j.carbpol.2021.118176
  • Gursoy N (2020). Fungus-mediated synthesis of silver nanoparticles (AgNP) and inhibitory effect on Aspergillus spp. in combination with antifungal agent. Cumhuriyet Science Journal 41(1): 311-318. https://doi.org/10.17776/csj.653627
  • Halawani E M, Hassan A M & Gad El-Rab S M (2020). Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. International Journal of Nanomedicine 1889-1901. https://doi.org/10.2147/IJN.S236182
  • Hamk M, Akçay F A & Avcı A (2023). Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Preparative Biochemistry & Biotechnology 53(3): 255-264. https://doi.org/10.1080/10826068.2022.2076243
  • Harandi F N, Khorasani A C, Shojaosadati S A & Hashemi-Najafabadi S (2021). Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Materials Science and Engineering: C 130: 112457. https://doi.org/10.1016/j.msec.2021.112457
  • Hashemi Z, Mizwari Z M, Mohammadi-Aghdam S, Mortazavi-Derazkola S & Ebrahimzadeh M A (2022). Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arabian Journal of Chemistry 15(1): 103525. https://doi.org/10.1016/j.arabjc.2021.103525
  • Hata N N Y, Surek M, Sartori D, Vassoler Serrato R & Aparecida Spinosa W (2023). Role of acetic acid bacteria in food and beverages. Food Technology and Biotechnology 61(1): 85-103. https://doi.org/10.17113/ftb.61.01.23.7811
  • Hazards E P O B, Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumaniss K, Lindqvist R, Norrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile B T & Lindqvist R (2017). Scientific opinion on the update of the list of QPS recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 15: e04664. https://doi.org/10.2903/j.efsa.2017.4664
  • He X, Deng H & Hwang H M (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1): 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
  • Hemeg H A (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine 8211-8225. https://doi.org/10.2147/IJN.S132163
  • Hikmet R A & Hussein N N (2021). Mycosynthesis of silver nanoparticles by Candida albicans yeast and its biological applications. Archives of Razi Institute 76(4): 857-869. https://doi.org/10.22092/ARI.2021.355935.1741
  • Hill C, Guarner F, Reid G, Gibson G R, Merenstein D J, Pot B, Morelli L, Canani R B, Flint H J, Salminen S, Calder P C & Sanders M E (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
  • Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R & Mukherjee P (2019). Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 3(8): 267. https://doi.org/10.15698/cst2019.08.195
  • Ibrahem K H, Ali F A & Sorchee S M A (2020). Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cellular and Molecular Biology 66(7): 111-117. https://doi.org/10.14715/cmb/2020.66.7.17
  • Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G & Li B (2020). Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials 10(2): 219. https://doi.org/10.3390/nano10020219
  • Ikram M, Javed B, Raja N I & Mashwani Z U R (2021). Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine 249-268. https://doi.org/10.2147/IJN.S295053
  • In G K & Nieva J (2015). Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer. Translational Cancer Research 4(4). https://doi.org/10.3978/j.issn.2218-676X.2015.08.05
  • Jach M E, Serefko A, Ziaja M & Kieliszek M (2022). Yeast protein as an easily accessible food source. Metabolites 12(1): 63. https://doi.org/10.3390/metabo12010063
  • Jacob J M, Ravindran R, Narayanan M, Samuel S M, Pugazhendhi A & Kumar G (2021). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science & Health, 20: 100163. https://doi.org/10.1016/j.coesh.2019.12.005
  • Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, Moshafi M H, Ameri A, Rahimi H R & Forootanfar H (2018). Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatalysis and Agricultural Biotechnology 15: 245-253. https://doi.org/10.1016/j.bcab.2018.06.014
  • Jalal M, Ansari M A, Alzohairy M A, Ali S G, Khan H M, Almatroudi A & Raees K (2018). Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8(8): 586. https://doi.org/10.3390/nano8080586
  • Jalal M, Ansari M A, Alzohairy M A, Ali S G, Khan H M, Almatroudi A & Siddiqui M I (2019). Anticandidal activity of biosynthesized silver nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida species. International Journal of Nanomedicine 4667-4679. https://doi.org/10.2147/IJN.S210449
  • Jamkhande P G, Ghule N W, Bamer A H & Kalaskar M G (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • Jayaprakash N, Vijaya J J, Kaviyarasu K, Kombaiah K, Kennedy L J, Ramalingam R J, Munusamy M A & Al-Lohedan H A (2017). Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology 169: 178-185. https://doi.org/10.1016/j.jphotobiol.2017.03.013
  • Jeevanandam J, Chan Y S & Danquah M K (2016). Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews 3(2): 55-67. https://doi.org/10.1002/cben.201500018
  • Jeevanandam J, Pal K & Danquah M K (2019). Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 157: 38-47. https://doi.org/10.1016/j.biochi.2018.11.001
  • Jeevanandam J, Ling J K U, Barhoum A, San Chan Y & Danquah M K (2022). Bionanomaterials: Definitions, sources, types, properties, toxicity, and regulations, in Barhoum A, Jeevanandam J, Danquah M K (Eds.), Fundamentals of bionanomaterials. Elsevier, Netherlands, pp. 1-29
  • Kalaiselvi A, Roopan S M, Madhumitha G, Ramalingam C & Elango G (2015). Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 116-119. https://doi.org/10.1016/j.saa.2014.07.010 Kambale E K, Nkanga C I, Mutonkole B P I, Bapolisi A M, Tassa D O, Liesse J M I, Krause R W M & Memvanga P B (2020). Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 6(8). https://doi.org/10.1016/j.heliyon.2020.e04493
  • Kang S, Pinault M, Pfefferle L D & Elimelech M (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17): 8670-8673. https://doi.org/10.1021/la701067r
  • Kanniah P, Chelliah P, Thangapandi J R, Gnanadhas G, Mahendran V & Robert M (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules 189: 18-33. https://doi.org/10.1016/j.ijbiomac.2021.08.056
  • Kaur P, Thakur R, Duhan J S & Chaudhury A (2018). Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). Journal of Chemical Technology & Biotechnology 93(11): 3233-3243. https://doi.org/10.1002/jctb.5680
  • Khatua A, Prasad A, Priyadarshini E, Patel A K, Naik A, Saravanan M, Barabadi H, Ghosh I, Paul B, Paulraj R & Meena R (2020). Emerging antineoplastic plant-based gold nanoparticle synthesis: a mechanistic exploration of their anticancer activity toward cervical cancer cells. Journal of Cluster Science, 31, 1329-1340. https://doi.org/10.1007/s10876-019-01742-1
  • Kim D Y, Kim M, Sung J S, Koduru J R, Nile S H, Syed A, Bahkali A H, Seth C S & Ghodake G S (2024). Extracellular synthesis of silver nanoparticle using yeast extracts: Antibacterial and seed priming applications. Applied Microbiology and Biotechnology 108(1): 150. https://doi.org/10.1007/s00253-023-12920-7
  • Kışla D, Gökmen G G, Evrendilek G A, Akan T, Vlčko T, Kulawik P, Jambrak A R, &Ozogul F (2023). Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends in Food Science & Technology 135: 144-172. https://doi.org/10.1016/j.tifs.2023.03.019
  • Koopi H & Buazar F (2018). A novel one-pot biosynthesis of pure alpha aluminum oxide nanoparticles using the macroalgae Sargassum ilicifolium: a green marine approach. Ceramics International 44(8): 8940-8945. https://doi.org/10.1016/j.ceramint.2018.02.091
  • Król A, Railean-Plugaru V, Pomastowski P, Złoch M & Buszewski B (2018). Mechanism study of intracellular zinc oxide nanocomposites formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 553: 349-358. https://doi.org/10.1016/j.colsurfa.2018.05.069
  • Kulandaivelu B & Gothandam K M (2016). Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Brazilian Archives of Biology and Technology 59: e16150529. https://doi.org/10.1590/1678-4324-2016150529
  • Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More M P, Pardeshi S R, Dhaneshwar G, Junnuthula V & Dyawanapelly S (2023). Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 11, 1159193. https://doi.org/10.3389/fbioe.2023.1159193
  • Kumar S V & Rajeshkumar S (2018). Plant-based synthesis of nanoparticles and their impact. Nanomaterials in Plants, algae, and Microorganisms 1: 33-57. https://doi.org/10.1016/B978-0-12-811487-2.00002-5
  • Kundu D, Hazra C, Chatterjee A, Chaudhari A & Mishra S (2014). Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Journal of Photochemistry and Photobiology B: Biology 140: 194-204. https://doi.org/10.1016/j.jphotobiol.2014.08.001
  • Lateef A, Adelere I A & Gueguim-Kana E B (2015a). Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnology & Biotechnological Equipment 29(1): 54-63. https://doi.org/10.1080/13102818.2014.986360
  • Lateef A, Adelere I A, Gueguim-Kana E B, Asafa T B & Beukes L S (2015b). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. International Nano Letters 5: 29-35. https://doi.org/10.1007/s40089-014-0133-4
  • Lee B & Lee D G (2019). Synergistic antibacterial activity of gold nanoparticles caused by apoptosis‐like death. Journal of Applied Microbiology 127(3): 701-712. https://doi.org/10.1111/jam.14357
  • Lei X, Peng Y, Li Y, Chen Q, Shen Z, Yin W, Lemiasheuski V, Xu S & He J (2024). Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorganic Chemistry 107165. https://doi.org/10.1016/j.bioorg.2024.107165
  • Liu R & Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
  • Liu X Y, Wang J Q, Ashby Jr C R, Zeng L, Fan Y F & Chen Z S (2021). Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today 26(5): 1284-1292. https://doi.org/10.1016/j.drudis.2021.01.030
  • Liu Y, Perumalsamy H, Kang C H, Kim S H, Hwang J S, Koh S C, Yi T H & Kim Y J (2020). Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide activated macrophages. Artificial Cells, Nanomedicine, and Biotechnology 48(1), 777 788.https://doi.org/10.1080/21691401.2020.1748639
  • Ma D, Han T, Karimian M, Abbasi N, Ghaneialvar H & Zangeneh A (2020). Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer. International Journal of Biological Macromolecules 165: 767-775. https://doi.org/10.1016/j.ijbiomac.2020.09.193
  • Majumder J, Pal K, Chakraborty W, Karmakar P & Gachhui R (2022). Glucanoacetobacter kombuchae (RG3T), a novel bacteria for AgNPs biosynthesis: Characterization and comprehensive evaluation of bioactivity. Materials Today Communications 33: 104410. https://doi.org/10.1016/j.mtcomm.2022.104410
  • Majumder R, Das C K & Mandal M (2019). Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacological Research 148: 104416. https://doi.org/10.1016/j.phrs.2019.104416
  • Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F & Barolo C (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry 22(21): 7168-7218. https://doi.org/10.1039/D0GC01148G
  • Markus J, Mathiyalagan R, Kim Y J, Abbai R, Singh P, Ahn S, Perez Z E J, Hurt J & Yang D C (2016). Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme and Microbial Technology 95: 85-93. https://doi.org/10.1016/j.enzmictec.2016.08.018
  • Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano E M, Ortiz T, Villamor E, Begines B & Alcudia A (2021). Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials 14(1): 166. https://doi.org/10.3390/ma14010166
  • Masum M M I, Siddiqa M M, Ali K A, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C & Li B (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in Microbiology 10: 820. https://doi.org/10.3389/fmicb.2019.00820 Matei A, Matei S, Matei G M, Cogălniceanu G & Cornea C P (2020). Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. The EuroBiotech Journal 4(2): 97-103. https://doi.org/10.2478/ebtj-2020-0011
  • Mishra M, Paliwal J S, Singh S K, Selvarajan E, Subathradevi C & Mohanasrinivasan V (2013). Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using Lactobacillus sporogens against Staphylococcus aureus. Journal of Pure AppliedMicrobiology 7(2): 1263-1268
  • Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A & Langer R (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 20(2): 101-124. https://doi.org/10.1038/s41573-020-0090-8
  • Mittal A K, Chisti Y & Banerjee U C (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances 31(2): 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Mittal D, Kaur G, Singh P, Yadav K & Ali S A (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology 2: 579954. https://doi.org/10.3389/fnano.2020.579954
  • Moghaddam A B, Namvar F, Moniri M, Md Tahir P, Azizi S & Mohamad R (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9): 16540-16565. https://doi.org/10.3390/molecules200916540
  • Mohammad Z H, Ahmad F, Ibrahim S A & Zaidi S (2022). Application of nanotechnology in different aspects of the food industry. Discover Food 2(1): 12.https://doi.org/10.1007/s44187-022-00013-9
  • Mohammed A A, Hegazy A E & Salah A (2023). Novelty of synergistic and cytotoxicity activities of silver nanoparticles produced by Lactobacillus acidophilus. Applied Nanoscience 13(1): 633-640. https://doi.org/10.1007/s13204-021-01878-5 Mohd Yusof H, Mohamad R, Zaidan U H & Abdul Rahman N A (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology 10: 1-22. https://doi.org/10.1186/s40104-019-0368-z
  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Konya Z, Toth-Szeles E, Szucs R & Lagzi I (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports 8(1): 3943. https://doi.org/10.1038/s41598-018-22112-3
  • Morris M A, Padmanabhan S C, Cruz-Romero M C, Cummins E & Kerry J P (2017). Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Science 132: 163-178. https://doi.org/10.1016/j.meatsci.2017.04.234
  • Mortezaee K, Narmani A, Salehi M, Bagheri H, Farhood B, Haghi-Aminjan H & Najafi M (2021). Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences 269: 119020. https://doi.org/10.1016/j.lfs.2021.119020
  • Munawer U, Raghavendra V B, Ningaraju S, Krishna K L, Ghosh A R, Melappa G & Pugazhendhi A (2020). Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. International Journal of Pharmaceutics 588: 119729. https://doi.org/10.1016/j.ijpharm.2020.119729
  • Nadagouda M N & Varma R S (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry 10(8): 859-862. https://doi.org/10.1039/B804703K
  • Naimi-Shamel N, Pourali P & Dolatabadi S (2019). Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. Journal de Mycologie Medicale 29(1): 7-13. https://doi.org/10.1016/j.mycmed.2019.01.005
  • Nair B & Pradeep T (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth & Design 2(4): 293-298. https://doi.org/10.1021/cg0255164
  • Nargund V B, Patil R R & Vanti G L (2022). Bacillus sp. extract used to fabricate ZnO nanoparticles for their antagonist effect against phytopathogens. Biometals 35(6): 1255-1269. https://doi.org/10.1007/s10534-022-00440-2
  • Nethravathi P C, Shruthi G S, Suresh D, Nagabhushana H & Sharma S C (2015). Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceramics International 41(7): 8680-8687. https://doi.org/10.1016/j.ceramint.2015.03.084
  • Nile S H, Baskar V, Selvaraj D, Nile A, Xiao J & Kai G (2020). Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-micro Letters 12: 1-34. https://doi.org/10.1007/s40820-020-0383-9
  • Nooraei S, Bahrulolum H, Hoseini Z S, Katalani C, Hajizade A, Easton A J & Ahmadian G (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology, 19, 1-27. https://doi.org/10.1186/s12951-021-00806-7
  • Oladipo I C, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Ogunsona S B, Irshad H M & Abbas S H (2020). Characterization and biomedical application of phytosynthesized gold nanoparticles from Datura stramonium seed extract. IOP Conference Series: Materials Science and Engineering, IOP Publishing 805(1): 012021
  • Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A & Shahbazi M A (2021). Immune cell Membrane‐Coated biomimetic nanoparticles for targeted cancer therapy. Small 17(12): 2006484. https://doi.org/10.1002/smll.202006484
  • Ortega F G, Fernández-Baldo M A, Fernandez J G, Serrano M J, Sanz M I, Diaz-Mochon J J, Lorente J A & Raba J (2015). Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. International Journal of Nanomedicine 2021-2031. https://doi.org/10.2147/IJN.S75835
  • Osman A I, Zhang Y, Farghali M, Rashwan A K, Eltaweil A S, Abd El-Monaem E M, Mohamed I M A, Badr M M, Ihara I, Rooney D W & Yap P S (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters 22(2): 841-887. https://doi.org/10.1007/s10311-023-01682-3
  • Pacheco-Blandino I, Vanner R & Buzea C (2012). Toxicity of nanoparticles, in F. Pacheco-Torgal F, Jalali S, Fucic A (Eds.), Toxicity of Building Materials. Woodhead Publishing, Sawston, United Kingdom, pp. 427-475
  • Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X & Wang J (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports 10(1): 2717. https://doi.org/10.1038/s41598-020-59624-w
  • Peiris M M K, Guansekera T D C P, Jayaweera P M & Fernando S S N (2018). TiO2 nanoparticles from Baker's yeast: a potent antimicrobial. Journal of Microbiology and Biotechnology 28(10): 1664-1670. https://doi.org/10.4014/jmb.1807.07005
  • Poopathi S, De Britto L J, Praba V L, Mani C & Praveen M (2015). Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environmental Science and Pollution Research 22: 2956-2963. https://doi.org/10.1007/s11356-014-3560-x
  • Pradeepa Vidya S M, Mutalik S, Bhat K U, Huilgol P & Avadhani K (2016). Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sciences 153, 171-179. https://doi.org/10.1016/j.lfs.2016.04.022
  • Prasad R, Bhattacharyya A & Nguyen Q D (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology 8: 1014. https://doi.org/10.3389/fmicb.2017.01014 Prema P, Ranjani S S, Kumar K R, Veeramanikandan V, Mathiyazhagan N, Nguyen V H & Balaji P (2022). Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorganic Chemistry Communications 136: 109139. https://doi.org/10.1016/j.inoche.2021.109139
  • Priya A S, Afzal O, Khalid M, Ahmad M F, Upadhyay A, Kumar S, Garg A, Ramzan M, Hussain A, Altamimi M A, Altamimi A S A, Webster T J & Khanam A (2023). Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. International Journal of Pharmaceutics 643: 123223. https://doi.org/10.1016/j.ijpharm.2023.123223
  • Pugazhendhi A, Prabakar D, Jacob J M, Karuppusamy I & Saratale R G (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis 114: 41-45. https://doi.org/10.1016/j.micpath.2017.11.013
  • Purbani D C, Pratiwi R D, Muttaqien S E, Nantapong N, Warsito M F, Fikri M N, Ruth F, Gustini N, Syahputra G, Padri M, Noerdjito D R, Nurkanto A & Afani H (2024). Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait Journal of Science 51(2): 100194. https://doi.org/10.1016/j.kjs.2024.100194
  • Puri A & Patil S (2022). Tinospora cordifolia stem extract-mediated green synthesis of selenium nanoparticles and its biological applications. Pharmacognosy Research 14(3). https://doi.org/10.5530/pj.2019.11.x
  • Qi X, Su T, Zhang M, Tong X, Pan W, Zeng Q & Shen J (2020). Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydrate Polymers 237 116160. https://doi.org/10.1016/j.carbpol.2020.116160
  • Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y & Wang Z (2018). Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. International Journal of Nanomedicine 6809-6827. https://doi.org/10.2147/IJN.S177993
  • Qureshi A, Singh D K & Dwivedi S (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences 7(2): 3325-3335. https://doi.org/10.20546/ijcmas.2018.702.398
  • Rad M, Taran M & Alavi M (2018). Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomedicine and Engineering 10(1): 25 33. https://doi.org/10.5101/nbe.v10i1.p25-33
  • Rajeshkumar S & Sivapriya D (2020). Fungus-mediated nanoparticles: characterization and biomedical advances, in Shukla A, (Ed.), Nanoparticles in Medicine. Springer, Singapore, pp. 185-199
  • Ramakrishna M, Rajesh Babu D, Gengan R M, Chandra S & Nageswara Rao G (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry 6: 1-13. https://doi.org/10.1007/s40097-015-0173-y
  • Ravichandran A, Subramanian P, Manoharan V, Muthu T, Periyannan R, Thangapandi M, Ponnuchamy K, Pandi B & Marimuthu P N (2018). Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. Journal of Photochemistry and Photobiology B: Biology 185: 117-125. https://doi.org/10.1016/j.jphotobiol.2018.05.031
  • Razak A, Mohd Gazzali S A, Fisol A, Abdulbaqi F A M, Parumasivam I, Mohtar T & Wahab H A (2021). Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: an overview. Cancers 13(3): 400. https://doi.org/10.3390/cancers13030400
  • Rhim J W, Park H M & Ha C S (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science 38(10-11): 1629 1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
  • Saeed S, Iqbal A & Ashraf M A (2020). Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environmental Science and Pollution Research 27(30): 37347-37356. https://doi.org/10.1007/s11356-020-07610-0
  • Saifuddin N, Wong C W & Yasumira A N (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry 6(1): 61-70. https://doi.org/10.1155/2009/734264
  • Saka A, Jule L T, Gudata L, Gindaba A, Abdisa S S, Nagaprasad N & Ramaswamy K (2022). Green synthesis of Datura stramonium (Asaangira) leaves infusion for antibacterial activity through magnesium oxide (MgO) nanoparticles. Advances in Materials Science and Engineering 2022(1): 7134991. https://doi.org/10.1155/2022/7134991
  • Salunke B K, Sawant S S, Lee S I & Kim B S (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology 32: 1-16. https://doi.org/10.1007/s11274-016-2044-1
  • Sanaeimehr Z, Javadi I & Namvar F (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnology 9: 1-16. https://doi.org/10.1186/s12645-018-0037-5
  • Sásková D, Pořízka J, Kulich P, Španová A, Diviš P & Rittich B (2016). Silver nanoparticles production with probiotic bacteria. Materials Science Forum 851: 32-36
  • Sayadi M H, Salmani N, Heidari A & Rezaei M R (2018). Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surfaces and Interfaces 10: 136-143. https://doi.org/10.1016/j.surfin.2018.01.002 Sekhon B S (2010). Food nanotechnology–an overview. Nanotechnology, Science and Applications 1-15. https://doi.org/10.2147/nsa.s12187498
  • Selmani A, Ulm L, Kasemets K, Kurvet I, Erceg I, Barbir R, Pem B, Santini P, Marion I D, Vçnkovic T, Krivohlavek A, Sikiric M D, Kahru A & Vrček I V (2020). Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere 250: 126265. https://doi.org/10.1016/j.chemosphere.2020.126265
  • Selvarajan E & Mohanasrinivasan V J M L (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters 112: 180-182. https://doi.org/10.1016/j.matlet.2013.09.020
  • Shah M, Fawcett D, Sharma S, Tripathy S K & Poinern G E J (2015). Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278-7308. https://doi.org/10.3390/ma8115377
  • Shaikh S, Nazam N, Rizvi S M D, Ahmad K, Baig M H, Lee E J & Choi I (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International Journal of Molecular Sciences 20(10): 2468. https://doi.org/10.3390/ijms20102468
  • Shamaila S, Sajjad A K L, Farooqi S A, Jabeen N, Majeed S & Farooq I (2016). Advancements in nanoparticle fabrication by hazard free eco friendly green routes. Applied Materials Today 5: 150-199. https://doi.org/10.1016/j.apmt.2016.09.009
  • Shanmugam R, Munusamy T, Jayakodi S, Al-Ghanim K A, Nicoletti M, Sachivkina N & Govindarajan M (2023). Probiotic-bacteria (Lactobacillus fermentum)-wrapped zinc oxide nanoparticles: Biosynthesis, characterization, and antibacterial activity. Fermentation 9(5): 413. https://doi.org/10.3390/fermentation9050413
  • Shehabeldine A M, Elbahnasawy M A & Hasaballah A I (2021). Green phytosynthesis of silver nanoparticles using Echinochloa stagnina extract with reference to their antibacterial, cytotoxic, and larvicidal activities. BioNanoScience 11: 526-538. https://doi.org/10.1007/s12668-021-00846-1
  • Shende S, Ingle A P, Gade A & Rai M (2015). Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology 31: 865-873. https://doi.org/10.1007/s11274-015-1840-3
  • Siaw Y M, Jeevanandam J, Hii Y S & Chan Y S (2020). Photo-irradiation coupled biosynthesis of magnesium oxide nanoparticles for antibacterial application. Naunyn-Schmiedeberg's Archives of Pharmacology 393(12): 2253-2264. https://doi.org/10.1007/s00210-02001934-x
  • Sierra-Fernandez A, De la Rosa-García S C, Gomez-Villalba L S, Gómez-Cornelio S, Rabanal M E, Fort R & Quintana P (2017). Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Applied Materials & Interfaces 9(29): 24873-24886. https://doi.org/10.1021/acsami.7b06130
  • Singh K R, Nayak V, Singh J, Singh A K & Singh R P (2021). Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Advances 11(40): 24722-24746. https://doi.org/10.1039/D1RA04273D
  • Singh P, Kim Y J, Wang C, Mathiyalagan R & Yang D C (2016a). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology 44(6): 1569-1575. https://doi.org/10.3109/21691401.2015.1064937
  • Singh P, Kim Y J, Zhang D & Yang D C (2016b). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7): 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Singh S, Singh B K, Yadav S M & Gupta A K (2015). Applications of nanotechnology in agricultural and their role in disease management. Research Journal of Nanoscience and Nanotechnology 5(1), 1-5.
  • Sinha A & Khare S K (2011). Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology 102(5): 4281-4284. https://doi.org/10.1016/j.biortech.2010.12.040
  • Siqueira M C, Coelho G F, de Moura M R, Bresolin J D, Hubinger S Z, Marconcini J M & Mattoso L H (2014). Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. Journal of Nanoscience and Nanotechnology 14(7): 5512-5517. https://doi.org/10.1166/jnn.2014.8991
  • Sivarethinamohan R & Sujatha S (2021). Unlocking the potentials of using nanotechnology to stabilize agriculture and food production. Third International Conference on Material Science, Smart Structures and Applications: (ICMSS 2020), AIP Publishing 2327: 1
  • Skalickova S, Baron M & Sochor J (2017). Nanoparticles biosynthesized by yeast: a review of their application. Kvasny Prumysl 63(6): 290292. https://doi.org/10.18832/kp201727
  • Slavin Y N, Asnis J, Hńfeli U O & Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15: 1-20. https://doi.org/10.1186/s12951-017-0308-z
  • Soni N & Prakash S (2015). Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitology Research 114: 1023-1030. https://doi.org/10.1007/s00436-014-4268-z
  • Soto C M & Ratna B R (2010). Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology 21(4): 426-438. https://doi.org/10.1016/j.copbio.2010.07.004
  • Sowbarnika R, Anhuradha S & Preetha B (2018). Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. International Journal of Nanoscience and Nanotechnology 14(1): 33-42
  • Sperber W H (2009). Introduction to the microbiological spoilage of foods and beverages, in Sperber W, Doyle M (Eds.), Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety. Springer, German, pp. 1-40
  • Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O & Chlichlia K (2021). Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. Nanoscale Advances 3(9): 2516-2528. https://doi.org/10.1039/ D0NA00984A
  • Srikhao N, Kasemsiri P, Lorwanishpaisarn N & Okhawilai M (2021). Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. Research on Chemical Intermediates 47: 1269-1283. https://doi.org/10.1007/s11164-020-04354-x
  • Sriramulu M & Sumathi S (2018). Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Advances in Natural Sciences: Nanoscience and Nanotechnology 9(2): 025018. https://doi.org/10.1088/2043 6254/aac506
  • Srivastava P & Kowshik M (2017). Fluorescent lead (IV) sulfide nanoparticles synthesized by Idiomarina sp. strain PR58-8 for bioimaging applications. Applied and Environmental Microbiology 83(7): e03091-16. https://doi.org/10.1128/AEM.03091-16 Suba S, Vijayakumar S, Vidhya E, Punitha V N & Nilavukkarasi M (2021). Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. Sensors International 2: 100104. https://doi.org/10.1016/j.sintl.2021.100104
  • Subramaniyan S A, Sheet S, Vinothkannan M, Yoo D J, Lee Y S, Belal S A & Shim K S (2018). One-pot facile synthesis of Pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. Journal of Nanoscience and Nanotechnology 18(5): 3110-3125. https://doi.org/10.1166/jnn.2018.14661
  • Suvandee W, Teeranachaideekul V, Jeenduang N, Nooeaid P, Makarasen A, Chuenchom L & Dechtrirat D (2022). One-pot and green preparation of Phyllanthus emblica extract/silver nanoparticles/polyvinylpyrrolidone spray-on dressing. Polymers 14(11): 2205. https://doi.org/10.3390/polym14112205
  • Taha R H (2022). Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorganic Chemistry Communications 143: 109610. https://doi.org/10.1016/j.inoche.2022.109610
  • Thanki K, Gangwal R P, Sangamwar A T & Jain S (2013). Oral delivery of anticancer drugs: challenges and opportunities. Journal of Controlled Release 170(1): 15-40. https://doi.org/10.1016/j.jconrel.2013.04.020
  • Thirumal V, Dhamodharan K, Yuvakkumar R, Ravi G, Saravanakumar B, Thambidurai M & Velauthapillai D (2021). Cleaner production of tamarind fruit Shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere 282: 131033. https://doi.org/10.1016/j.chemosphere.2021.131033
  • Tinkle S, McNeil S E, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L & Desai N (2014). Nanomedicines: addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences 1313(1): 35-56. https://doi.org/10.1111/nyas.12403
  • Tomşa A M, Răchişan A L, Aldea A A & Ciumărnean L (2021). Perspectives of gold nanoparticles and their applications in pancreatic cancer. Experimental and Therapeutic Medicine 21(3): 1-1. https://doi.org/10.3892/etm.2021.9689
  • Torres L A Z, Woiciechowski A L, de Andrade Tanobe V O, Zandoná Filho A, de Freitas R A, Noseda M D, Szameitat E S, Faulds C, Coutinho P, Bertrand E & Soccol C R (2021). Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules 167: 1499-1507. https://doi.org/10.1016/j.ijbiomac.2020.11.104
  • Vaghela H, Shah R & Parmar K A (2018). Plant mixture mediated biogenic copper nanoparticles: antibacterial assay. Current Nanomaterials 3(2): 86-94. https://doi.org/10.2174/2405461503666180803152152
  • Vedernykova I O, Koval A A, Antonenko O V, Chan T M, Shpychak О S & Marchenko M V (2018). Synthesis, technology and analysis of nanoparticles of barium hexaferrite for creation of magnetically controlled drug delivery systems. Journal of Pharmaceutical Science and Research 10: 2122
  • Vijayabharathi R, Sathya A & Gopalakrishnan S (2018). Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatalysis and Agricultural Biotechnology 14: 166-171. https://doi.org/10.1016/j.bcab.2018.03.006
  • Vijayaraghavan K & Ashokkumar T (2017). Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering 5(5): 4866-4883. https://doi.org/10.1016/j.jece.2017.09.026
  • Wadhwani S A, Shedbalkar U U, Singh R & Chopade B A (2018). Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme and Microbial Technology 111: 81-86. https://doi.org/10.1016/j.enzmictec.2017.10.007
  • Wang C, Gong C, Qin Y, Hu Y, Jiao A, Jin Z, Qiu C & Wang J (2022). Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering 312: 110752. https://doi.org/10.1016/j.jfoodeng.2021.110752
  • Wang L, Hu C & Shao L (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine 12: 1227-1249. https://doi.org/10.2147/IJN.S121956
  • Wang R, Xu X, Puja A M, Perumalsamy H, Balusamy S R, Kim H & Kim Y J (2021). Gold nanoparticles prepared with Phyllanthus emblica fruit extract and Bifidobacterium animalis subsp. lactis can induce apoptosis via mitochondrial impairment with inhibition of autophagy in the human gastric carcinoma cell line AGS. Nanomaterials 11(5): 1260. https://doi.org/10.3390/nano11051260
  • Wang Y, Xu J, Shi L & Yang H (2020). Recent advances in the antilung cancer activity of biosynthesized gold nanoparticles. Journal of Cellular Physiology 235(12): 8951-8957. https://doi.org/10.1002/jcp.29789
  • Weiss J, Takhistov P & McClements D J (2006). Functional materials in food nanotechnology. Journal of Food Science 71(9): 107-116. https://doi.org/10.1111/j.1750-3841.2006.00195.x
  • Wen A M & Steinmetz N F (2016). Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews 45(15): 4074-4126. https://doi.org/10.1039/C5CS00287G
  • Wolfram J & Ferrari M (2019). Clinical cancer nanomedicine. Nano today 25: 85-98. https://doi.org/10.1016/j.nantod.2019.02.005
  • Xu J, Yıldıztekin M, Han D, Keskin C, Baran A, Baran M F, Eftekhari A, Ava C A, Kandemir S İ, Cebe D B, Dağ B, Beileri A & Khalilov R (2023). Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e19061
  • Yana L, Yutong C & Qinghui H (2024). Antibacterial films based on polylactide and polybutylene adipate terephthalate loaded with zinc oxide or silver nanoparticles: Characterization and application in fresh noodles packaging. Journal of Food Engineering 367: 111889. https://doi.org/10.1016/j.jfoodeng.2023.111889
  • Yuan Y G, Peng Q L & Gurunathan S (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. International Journal of Molecular Sciences 18(3): 569. https://doi.org/10.3390/ijms18030569
  • Zaki S A, Ouf S A, Albarakaty F M, Habeb M M, Aly A A & Abd-Elsalam K A (2021). Trichoderma harzianum-mediated ZnO nanoparticles: A green tool for controlling soil-borne pathogens in cotton. Journal of Fungi 7(11), 952. https://doi.org/10.3390/jof7110952
  • Zang W, Cao H, Ge J & Zhao D (2024). Structures, physical properties and antibacterial activity of silver nanoparticles of Lactiplantibacillus plantarum exopolysaccharide. International Journal of Biological Macromolecules 263: 130083. https://doi.org/10.1016/j.ijbiomac.2024.130083
  • Zeng Q, Liu Z, Niu T, He C, Qu Y & Qian Z (2023). Application of nanotechnology in CAR-T-cell immunotherapy. Chinese Chemical Letters, 34(3), 107747. https://doi.org/10.1016/j.cclet.2022.107747
  • Zhang Y, Dong Y, Zhou J, Li X & Wang F (2018). Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules 23(9): 2311. https://doi.org/10.3390/molecules23092311
  • Zhang F, Han X, Hu Y, Wang S, Liu S, Pan X, Wang H, Ma J, Wang W, Li S, Wu Q, Shen H, Yu X, Yuan Q & Liu H (2019). Interventional photothermal therapy enhanced brachytherapy: A new strategy to fight deep pancreatic cancer. Advanced Science 6(5): 1801507. https://doi.org/10.1002/advs.201801507
  • Zhao X, Zhou L, Riaz Rajoka M S, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H & Jin M (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology 38(6): 817-835. https://doi.org/10.1080/07388551.2017.1414141
  • Zhong B, Xu W, Xie H & Wu Z (2024). Biosynthesis and characterization of selenium nanoparticles by Se-tolerant Lactiplantibacillus plantarum. Food Bioscience 59: 104061. https://doi.org/10.1016/j.fbio.2024.104061

Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications

Year 2025, Volume: 31 Issue: 3, 640 - 669, 29.07.2025
https://doi.org/10.15832/ankutbd.1622082

Abstract

Recently, green synthesis in nanotechnology has gotten considerable attention because of its economic importance, as well as providing a clean, eco-friendly, effectual, facile, and non-toxic route to nanoparticle (NP) synthesis. The utilization of various microorganisms especially beneficial microorganisms in NP synthesis presents a sustainable and ecofriendly alternative to conventional synthesis methods, aligning with the principles of green synthesis. In this regard, beneficial microorganisms used in fermented foods as starter cultures, such as Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Secundilactobacillus kimchicus, Saccharomyces boulardii, and S. cerevisiae have been utilized for the synthesis of Ag, Se, ZnO, Pd, Sb2O3, and TiO2 NPs. These synthesized NPs have a high potential for use in drug delivery systems, agriculture, and the food industry as antimicrobial, antioxidant, and anticancer agents. Hence, further research is necessary on NP synthesis, novel sources for NP synthesis, and applications in various fields by considering its advantages and disadvantages. This review highlights the green synthesis of NPs, NPs synthesized by beneficial microorganisms, as well as the potential applications of NPs.

References

  • Abbas S, Nasreen S, Haroon A & Ashraf M A (2020). Synthesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences 27: 1016-1023. https://doi.org/10.1016/j.sjbs.2020.02.011
  • Abd Elsalam S S, Taha R H, Tawfeik A M, El-Monem A, Mohamed O & Mahmoud H A (2018). Antimicrobial activity of bio and chemical synthesized cadmium sulfide nanoparticles. The Egyptian Journal of Hospital Medicine 70(9): 1494-1507
  • Abd Qasim M & Yaaqoob L A (2023). Evaluation of antibacterial activity of iron oxide nanoparticles synthesis by extracellular Lactobacillus against Pseudomonas aeruginosa. Journal of Medicinal and Chemical Sciences 6: 1100. https://doi.org/10.26655/JMCHEMSCI.2023.5.15
  • Abdulradha H A & Alhadrawi S W (2023). Biological and medical efficacy of zinc oxide nanoparticles manufactured using Saccharomyces boulardii against Burkholderia sp. isolated from diabetic foot patients. International Journal of Advanced Multidisciplinary Research and Studies 3(3): 703-708
  • Abo‐zeid Y & Williams G R (2020). The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(2): e1592. https://doi.org/10.1002/wnan.1592
  • Adelere I A & Lateef A (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews 5(6): 567-587. https://doi.org/10.1515/ntrev-2016-0024
  • Ahmad M Z, Alasiri A S, Ahmad J, Alqahtani A A, Abdullah M M, Abdel-Wahab B A, Pathak K, Saikia R, Das A, Sarma H & Alzahrani S A (2022). Green synthesis of titanium dioxide nanoparticles using Ocimum sanctum leaf extract: In vitro characterization and its healing efficacy in diabetic wounds. Molecules 27(22): 7712. https://doi.org/10.3390/molecules27227712
  • Ahmad R, Khatoon N & Sardar M (2014). Antibacterial effect of green synthesized TiO2 nanoparticles. Advanced Science Letters 20(7-8): 1616-1620. https://doi.org/10.1166/asl.2014.5563
  • Ahmed B, Tahir M B, Sagir M & Hassan M (2024). Bio-inspired sustainable synthesis of silver nanoparticles as next generation of nanoproduct in antimicrobial and catalytic applications. Materials Science and Engineering: B 301: 117165. https://doi.org/10.1016/j.mseb.2023.117165
  • Ahmed E, Kalathil S, Shi L, Alharbi O & Wang P (2018). Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. Journal of Saudi Chemical Society 22(8): 919-929. https://doi.org/10.1016/j.jscs.2018.02.002
  • Ahmed K B A, Kalla D, Uppuluri K B & Anbazhagan V (2014) Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydrate Polymers 112: 539-545. https://doi.org/10.1016/j.carbpol.2014.06.033
  • Ahmed T, Shahid M, Noman M, Niazi M B K, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y & Yan Chen J (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9(3): 160. https://doi.org/10.3390/pathogens9030160
  • Alam H, Khatoon N, Khan M A, Husain S A, Saravanan M & Sardar M (2020). Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science 31: 1003-1011. https://doi.org/10.1007/s10876-019-01705-6
  • Al-Asbahi M G, Al-Ofiry B A, Saad F A, Alnehia A & Al-Gunaid M Q (2024). Silver nanoparticles biosynthesis using mixture of Lactobacillus sp. and Bacillus sp. growth and their antibacterial activity. Scientific Reports 14(1): 10224. https://doi.org/10.1038/s41598-024-59936-1
  • Alghuthaymi M A, Almoammar H, Rai M, Said-Galiev E & Abd-Elsalam K A (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment 29(2): 221-236. https://doi.org/10.1080/13102818.2015.1008194 Al-Khattaf F S (2021). Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi Journal of Biological Sciences 28(6): 3624-3631. https://doi.org/10.1016/j.sjbs.2021.03.078
  • Alsaab H O, Al-Hibs A S, Alzhrani R, Alrabighi K K, Alqathama A, Alwithenani A, Almalki A H & Althobaiti Y S (2021). Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. International Journal of Molecular Sciences 22(4): 1631. https://doi.org/10.3390/ijms22041631
  • Alsaiari N S, Alzahrani F M, Amari A, Osman H, Harharah H N, Elboughdiri N & Tahoon M A (2023). Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1): 463. https://doi.org/10.3390/molecules28010463
  • Amini S M, Hadighi R, Najm M, Alipour M, Hasanpour H, Vosoogh M, Vosough A, Hajizadeh M & Badirzadeh A (2023) The therapeutic effects of curcumin-coated gold nanoparticle against Leishmania major causative agent of zoonotic cutaneous leishmaniasis (ZCL): an in vitro and in vivo study. Current Microbiology 80(4): 104. https://doi.org/10.1007/s00284-022-03172-1
  • Ammar H A, El Aty A A A & El Awdan S A (2021) Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzevii HA-NY2 and Saccharomyces uvarum HA-NY3, and their effective biomedical applications. Bioprocess and Biosystems Engineering 44: 841-854. https://doi.org/10.1007/s00449-020-02494-3
  • Ananthi V, Prakash G S, Rasu K M, Gangadevi K, Boobalan T, Raja R, Anand K, Sudhakar M, Chuturgoon A & Arun A (2018) Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. Journal of Photochemistry and Photobiology B: Biology 186: 232-242. https://doi.org/10.1016/j.jphotobiol.2018.07.021
  • Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A & Abbasi B H (2021). A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 13(11): 2818. https://doi.org/10.3390/cancers13112818
  • Anis S N S, Liew W C, Marsin A M, Muhamad I I, Teh S H & Khudzari A Z M (2023) Microwave-assisted green synthesis of silver nanoparticles using pineapple leaves waste. Cleaner Engineering and Technology 15: 100660. https://doi.org/10.1016/j.clet.2023.100660
  • Annamalai J, Ummalyma S B, Pandey A & Bhaskar T (2021) Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research 28(36): 49362-49382. https://doi.org/10.1007/s11356-021-15680-x
  • Arriaza-Echanes C, Campo-Giraldo J L, Valenzuela-Ibaceta F, Ramos-Zúñiga J & Pérez-Donoso J M (2024) Biosynthesis of Cu-In-S nanoparticles by a yeast isolated from Union glacier, Antarctica: A platform for enhanced quantum dot-sensitized solar cells. Nanomaterials 14(6): 552. https://doi.org/10.3390/nano14060552
  • Ashok B, Hariram N, Siengchin S & Rajulu A V (2020). Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. Journal of Bioresources and Bioproducts 5(3): 180-185. https://doi.org/10.1016/j.jobab.2020.07.003
  • Badoei-dalfard A, Shaban M & Karami Z (2019). Characterization, antimicrobial, and antioxidant activities of silver nanoparticles synthesized by uricase from Alcaligenes faecalis GH3. Biocatalysis and Agricultural Biotechnology 20: 101257. https://doi.org/10.1016/j.bcab.2019.101257
  • Bajpai V K, Kamle M, Shukla S, Mahato D K, Chandra P, Hwang S K, Kumar P, Huh Y K & Han Y K (2018a). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis 26(4): 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Bajpai V K, Shukla S, Kang S M, Hwang S K, Song X, Huh Y S & Han Y K (2018b). Developments of cyanobacteria for nano-marine drugs: Relevance of nanoformulations in cancer therapies. Marine Drugs 16(6): 179. https://doi.org/10.3390/md16060179 Bakkiyaraj R, Subramanian R, Balakrishnan M & Ravichandran K (2021). Biofabrication of CeO2 nanoparticles, characterization, photocatalytic, and biological activities. Inorganic and Nano-Metal Chemistry 1-9. https://doi.org/10.1080/24701556.2021.1983841
  • Balakrishnan S, Sivaji I, Kandasamy S, Duraisamy S, Kumar N S & Gurusubramanian G (2017). Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environmental Science and Pollution Research 24: 14758-14769. https://doi.org/10.1007/s11356-017-9065-7
  • Bandeira M, Giovanela M, Roesch-Ely M, Devine D M & da Silva Crespo J (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15: 100223. https://doi.org/10.1016/j.scp.2020.100223
  • Barabadi H, Honary S, Ali Mohammadi M, Ahmadpour E, Rahimi M T, Alizadeh A, Naghibi F & Saravanan M (2017). Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environmental Science and Pollution Research 24: 5800-5810. https://doi.org/10.1007/s11356-016-8291-8
  • Barabadi H, Vahidi H, Arjmand M, Abdorashidi M, Jahani R, Amidi S, Hosseini O, Sadeghian-Abadi S, Jounaki K & Ashouri F (2024). Exploring the biological properties of Saccharomyces cerevisiae-derived silver nanoparticles: In vitro structural characteristics, antibacterial, biofilm inhibition and biofilm degradation, antioxidant, anticoagulant, thrombolytic, and antidiabetic performance. Inorganic Chemistry Communications 162: 112291. https://doi.org/10.1016/j.inoche.2024.112291
  • Bhardwaj B, Singh P, Kumar A, Kumar S & Budhwar V (2020). Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin 10(4): 566. https://doi.org/10.34172/apb.2020.067
  • Bhuyar P, Rahim M H A, Sundararaju S, Ramaraj R, Maniam G P & Govindan N (2020). Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 9: 1-15. https://doi.org/10.1186/s43088-019-0031-y
  • Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová A B, Krivjanská A & Mackuľak T (2021). Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. Environmental Science and Pollution Research 28: 22203-22220. https://doi.org/10.1007/s11356-021-13270-5
  • Bisinoti M C, Moreira A B, Melo C A, Fregolente L G, Bento L R, dos Santos J V & Ferreira O P (2019). Application of carbon-based nanomaterials as fertilizers in soils, in do Nascimento R F, Ferreira O P, De Paula A J, Neto V O S (Eds.), Nanomaterials Applications for Environmental Matrices. Elsevier, Netherlands, pp. 305-333
  • Bloise N, Okkeh M, Restivo E, Della Pina C & Visai L (2021). Targeting the “Sweet Side” of tumor with glycan-binding molecules conjugatednanoparticles: Implications in cancer therapy and diagnosis. Nanomaterials 11(2): 289. https://doi.org/10.3390/nano11020289
  • Bolbanabad E M, Ashengroph M & Darvishi F (2020). Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochemistry 94: 319-328. https://doi.org/10.1016/j.procbio.2020.03.024
  • Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh N N & Bhattacharjee C R (2020). Algamediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Applied Organometallic Chemistry 34(5): e5597. https://doi.org/10.1002/aoc.5597
  • Borse V, Kaler A & Banerjee U C (2015). Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. International Journal of Emerging Trends in Electrical and Electronics 11(2): 26-31. https://doi.org/10.13140/RG.2.1.3132.5283
  • Buddhika M A A, Perumpuli P A B N & Kaumal M N (2021). Identification and characterization of acetic acid bacteria species isolated from various sources in Sri Lanka. Ceylon Journal of Science 50(4): 521-532. http://doi.org/10.4038/cjs.v50i4.7951
  • Bundschuh M, Seitz F, Rosenfeldt R R & Schulz R (2016). Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshwater Biology 61(12): 2185-2196. https://doi.org/10.1111/fwb.12701
  • Cai Y, Wu D, Zhu X, Wang W, Tan F, Chen J, Qiao X & Qiu X (2017) Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceramics International 43(1): 1066-1072. https://doi.org/10.1016/j.ceramint.2016.10.041
  • Caliskan G, Mutaf T, Agba H C & Elibol M (2022). Green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobiology Journal 39(1): 83-96. https://doi.org/10.1080/01490451.2021.2008549
  • Cassano R, Cuconato M, Calviello G, Serini S & Trombino S (2021). Recent advances in nanotechnology for the treatment of melanoma. Molecules 26(4): 785. https://doi.org/10.3390/molecules26040785
  • Castro-Longoria E, Vilchis-Nestor A R & Avalos-Borja M (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora https://doi.org/10.1016/j.colsurfb.2010.10.035
  • CFS Center for Food crassa. Colloids Safety (2017). and surfaces B: Biointerfaces (www.centerforfoodsafety.org) 83(1): Retrieved 42-48. from http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content content_item_KEY=14112%20#showJoin
  • Cha D S & Chinnan M S (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition 44(4): 223-237. https://doi.org/10.1080/10408690490464276
  • Chan M Z A & Liu S Q (2022). Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Current Opinion in Food Science 43: 216-224.https://doi.org/10.1016/j.cofs.2021.12.009
  • Chen H (2018). Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability 30: 123-134. https://doi.org/10.1080/09542299.2018.1520050
  • Chhipa H (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15: 15-22. https://doi.org/10.1007/s10311-016-0600-4
  • Chi N T L, Narayanan M, Chinnathambi A, Govindasamy C, Subramani B, Brindhadevi K, Pimpimon T & Pikulkaew S (2022). Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environmental Research 208: 112684. https://doi.org/10.1016/j.envres.2022.112684
  • Chohan K L, Siegler E L & Kenderian S S (2023). CAR-T cell therapy: the efficacy and toxicity balance. Current Hematologic Malignancy Reports 18(2), 9-18. https://doi.org/10.1007/s11899-023-00687-7
  • Chugh D, Viswamalya V S & Das B (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 126. https://doi.org/10.1186/s43141-021-00228-w
  • Cunha F A, Cunha M D C, da Frota S M, Mallmann E J, Freire T M, Costa L S, Paula A J, Menezes E A & Fechine P B (2018). Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: Antifungal, catalytic and cytotoxicity activities. World Journal of Microbiology and Biotechnology 34: 1-15. https://doi.org/10.1007/s11274-018-2514-8
  • Czyżowska A & Barbasz A (2022). A review: zinc oxide nanoparticles–friends or enemies? International Journal of Environmental Health Research 32(4): 885-901. https://doi.org/10.1080/09603123.2020.1805415
  • da Silva Ferreira V, ConzFerreira M E, Lima L M T, Frasés S, de Souza W & Sant’Anna C (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology 97: 114-121. https://doi.org/10.1016/j.enzmictec.2016.10.018
  • Das V L, Thomas R, Varghese R T, Soniya E V, Mathew J & Radhakrishnan E K (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4: 121-126. https://doi.org/10.1007/s13205-013-0130-8
  • De Bellis P & Rizzello C G (2024). Advances in the use of beneficial microorganisms to improve nutritional and functional properties of fermented foods. Foods 13(1): 155. https://doi.org/10.3390/foods13010155
  • de Oliveira J L, Campos E V R, Bakshi M, Abhilash P C & Fraceto L F (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances 32(8): 1550-1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
  • Dhabalia D, Ukkund S J, Syed U T, Uddin W & Kabir M A (2020). Antifungal activity of biosynthesized silver nanoparticles from Candida albicans on the strain lacking the CNP41 gene. Materials Research Express 7(12): 125401. https://doi.org/10.1088/2053-1591/abcc83
  • Doan V D, Huynh B A, Nguyen T D, Cao X T, Nguyen V C, Nguyen T L H, Nguyen H T & Le V T (2020). Biosynthesis of silver and gold nanoparticles using aqueous extract of Codonopsis pilosula roots for antibacterial and catalytic applications. Journal of Nanomaterials 8492016. https://doi.org/10.1155/2020/8492016
  • Dutta T, Chattopadhyay A P, Ghosh N N, Khatua S, Acharya K, Kundu S, Mitra D & Das M (2020). Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chemical Papers 74: 4089-4101. https://doi.org/10.1007/s11696-020-01216-z
  • EFSA (European Food Safety Authority) (2009). The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA Journal 7(3): 958. https://doi.org/10.2903/j.efsa.2009.958
  • Elamawi R M, Al-Harbi R E & Hendi A A (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control 28(1): 1-11. https://doi.org/10.1186/s41938-018-0028-1
  • Elegbede J A, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Oladipo I C, Adebayo E A, Beukes L S & Gueguim-Kana E B (2018a). Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnology 12(6): 857-863. https://doi.org/10.1049/iet-nbt.2017.0299
  • Elegbede J A, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Oladipo I C, Aina D A, Beukes L S & Gueguim-Kana E B (2018b). Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valorization 1-11. https://doi.org/10.1007/s12649 018-0540-2
  • El-Khawaga A M, Elsayed M A, Gobara M, Suliman A A, Hashem A H, Zaher A A, Mohsen M & Salem S S (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery 1-12. https://doi.org/10.1007/s13399-023-04827-0
  • Elmer W & White J C (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology 56: 111-133. https://doi.org/10.1146/annurev-phyto-080417-050108
  • natural extracts: El-Seedi H R, El-Shabasy R M, Khalifa S A, Saeed A, Shah A, Shah R & Guo W (2019). Metal nanoparticles fabricated by green chemistry using Biosynthesis, mechanisms, and applications. RSC Advances 9(42): 24539-24559. https://doi.org/10.1039/C9RA02225B
  • El-Sheekh M M, Shabaan M T, Hassan L & Morsi H H (2022). Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research 32(3): 616-627. https://doi.org/10.1080/09603123.2020.1789946
  • Emerich D F & Thanos C G (2006). The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomolecular Engineering 23(4): 171-184. https://doi.org/10.1016/j.bioeng.2006.05.026
  • Eszenyi P, Sztrik A, Babka B & Prokisch J (2011). Elemental, nano-sized (100-500 nm) selenium production by probiotic lactic acid bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics 1(2), 148.
  • Fadeel B & Garcia-Bennett A E (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews 62(3): 362-374. https://doi.org/10.1016/j.addr.2009.11.008
  • Fahmy S A, Preis E, Bakowsky U & Azzazy H M E S (2020). Platinum nanoparticles: green synthesis and biomedical applications. Molecules, 25(21), 4981. https://doi.org/10.3390/molecules25214981
  • Faramarzi S, Anzabi Y & Jafarizadeh-Malmiri H (2020). Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology 202(5): 1203-1209. https://doi.org/10.1007/s00203-020-01831-0
  • Fatemi M, Mollania N, Momeni-Moghaddam M & Sadeghifar F (2018). Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. Journal of Biotechnology 270: 1-11. https://doi.org/10.1016/j.jbiotec.2018.01.021
  • and its Fatima R, Priya M, Indurthi L, Radhakrishnan V & Sudhakaran R (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii antibacterial activity against fish pathogens. Microbial Pathogenesis 138: 103780. https://doi.org/10.1016/j.micpath.2019.103780
  • Fatimah I, Purwiandono G, Jauhari M H, Maharani A A A P, Sagadevan S, Oh W C & Doong R. A (2022). Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods. Arabian Journal of Chemistry 15(4): 103738. https://doi.org/10.1016/j.arabjc.2022.103738 oxide nanoparticles Fawcett D, Verduin J J, Shah M, Sharma S B & Poinern G E J (2017). A review of current research into the biogenic synthesis of metal and metal via marine algae and seagrasses. Journal of Nanoscience 2017(1): 8013850. https://doi.org/10.1155/2017/8013850
  • Fedotova A V, Snezhko A G, Sdobnikova O A, Samoilova L G, Smurova T A, Revina A A & Khailova E B (2010). Packaging materials manufactured from natural polymers modified with silver nanoparticles. International Polymer Science and Technology 37(10): 59-64. https://doi.org/10.1177/0307174X1003701010
  • Feng H, Liu S Y, Huang X B, Ren R, Zhou Y, Song C P & Qian D H (2017). Green biosynthesis of CdS nanoparticles using yeast cells for fluorescence detection of nucleic acids and electrochemical detection of hydrogen peroxide. International Journal of Electrochemical Science 12(1): 618-628. https://doi.org/10.20964/2017.01.57
  • Feroze N, Arshad B, Younas M, Afridi M I, Saqib S & Ayaz A (2020). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique 83(1): 72-80. https://doi.org/10.1002/jemt.23390
  • Fu X, Cai J, Zhang X, Li W D, Ge H & Hu Y (2018). Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews 132: 169-187. https://doi.org/10.1016/j.addr.2018.07.006
  • Gaba S, Varma A, Prasad R & Goel A (2022). Exploring the impact of bioformulated copper oxide nanoparticles on cytomorphology of Alternaria brassicicola. Current Microbiology 79(8): 244. https://doi.org/10.1007/s00284-022-02927-0
  • Gahlawat G & Choudhury A R (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances 9(23): 12944-12967. https://doi.org/10.1039/C8RA10483B
  • Gan L, Zhang S, Zhang Y, He S & Tian Y (2018). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology 48(7): 582-588. https://doi.org/10.1080/10826068.2018.1476880
  • Gavas S, Quazi S & Karpiński T M (2021). Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Research Letters 16(1): 173. https://doi.org/10.1186/s11671-021-03628-6
  • Gegechkori N, Haines L & Lin J J (2017). Long-term and latent side effects of specific cancer types. Medical Clinics 101(6): 1053-1073. https://doi.org/10.1016/j.mcna.2017.06.003
  • Gholami A, Mohkam M, Soleimanian S, Sadraeian M & Lauto A (2024). Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsystems & Nanoengineering, 10(1), 113. https://doi.org/10.1038/s41378-024-00743-z
  • Gholami-Shabani M, Shams-Ghahfarokhic M, Gholami-Shabanid Z, Akbarzadeh A, Riazi G, Ajdarif S, Amanig A & Razzaghi-Abyaneh M (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochemistry 50: 1076-1085. https://doi.org/10.1016/j.procbio.2015.04.004
  • Ghosh S, Ahmad R, Zeyaullah M & Khare S K (2021). Microbial nano-factories: Synthesis and biomedical applications. Frontiers in Chemistry 9: 626834. https://doi.org/10.3389/fchem.2021.626834
  • Ghosh S, Sarkar B, Kaushik A & Mostafavi E (2022). Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Science of the Total Environment 838: 156212. https://doi.org/10.1016/j.scitotenv.2022.156212 Gomaa E Z (2017). Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. The Journal of General and Applied Microbiology 63(1): 36-43. https://doi.org/10.2323/jgam.2016.07.004
  • Gomathi A C, Rajarathinam S X, Sadiq A M & Rajeshkumar S (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology 55: 101376. https://doi.org/10.1016/j.jddst.2019.101376
  • Gomez-Zavaglia A, Cassani L, Hebert E M & Gerbino E (2022). Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International 155: 111097. https://doi.org/10.1016/j.foodres.2022.111097
  • González-Ballesteros N, Prado-López S, Rodríguez-González J B, Lastra M & Rodríguez-Argüelles M (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces 153: 190 198. https://doi.org/10.1016/j.colsurfb.2017.02.020
  • Gopu M, Kumar P, Selvankumar T, Senthilkumar B, Sudhakar C, Govarthanan M, Kumar R S & Selvam K (2021). Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess and Biosystems Engineering 44: 217-223. https://doi.org/10.1007/s00449-020-02426-1
  • Govindappa M, Lavanya M, Aishwarya P, Pai K, Lunked P, Hemashekhar B, Arpitha B M, Ramachandra Y L & Raghavendra V B (2020). Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. BioNanoScience 10: 928-941. https://doi.org/10.1007/s12668-020-00719-z
  • Grasso G, Zane D & Dragone R (2020). Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 10: 11. https://doi.org/10.3390/nano10010011
  • Grillo R, Abhilash P C & Fraceto L F (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology 16(1): 1231-1234. https://doi.org/10.1166/jnn.2016.12332
  • Gu H, Chen X, Chen F, Zhou X & Parsaee Z (2018). Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrasonics Sonochemistry 41: 109-119. https://doi.org/10.1016/j.ultsonch.2017.09.006
  • Guleria A, Neogy S, Raorane B S & Adhikari S (2020). Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies. Materials Chemistry and Physics 253: 123369. https://doi.org/10.1016/j.matchemphys.2020.123369
  • Guo H, White J C, Wang Z & Xing B (2018). Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health 6: 77-83. https://doi.org/10.1016/j.coesh.2018.07.009
  • Gupta K & Chundawat T S (2019). Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Materials Research Express 6(10): 1050d6. https://doi.org/10.1088/20531591/ab4219
  • Gupte Y, Kulkarni A, Raut B, Sarkar P, Choudhury R, Chawande A, Kumar G R K, Bhadra B., Satapathy A, Das G, Vishnupriya B & Dasgupta S (2021). Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. Carbohydrate Polymers 266: 118176. https://doi.org/10.1016/j.carbpol.2021.118176
  • Gursoy N (2020). Fungus-mediated synthesis of silver nanoparticles (AgNP) and inhibitory effect on Aspergillus spp. in combination with antifungal agent. Cumhuriyet Science Journal 41(1): 311-318. https://doi.org/10.17776/csj.653627
  • Halawani E M, Hassan A M & Gad El-Rab S M (2020). Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. International Journal of Nanomedicine 1889-1901. https://doi.org/10.2147/IJN.S236182
  • Hamk M, Akçay F A & Avcı A (2023). Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Preparative Biochemistry & Biotechnology 53(3): 255-264. https://doi.org/10.1080/10826068.2022.2076243
  • Harandi F N, Khorasani A C, Shojaosadati S A & Hashemi-Najafabadi S (2021). Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Materials Science and Engineering: C 130: 112457. https://doi.org/10.1016/j.msec.2021.112457
  • Hashemi Z, Mizwari Z M, Mohammadi-Aghdam S, Mortazavi-Derazkola S & Ebrahimzadeh M A (2022). Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arabian Journal of Chemistry 15(1): 103525. https://doi.org/10.1016/j.arabjc.2021.103525
  • Hata N N Y, Surek M, Sartori D, Vassoler Serrato R & Aparecida Spinosa W (2023). Role of acetic acid bacteria in food and beverages. Food Technology and Biotechnology 61(1): 85-103. https://doi.org/10.17113/ftb.61.01.23.7811
  • Hazards E P O B, Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumaniss K, Lindqvist R, Norrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile B T & Lindqvist R (2017). Scientific opinion on the update of the list of QPS recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 15: e04664. https://doi.org/10.2903/j.efsa.2017.4664
  • He X, Deng H & Hwang H M (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1): 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
  • Hemeg H A (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine 8211-8225. https://doi.org/10.2147/IJN.S132163
  • Hikmet R A & Hussein N N (2021). Mycosynthesis of silver nanoparticles by Candida albicans yeast and its biological applications. Archives of Razi Institute 76(4): 857-869. https://doi.org/10.22092/ARI.2021.355935.1741
  • Hill C, Guarner F, Reid G, Gibson G R, Merenstein D J, Pot B, Morelli L, Canani R B, Flint H J, Salminen S, Calder P C & Sanders M E (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
  • Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R & Mukherjee P (2019). Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 3(8): 267. https://doi.org/10.15698/cst2019.08.195
  • Ibrahem K H, Ali F A & Sorchee S M A (2020). Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cellular and Molecular Biology 66(7): 111-117. https://doi.org/10.14715/cmb/2020.66.7.17
  • Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G & Li B (2020). Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials 10(2): 219. https://doi.org/10.3390/nano10020219
  • Ikram M, Javed B, Raja N I & Mashwani Z U R (2021). Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine 249-268. https://doi.org/10.2147/IJN.S295053
  • In G K & Nieva J (2015). Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer. Translational Cancer Research 4(4). https://doi.org/10.3978/j.issn.2218-676X.2015.08.05
  • Jach M E, Serefko A, Ziaja M & Kieliszek M (2022). Yeast protein as an easily accessible food source. Metabolites 12(1): 63. https://doi.org/10.3390/metabo12010063
  • Jacob J M, Ravindran R, Narayanan M, Samuel S M, Pugazhendhi A & Kumar G (2021). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science & Health, 20: 100163. https://doi.org/10.1016/j.coesh.2019.12.005
  • Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, Moshafi M H, Ameri A, Rahimi H R & Forootanfar H (2018). Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatalysis and Agricultural Biotechnology 15: 245-253. https://doi.org/10.1016/j.bcab.2018.06.014
  • Jalal M, Ansari M A, Alzohairy M A, Ali S G, Khan H M, Almatroudi A & Raees K (2018). Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8(8): 586. https://doi.org/10.3390/nano8080586
  • Jalal M, Ansari M A, Alzohairy M A, Ali S G, Khan H M, Almatroudi A & Siddiqui M I (2019). Anticandidal activity of biosynthesized silver nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida species. International Journal of Nanomedicine 4667-4679. https://doi.org/10.2147/IJN.S210449
  • Jamkhande P G, Ghule N W, Bamer A H & Kalaskar M G (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • Jayaprakash N, Vijaya J J, Kaviyarasu K, Kombaiah K, Kennedy L J, Ramalingam R J, Munusamy M A & Al-Lohedan H A (2017). Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology 169: 178-185. https://doi.org/10.1016/j.jphotobiol.2017.03.013
  • Jeevanandam J, Chan Y S & Danquah M K (2016). Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews 3(2): 55-67. https://doi.org/10.1002/cben.201500018
  • Jeevanandam J, Pal K & Danquah M K (2019). Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 157: 38-47. https://doi.org/10.1016/j.biochi.2018.11.001
  • Jeevanandam J, Ling J K U, Barhoum A, San Chan Y & Danquah M K (2022). Bionanomaterials: Definitions, sources, types, properties, toxicity, and regulations, in Barhoum A, Jeevanandam J, Danquah M K (Eds.), Fundamentals of bionanomaterials. Elsevier, Netherlands, pp. 1-29
  • Kalaiselvi A, Roopan S M, Madhumitha G, Ramalingam C & Elango G (2015). Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 116-119. https://doi.org/10.1016/j.saa.2014.07.010 Kambale E K, Nkanga C I, Mutonkole B P I, Bapolisi A M, Tassa D O, Liesse J M I, Krause R W M & Memvanga P B (2020). Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 6(8). https://doi.org/10.1016/j.heliyon.2020.e04493
  • Kang S, Pinault M, Pfefferle L D & Elimelech M (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17): 8670-8673. https://doi.org/10.1021/la701067r
  • Kanniah P, Chelliah P, Thangapandi J R, Gnanadhas G, Mahendran V & Robert M (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules 189: 18-33. https://doi.org/10.1016/j.ijbiomac.2021.08.056
  • Kaur P, Thakur R, Duhan J S & Chaudhury A (2018). Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). Journal of Chemical Technology & Biotechnology 93(11): 3233-3243. https://doi.org/10.1002/jctb.5680
  • Khatua A, Prasad A, Priyadarshini E, Patel A K, Naik A, Saravanan M, Barabadi H, Ghosh I, Paul B, Paulraj R & Meena R (2020). Emerging antineoplastic plant-based gold nanoparticle synthesis: a mechanistic exploration of their anticancer activity toward cervical cancer cells. Journal of Cluster Science, 31, 1329-1340. https://doi.org/10.1007/s10876-019-01742-1
  • Kim D Y, Kim M, Sung J S, Koduru J R, Nile S H, Syed A, Bahkali A H, Seth C S & Ghodake G S (2024). Extracellular synthesis of silver nanoparticle using yeast extracts: Antibacterial and seed priming applications. Applied Microbiology and Biotechnology 108(1): 150. https://doi.org/10.1007/s00253-023-12920-7
  • Kışla D, Gökmen G G, Evrendilek G A, Akan T, Vlčko T, Kulawik P, Jambrak A R, &Ozogul F (2023). Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends in Food Science & Technology 135: 144-172. https://doi.org/10.1016/j.tifs.2023.03.019
  • Koopi H & Buazar F (2018). A novel one-pot biosynthesis of pure alpha aluminum oxide nanoparticles using the macroalgae Sargassum ilicifolium: a green marine approach. Ceramics International 44(8): 8940-8945. https://doi.org/10.1016/j.ceramint.2018.02.091
  • Król A, Railean-Plugaru V, Pomastowski P, Złoch M & Buszewski B (2018). Mechanism study of intracellular zinc oxide nanocomposites formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 553: 349-358. https://doi.org/10.1016/j.colsurfa.2018.05.069
  • Kulandaivelu B & Gothandam K M (2016). Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Brazilian Archives of Biology and Technology 59: e16150529. https://doi.org/10.1590/1678-4324-2016150529
  • Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More M P, Pardeshi S R, Dhaneshwar G, Junnuthula V & Dyawanapelly S (2023). Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 11, 1159193. https://doi.org/10.3389/fbioe.2023.1159193
  • Kumar S V & Rajeshkumar S (2018). Plant-based synthesis of nanoparticles and their impact. Nanomaterials in Plants, algae, and Microorganisms 1: 33-57. https://doi.org/10.1016/B978-0-12-811487-2.00002-5
  • Kundu D, Hazra C, Chatterjee A, Chaudhari A & Mishra S (2014). Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Journal of Photochemistry and Photobiology B: Biology 140: 194-204. https://doi.org/10.1016/j.jphotobiol.2014.08.001
  • Lateef A, Adelere I A & Gueguim-Kana E B (2015a). Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnology & Biotechnological Equipment 29(1): 54-63. https://doi.org/10.1080/13102818.2014.986360
  • Lateef A, Adelere I A, Gueguim-Kana E B, Asafa T B & Beukes L S (2015b). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. International Nano Letters 5: 29-35. https://doi.org/10.1007/s40089-014-0133-4
  • Lee B & Lee D G (2019). Synergistic antibacterial activity of gold nanoparticles caused by apoptosis‐like death. Journal of Applied Microbiology 127(3): 701-712. https://doi.org/10.1111/jam.14357
  • Lei X, Peng Y, Li Y, Chen Q, Shen Z, Yin W, Lemiasheuski V, Xu S & He J (2024). Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorganic Chemistry 107165. https://doi.org/10.1016/j.bioorg.2024.107165
  • Liu R & Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
  • Liu X Y, Wang J Q, Ashby Jr C R, Zeng L, Fan Y F & Chen Z S (2021). Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today 26(5): 1284-1292. https://doi.org/10.1016/j.drudis.2021.01.030
  • Liu Y, Perumalsamy H, Kang C H, Kim S H, Hwang J S, Koh S C, Yi T H & Kim Y J (2020). Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide activated macrophages. Artificial Cells, Nanomedicine, and Biotechnology 48(1), 777 788.https://doi.org/10.1080/21691401.2020.1748639
  • Ma D, Han T, Karimian M, Abbasi N, Ghaneialvar H & Zangeneh A (2020). Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer. International Journal of Biological Macromolecules 165: 767-775. https://doi.org/10.1016/j.ijbiomac.2020.09.193
  • Majumder J, Pal K, Chakraborty W, Karmakar P & Gachhui R (2022). Glucanoacetobacter kombuchae (RG3T), a novel bacteria for AgNPs biosynthesis: Characterization and comprehensive evaluation of bioactivity. Materials Today Communications 33: 104410. https://doi.org/10.1016/j.mtcomm.2022.104410
  • Majumder R, Das C K & Mandal M (2019). Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacological Research 148: 104416. https://doi.org/10.1016/j.phrs.2019.104416
  • Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F & Barolo C (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry 22(21): 7168-7218. https://doi.org/10.1039/D0GC01148G
  • Markus J, Mathiyalagan R, Kim Y J, Abbai R, Singh P, Ahn S, Perez Z E J, Hurt J & Yang D C (2016). Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme and Microbial Technology 95: 85-93. https://doi.org/10.1016/j.enzmictec.2016.08.018
  • Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano E M, Ortiz T, Villamor E, Begines B & Alcudia A (2021). Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials 14(1): 166. https://doi.org/10.3390/ma14010166
  • Masum M M I, Siddiqa M M, Ali K A, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C & Li B (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in Microbiology 10: 820. https://doi.org/10.3389/fmicb.2019.00820 Matei A, Matei S, Matei G M, Cogălniceanu G & Cornea C P (2020). Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. The EuroBiotech Journal 4(2): 97-103. https://doi.org/10.2478/ebtj-2020-0011
  • Mishra M, Paliwal J S, Singh S K, Selvarajan E, Subathradevi C & Mohanasrinivasan V (2013). Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using Lactobacillus sporogens against Staphylococcus aureus. Journal of Pure AppliedMicrobiology 7(2): 1263-1268
  • Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A & Langer R (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 20(2): 101-124. https://doi.org/10.1038/s41573-020-0090-8
  • Mittal A K, Chisti Y & Banerjee U C (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances 31(2): 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Mittal D, Kaur G, Singh P, Yadav K & Ali S A (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology 2: 579954. https://doi.org/10.3389/fnano.2020.579954
  • Moghaddam A B, Namvar F, Moniri M, Md Tahir P, Azizi S & Mohamad R (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9): 16540-16565. https://doi.org/10.3390/molecules200916540
  • Mohammad Z H, Ahmad F, Ibrahim S A & Zaidi S (2022). Application of nanotechnology in different aspects of the food industry. Discover Food 2(1): 12.https://doi.org/10.1007/s44187-022-00013-9
  • Mohammed A A, Hegazy A E & Salah A (2023). Novelty of synergistic and cytotoxicity activities of silver nanoparticles produced by Lactobacillus acidophilus. Applied Nanoscience 13(1): 633-640. https://doi.org/10.1007/s13204-021-01878-5 Mohd Yusof H, Mohamad R, Zaidan U H & Abdul Rahman N A (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology 10: 1-22. https://doi.org/10.1186/s40104-019-0368-z
  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Konya Z, Toth-Szeles E, Szucs R & Lagzi I (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports 8(1): 3943. https://doi.org/10.1038/s41598-018-22112-3
  • Morris M A, Padmanabhan S C, Cruz-Romero M C, Cummins E & Kerry J P (2017). Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Science 132: 163-178. https://doi.org/10.1016/j.meatsci.2017.04.234
  • Mortezaee K, Narmani A, Salehi M, Bagheri H, Farhood B, Haghi-Aminjan H & Najafi M (2021). Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences 269: 119020. https://doi.org/10.1016/j.lfs.2021.119020
  • Munawer U, Raghavendra V B, Ningaraju S, Krishna K L, Ghosh A R, Melappa G & Pugazhendhi A (2020). Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. International Journal of Pharmaceutics 588: 119729. https://doi.org/10.1016/j.ijpharm.2020.119729
  • Nadagouda M N & Varma R S (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry 10(8): 859-862. https://doi.org/10.1039/B804703K
  • Naimi-Shamel N, Pourali P & Dolatabadi S (2019). Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. Journal de Mycologie Medicale 29(1): 7-13. https://doi.org/10.1016/j.mycmed.2019.01.005
  • Nair B & Pradeep T (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth & Design 2(4): 293-298. https://doi.org/10.1021/cg0255164
  • Nargund V B, Patil R R & Vanti G L (2022). Bacillus sp. extract used to fabricate ZnO nanoparticles for their antagonist effect against phytopathogens. Biometals 35(6): 1255-1269. https://doi.org/10.1007/s10534-022-00440-2
  • Nethravathi P C, Shruthi G S, Suresh D, Nagabhushana H & Sharma S C (2015). Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceramics International 41(7): 8680-8687. https://doi.org/10.1016/j.ceramint.2015.03.084
  • Nile S H, Baskar V, Selvaraj D, Nile A, Xiao J & Kai G (2020). Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-micro Letters 12: 1-34. https://doi.org/10.1007/s40820-020-0383-9
  • Nooraei S, Bahrulolum H, Hoseini Z S, Katalani C, Hajizade A, Easton A J & Ahmadian G (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology, 19, 1-27. https://doi.org/10.1186/s12951-021-00806-7
  • Oladipo I C, Lateef A, Azeez M A, Asafa T B, Yekeen T A, Ogunsona S B, Irshad H M & Abbas S H (2020). Characterization and biomedical application of phytosynthesized gold nanoparticles from Datura stramonium seed extract. IOP Conference Series: Materials Science and Engineering, IOP Publishing 805(1): 012021
  • Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A & Shahbazi M A (2021). Immune cell Membrane‐Coated biomimetic nanoparticles for targeted cancer therapy. Small 17(12): 2006484. https://doi.org/10.1002/smll.202006484
  • Ortega F G, Fernández-Baldo M A, Fernandez J G, Serrano M J, Sanz M I, Diaz-Mochon J J, Lorente J A & Raba J (2015). Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. International Journal of Nanomedicine 2021-2031. https://doi.org/10.2147/IJN.S75835
  • Osman A I, Zhang Y, Farghali M, Rashwan A K, Eltaweil A S, Abd El-Monaem E M, Mohamed I M A, Badr M M, Ihara I, Rooney D W & Yap P S (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters 22(2): 841-887. https://doi.org/10.1007/s10311-023-01682-3
  • Pacheco-Blandino I, Vanner R & Buzea C (2012). Toxicity of nanoparticles, in F. Pacheco-Torgal F, Jalali S, Fucic A (Eds.), Toxicity of Building Materials. Woodhead Publishing, Sawston, United Kingdom, pp. 427-475
  • Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X & Wang J (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports 10(1): 2717. https://doi.org/10.1038/s41598-020-59624-w
  • Peiris M M K, Guansekera T D C P, Jayaweera P M & Fernando S S N (2018). TiO2 nanoparticles from Baker's yeast: a potent antimicrobial. Journal of Microbiology and Biotechnology 28(10): 1664-1670. https://doi.org/10.4014/jmb.1807.07005
  • Poopathi S, De Britto L J, Praba V L, Mani C & Praveen M (2015). Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environmental Science and Pollution Research 22: 2956-2963. https://doi.org/10.1007/s11356-014-3560-x
  • Pradeepa Vidya S M, Mutalik S, Bhat K U, Huilgol P & Avadhani K (2016). Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sciences 153, 171-179. https://doi.org/10.1016/j.lfs.2016.04.022
  • Prasad R, Bhattacharyya A & Nguyen Q D (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology 8: 1014. https://doi.org/10.3389/fmicb.2017.01014 Prema P, Ranjani S S, Kumar K R, Veeramanikandan V, Mathiyazhagan N, Nguyen V H & Balaji P (2022). Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorganic Chemistry Communications 136: 109139. https://doi.org/10.1016/j.inoche.2021.109139
  • Priya A S, Afzal O, Khalid M, Ahmad M F, Upadhyay A, Kumar S, Garg A, Ramzan M, Hussain A, Altamimi M A, Altamimi A S A, Webster T J & Khanam A (2023). Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. International Journal of Pharmaceutics 643: 123223. https://doi.org/10.1016/j.ijpharm.2023.123223
  • Pugazhendhi A, Prabakar D, Jacob J M, Karuppusamy I & Saratale R G (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis 114: 41-45. https://doi.org/10.1016/j.micpath.2017.11.013
  • Purbani D C, Pratiwi R D, Muttaqien S E, Nantapong N, Warsito M F, Fikri M N, Ruth F, Gustini N, Syahputra G, Padri M, Noerdjito D R, Nurkanto A & Afani H (2024). Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait Journal of Science 51(2): 100194. https://doi.org/10.1016/j.kjs.2024.100194
  • Puri A & Patil S (2022). Tinospora cordifolia stem extract-mediated green synthesis of selenium nanoparticles and its biological applications. Pharmacognosy Research 14(3). https://doi.org/10.5530/pj.2019.11.x
  • Qi X, Su T, Zhang M, Tong X, Pan W, Zeng Q & Shen J (2020). Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydrate Polymers 237 116160. https://doi.org/10.1016/j.carbpol.2020.116160
  • Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y & Wang Z (2018). Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. International Journal of Nanomedicine 6809-6827. https://doi.org/10.2147/IJN.S177993
  • Qureshi A, Singh D K & Dwivedi S (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences 7(2): 3325-3335. https://doi.org/10.20546/ijcmas.2018.702.398
  • Rad M, Taran M & Alavi M (2018). Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomedicine and Engineering 10(1): 25 33. https://doi.org/10.5101/nbe.v10i1.p25-33
  • Rajeshkumar S & Sivapriya D (2020). Fungus-mediated nanoparticles: characterization and biomedical advances, in Shukla A, (Ed.), Nanoparticles in Medicine. Springer, Singapore, pp. 185-199
  • Ramakrishna M, Rajesh Babu D, Gengan R M, Chandra S & Nageswara Rao G (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry 6: 1-13. https://doi.org/10.1007/s40097-015-0173-y
  • Ravichandran A, Subramanian P, Manoharan V, Muthu T, Periyannan R, Thangapandi M, Ponnuchamy K, Pandi B & Marimuthu P N (2018). Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. Journal of Photochemistry and Photobiology B: Biology 185: 117-125. https://doi.org/10.1016/j.jphotobiol.2018.05.031
  • Razak A, Mohd Gazzali S A, Fisol A, Abdulbaqi F A M, Parumasivam I, Mohtar T & Wahab H A (2021). Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: an overview. Cancers 13(3): 400. https://doi.org/10.3390/cancers13030400
  • Rhim J W, Park H M & Ha C S (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science 38(10-11): 1629 1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
  • Saeed S, Iqbal A & Ashraf M A (2020). Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environmental Science and Pollution Research 27(30): 37347-37356. https://doi.org/10.1007/s11356-020-07610-0
  • Saifuddin N, Wong C W & Yasumira A N (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry 6(1): 61-70. https://doi.org/10.1155/2009/734264
  • Saka A, Jule L T, Gudata L, Gindaba A, Abdisa S S, Nagaprasad N & Ramaswamy K (2022). Green synthesis of Datura stramonium (Asaangira) leaves infusion for antibacterial activity through magnesium oxide (MgO) nanoparticles. Advances in Materials Science and Engineering 2022(1): 7134991. https://doi.org/10.1155/2022/7134991
  • Salunke B K, Sawant S S, Lee S I & Kim B S (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology 32: 1-16. https://doi.org/10.1007/s11274-016-2044-1
  • Sanaeimehr Z, Javadi I & Namvar F (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnology 9: 1-16. https://doi.org/10.1186/s12645-018-0037-5
  • Sásková D, Pořízka J, Kulich P, Španová A, Diviš P & Rittich B (2016). Silver nanoparticles production with probiotic bacteria. Materials Science Forum 851: 32-36
  • Sayadi M H, Salmani N, Heidari A & Rezaei M R (2018). Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surfaces and Interfaces 10: 136-143. https://doi.org/10.1016/j.surfin.2018.01.002 Sekhon B S (2010). Food nanotechnology–an overview. Nanotechnology, Science and Applications 1-15. https://doi.org/10.2147/nsa.s12187498
  • Selmani A, Ulm L, Kasemets K, Kurvet I, Erceg I, Barbir R, Pem B, Santini P, Marion I D, Vçnkovic T, Krivohlavek A, Sikiric M D, Kahru A & Vrček I V (2020). Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere 250: 126265. https://doi.org/10.1016/j.chemosphere.2020.126265
  • Selvarajan E & Mohanasrinivasan V J M L (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters 112: 180-182. https://doi.org/10.1016/j.matlet.2013.09.020
  • Shah M, Fawcett D, Sharma S, Tripathy S K & Poinern G E J (2015). Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278-7308. https://doi.org/10.3390/ma8115377
  • Shaikh S, Nazam N, Rizvi S M D, Ahmad K, Baig M H, Lee E J & Choi I (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International Journal of Molecular Sciences 20(10): 2468. https://doi.org/10.3390/ijms20102468
  • Shamaila S, Sajjad A K L, Farooqi S A, Jabeen N, Majeed S & Farooq I (2016). Advancements in nanoparticle fabrication by hazard free eco friendly green routes. Applied Materials Today 5: 150-199. https://doi.org/10.1016/j.apmt.2016.09.009
  • Shanmugam R, Munusamy T, Jayakodi S, Al-Ghanim K A, Nicoletti M, Sachivkina N & Govindarajan M (2023). Probiotic-bacteria (Lactobacillus fermentum)-wrapped zinc oxide nanoparticles: Biosynthesis, characterization, and antibacterial activity. Fermentation 9(5): 413. https://doi.org/10.3390/fermentation9050413
  • Shehabeldine A M, Elbahnasawy M A & Hasaballah A I (2021). Green phytosynthesis of silver nanoparticles using Echinochloa stagnina extract with reference to their antibacterial, cytotoxic, and larvicidal activities. BioNanoScience 11: 526-538. https://doi.org/10.1007/s12668-021-00846-1
  • Shende S, Ingle A P, Gade A & Rai M (2015). Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology 31: 865-873. https://doi.org/10.1007/s11274-015-1840-3
  • Siaw Y M, Jeevanandam J, Hii Y S & Chan Y S (2020). Photo-irradiation coupled biosynthesis of magnesium oxide nanoparticles for antibacterial application. Naunyn-Schmiedeberg's Archives of Pharmacology 393(12): 2253-2264. https://doi.org/10.1007/s00210-02001934-x
  • Sierra-Fernandez A, De la Rosa-García S C, Gomez-Villalba L S, Gómez-Cornelio S, Rabanal M E, Fort R & Quintana P (2017). Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Applied Materials & Interfaces 9(29): 24873-24886. https://doi.org/10.1021/acsami.7b06130
  • Singh K R, Nayak V, Singh J, Singh A K & Singh R P (2021). Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Advances 11(40): 24722-24746. https://doi.org/10.1039/D1RA04273D
  • Singh P, Kim Y J, Wang C, Mathiyalagan R & Yang D C (2016a). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology 44(6): 1569-1575. https://doi.org/10.3109/21691401.2015.1064937
  • Singh P, Kim Y J, Zhang D & Yang D C (2016b). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7): 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Singh S, Singh B K, Yadav S M & Gupta A K (2015). Applications of nanotechnology in agricultural and their role in disease management. Research Journal of Nanoscience and Nanotechnology 5(1), 1-5.
  • Sinha A & Khare S K (2011). Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology 102(5): 4281-4284. https://doi.org/10.1016/j.biortech.2010.12.040
  • Siqueira M C, Coelho G F, de Moura M R, Bresolin J D, Hubinger S Z, Marconcini J M & Mattoso L H (2014). Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. Journal of Nanoscience and Nanotechnology 14(7): 5512-5517. https://doi.org/10.1166/jnn.2014.8991
  • Sivarethinamohan R & Sujatha S (2021). Unlocking the potentials of using nanotechnology to stabilize agriculture and food production. Third International Conference on Material Science, Smart Structures and Applications: (ICMSS 2020), AIP Publishing 2327: 1
  • Skalickova S, Baron M & Sochor J (2017). Nanoparticles biosynthesized by yeast: a review of their application. Kvasny Prumysl 63(6): 290292. https://doi.org/10.18832/kp201727
  • Slavin Y N, Asnis J, Hńfeli U O & Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15: 1-20. https://doi.org/10.1186/s12951-017-0308-z
  • Soni N & Prakash S (2015). Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitology Research 114: 1023-1030. https://doi.org/10.1007/s00436-014-4268-z
  • Soto C M & Ratna B R (2010). Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology 21(4): 426-438. https://doi.org/10.1016/j.copbio.2010.07.004
  • Sowbarnika R, Anhuradha S & Preetha B (2018). Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. International Journal of Nanoscience and Nanotechnology 14(1): 33-42
  • Sperber W H (2009). Introduction to the microbiological spoilage of foods and beverages, in Sperber W, Doyle M (Eds.), Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety. Springer, German, pp. 1-40
  • Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O & Chlichlia K (2021). Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. Nanoscale Advances 3(9): 2516-2528. https://doi.org/10.1039/ D0NA00984A
  • Srikhao N, Kasemsiri P, Lorwanishpaisarn N & Okhawilai M (2021). Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. Research on Chemical Intermediates 47: 1269-1283. https://doi.org/10.1007/s11164-020-04354-x
  • Sriramulu M & Sumathi S (2018). Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Advances in Natural Sciences: Nanoscience and Nanotechnology 9(2): 025018. https://doi.org/10.1088/2043 6254/aac506
  • Srivastava P & Kowshik M (2017). Fluorescent lead (IV) sulfide nanoparticles synthesized by Idiomarina sp. strain PR58-8 for bioimaging applications. Applied and Environmental Microbiology 83(7): e03091-16. https://doi.org/10.1128/AEM.03091-16 Suba S, Vijayakumar S, Vidhya E, Punitha V N & Nilavukkarasi M (2021). Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. Sensors International 2: 100104. https://doi.org/10.1016/j.sintl.2021.100104
  • Subramaniyan S A, Sheet S, Vinothkannan M, Yoo D J, Lee Y S, Belal S A & Shim K S (2018). One-pot facile synthesis of Pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. Journal of Nanoscience and Nanotechnology 18(5): 3110-3125. https://doi.org/10.1166/jnn.2018.14661
  • Suvandee W, Teeranachaideekul V, Jeenduang N, Nooeaid P, Makarasen A, Chuenchom L & Dechtrirat D (2022). One-pot and green preparation of Phyllanthus emblica extract/silver nanoparticles/polyvinylpyrrolidone spray-on dressing. Polymers 14(11): 2205. https://doi.org/10.3390/polym14112205
  • Taha R H (2022). Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorganic Chemistry Communications 143: 109610. https://doi.org/10.1016/j.inoche.2022.109610
  • Thanki K, Gangwal R P, Sangamwar A T & Jain S (2013). Oral delivery of anticancer drugs: challenges and opportunities. Journal of Controlled Release 170(1): 15-40. https://doi.org/10.1016/j.jconrel.2013.04.020
  • Thirumal V, Dhamodharan K, Yuvakkumar R, Ravi G, Saravanakumar B, Thambidurai M & Velauthapillai D (2021). Cleaner production of tamarind fruit Shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere 282: 131033. https://doi.org/10.1016/j.chemosphere.2021.131033
  • Tinkle S, McNeil S E, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L & Desai N (2014). Nanomedicines: addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences 1313(1): 35-56. https://doi.org/10.1111/nyas.12403
  • Tomşa A M, Răchişan A L, Aldea A A & Ciumărnean L (2021). Perspectives of gold nanoparticles and their applications in pancreatic cancer. Experimental and Therapeutic Medicine 21(3): 1-1. https://doi.org/10.3892/etm.2021.9689
  • Torres L A Z, Woiciechowski A L, de Andrade Tanobe V O, Zandoná Filho A, de Freitas R A, Noseda M D, Szameitat E S, Faulds C, Coutinho P, Bertrand E & Soccol C R (2021). Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules 167: 1499-1507. https://doi.org/10.1016/j.ijbiomac.2020.11.104
  • Vaghela H, Shah R & Parmar K A (2018). Plant mixture mediated biogenic copper nanoparticles: antibacterial assay. Current Nanomaterials 3(2): 86-94. https://doi.org/10.2174/2405461503666180803152152
  • Vedernykova I O, Koval A A, Antonenko O V, Chan T M, Shpychak О S & Marchenko M V (2018). Synthesis, technology and analysis of nanoparticles of barium hexaferrite for creation of magnetically controlled drug delivery systems. Journal of Pharmaceutical Science and Research 10: 2122
  • Vijayabharathi R, Sathya A & Gopalakrishnan S (2018). Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatalysis and Agricultural Biotechnology 14: 166-171. https://doi.org/10.1016/j.bcab.2018.03.006
  • Vijayaraghavan K & Ashokkumar T (2017). Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering 5(5): 4866-4883. https://doi.org/10.1016/j.jece.2017.09.026
  • Wadhwani S A, Shedbalkar U U, Singh R & Chopade B A (2018). Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme and Microbial Technology 111: 81-86. https://doi.org/10.1016/j.enzmictec.2017.10.007
  • Wang C, Gong C, Qin Y, Hu Y, Jiao A, Jin Z, Qiu C & Wang J (2022). Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering 312: 110752. https://doi.org/10.1016/j.jfoodeng.2021.110752
  • Wang L, Hu C & Shao L (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine 12: 1227-1249. https://doi.org/10.2147/IJN.S121956
  • Wang R, Xu X, Puja A M, Perumalsamy H, Balusamy S R, Kim H & Kim Y J (2021). Gold nanoparticles prepared with Phyllanthus emblica fruit extract and Bifidobacterium animalis subsp. lactis can induce apoptosis via mitochondrial impairment with inhibition of autophagy in the human gastric carcinoma cell line AGS. Nanomaterials 11(5): 1260. https://doi.org/10.3390/nano11051260
  • Wang Y, Xu J, Shi L & Yang H (2020). Recent advances in the antilung cancer activity of biosynthesized gold nanoparticles. Journal of Cellular Physiology 235(12): 8951-8957. https://doi.org/10.1002/jcp.29789
  • Weiss J, Takhistov P & McClements D J (2006). Functional materials in food nanotechnology. Journal of Food Science 71(9): 107-116. https://doi.org/10.1111/j.1750-3841.2006.00195.x
  • Wen A M & Steinmetz N F (2016). Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews 45(15): 4074-4126. https://doi.org/10.1039/C5CS00287G
  • Wolfram J & Ferrari M (2019). Clinical cancer nanomedicine. Nano today 25: 85-98. https://doi.org/10.1016/j.nantod.2019.02.005
  • Xu J, Yıldıztekin M, Han D, Keskin C, Baran A, Baran M F, Eftekhari A, Ava C A, Kandemir S İ, Cebe D B, Dağ B, Beileri A & Khalilov R (2023). Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e19061
  • Yana L, Yutong C & Qinghui H (2024). Antibacterial films based on polylactide and polybutylene adipate terephthalate loaded with zinc oxide or silver nanoparticles: Characterization and application in fresh noodles packaging. Journal of Food Engineering 367: 111889. https://doi.org/10.1016/j.jfoodeng.2023.111889
  • Yuan Y G, Peng Q L & Gurunathan S (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. International Journal of Molecular Sciences 18(3): 569. https://doi.org/10.3390/ijms18030569
  • Zaki S A, Ouf S A, Albarakaty F M, Habeb M M, Aly A A & Abd-Elsalam K A (2021). Trichoderma harzianum-mediated ZnO nanoparticles: A green tool for controlling soil-borne pathogens in cotton. Journal of Fungi 7(11), 952. https://doi.org/10.3390/jof7110952
  • Zang W, Cao H, Ge J & Zhao D (2024). Structures, physical properties and antibacterial activity of silver nanoparticles of Lactiplantibacillus plantarum exopolysaccharide. International Journal of Biological Macromolecules 263: 130083. https://doi.org/10.1016/j.ijbiomac.2024.130083
  • Zeng Q, Liu Z, Niu T, He C, Qu Y & Qian Z (2023). Application of nanotechnology in CAR-T-cell immunotherapy. Chinese Chemical Letters, 34(3), 107747. https://doi.org/10.1016/j.cclet.2022.107747
  • Zhang Y, Dong Y, Zhou J, Li X & Wang F (2018). Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules 23(9): 2311. https://doi.org/10.3390/molecules23092311
  • Zhang F, Han X, Hu Y, Wang S, Liu S, Pan X, Wang H, Ma J, Wang W, Li S, Wu Q, Shen H, Yu X, Yuan Q & Liu H (2019). Interventional photothermal therapy enhanced brachytherapy: A new strategy to fight deep pancreatic cancer. Advanced Science 6(5): 1801507. https://doi.org/10.1002/advs.201801507
  • Zhao X, Zhou L, Riaz Rajoka M S, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H & Jin M (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology 38(6): 817-835. https://doi.org/10.1080/07388551.2017.1414141
  • Zhong B, Xu W, Xie H & Wu Z (2024). Biosynthesis and characterization of selenium nanoparticles by Se-tolerant Lactiplantibacillus plantarum. Food Bioscience 59: 104061. https://doi.org/10.1016/j.fbio.2024.104061
There are 262 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Makaleler
Authors

Gülden Kılıç 0000-0001-6125-6219

Publication Date July 29, 2025
Submission Date January 17, 2025
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 31 Issue: 3

Cite

APA Kılıç, G. (2025). Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications. Journal of Agricultural Sciences, 31(3), 640-669. https://doi.org/10.15832/ankutbd.1622082
AMA Kılıç G. Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications. J Agr Sci-Tarim Bili. July 2025;31(3):640-669. doi:10.15832/ankutbd.1622082
Chicago Kılıç, Gülden. “Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications”. Journal of Agricultural Sciences 31, no. 3 (July 2025): 640-69. https://doi.org/10.15832/ankutbd.1622082.
EndNote Kılıç G (July 1, 2025) Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications. Journal of Agricultural Sciences 31 3 640–669.
IEEE G. Kılıç, “Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications”, J Agr Sci-Tarim Bili, vol. 31, no. 3, pp. 640–669, 2025, doi: 10.15832/ankutbd.1622082.
ISNAD Kılıç, Gülden. “Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications”. Journal of Agricultural Sciences 31/3 (July2025), 640-669. https://doi.org/10.15832/ankutbd.1622082.
JAMA Kılıç G. Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications. J Agr Sci-Tarim Bili. 2025;31:640–669.
MLA Kılıç, Gülden. “Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications”. Journal of Agricultural Sciences, vol. 31, no. 3, 2025, pp. 640-69, doi:10.15832/ankutbd.1622082.
Vancouver Kılıç G. Beneficial Microorganisms in Green Synthesis of Nanoparticles and Potential Applications. J Agr Sci-Tarim Bili. 2025;31(3):640-69.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).