Derleme
BibTex RIS Kaynak Göster

Yapay Zeka Kullanılan Uyarlamalı Öğrenme Sistemlerine Eleştirel Bir Bakış: Çağdaş Araştırma Literatürünün Sistematik Olarak İncelenmesi ve Nitel Sentezi

Yıl 2024, Cilt: 15 Sayı: 3, 3519 - 3547, 28.12.2024
https://doi.org/10.51460/baebd.1525452

Öz

Bu çalışma, yapay zeka (AI) destekli uyarlamalı (adaptive) öğrenme sistemleri hakkındaki mevcut araştırmaları eleştirel bir şekilde incelemeyi, eğilimleri, boşlukları ve zorlukları belirlemek amacıyla çalışmaları sentezleyerek ele almayı amaçlamaktadır. Aynı zamanda bu sistemlerin eğitimdeki uygulamalarını, faydalarını, zorluklarını ve gelecekteki yönelimlerini de araştırmaktadır. Araştırma tasarımı, PRISMA yönergelerini izleyerek sistematik bir inceleme ve nitel tematik sentez yöntemi kullanmaktadır. Veri toplama süreci, ERIC, JSTOR, IEEE Xplore, Google Scholar, Web of Science ve Scopus saygın veri tabanlarında kapsamlı bir literatür taramasını içerir. Dahil edilme kriterleri, son on yıldaki hakemli makaleler ve yüksek kalitedeki gri literatüre odaklanmışır. Veri analizi, bulguları kapsamlı bir anlatıya entegre etmek için kodlama ve tematik haritalama içerir. Bulgular, uyarlamalı öğrenme istemlerinde AI'nin rolüyle ilgili makine öğrenme algoritmaları, doğal dil işleme ve AI destekli veri analizi gibi önemli temaları ortaya koymaktadır. Uyarlamalı öğrenme sistemlerinin uygulamaları, kişiselleştirilmiş öğrenme yöntemleri, uyarlamalı değerlendirmeler, akıllı öğretim sistemleri ve çeşitli öğrenme ihtiyaçlarının desteklenmesi gibi alanlarda görülmektedir. Vaka çalışmaları, bu sistemlerin öğrenci katılımını ve öğrenme sonuçlarını artırmadaki etkinliğini vurgulamaktadır. Bu çalışma, AI destekli uyarlamalı öğrenme sistemlerinin eğitimi geliştirmeye yönelik potansiyeline dair kapsamlı bir genel bakış sunmaktadır. Öğrenme sonuçlarının iyileştirilmesi, artan katılım, ölçeklenebilirlik ve maliyet etkinliği gibi önemli faydaları göse çarpmaktadr. Bu çalışma ayrıca veri kalitesi, etik konular ve kurumsal direnç gibi zorluklara da değinerek mevcut duruma dengeli bir bakış açısı sunmaktadır. AI destekli uyarlamalı öğrenme sistemleri, eğitim deneyimlerini kişiselleştirme ve iyileştirme konusunda yenilikçi bir potansiyele sahiptir. Faydalar önemli olsa da, veri kalitesi, etik konular ve eğitmen desteği ile ilgili zorlukların ele alınması kritik öneme sahiptir. Gelecekteki araştırmalar, uzun vadeli etkileri ve etik sonuçları ele almalı, duygusal ve sosyal öğrenmenin entegrasyonuna odaklanarak bütüncül bir eğitim ortamı meydana getirmeyi hedeflemelidir.

Etik Beyan

Bu bir derleme çalışma olup etik kurul izni alınması gerekmemiştir.

Kaynakça

  • Abbas, N., Ali, I., Manzoor, R., Hussain, T., & Hussain, M. H. A. (2023). Role of artificial intelligence tools in enhancing students’ educational performance at higher levels. Journal of Artificial Intelligence, Machine Learning and Neural Network, (35), 36–49. https://doi.org/10.55529/jaimlnn.35.36.49
  • Adeleye, O. (2024). Innovative teaching methodologies in the era of artificial intelligence: A review of inclusive educational practices. World Journal of Advanced Engineering Technology and Sciences, 11(2), 069–079. https://doi.org/10.30574/wjaets.2024.11.2.0091
  • Aggarwal, D., Sharma, D., & Saxena, A. B. (2023). Exploring the role of artificial intelligence for augmentation of adaptable sustainable education. Asian Journal of Advanced Research and Reports, 17(11), 179–184. https://doi.org/10.9734/ajarr/2023/v17i11563
  • Akavova, A., Temirkhanova, Z., & Lorsanova, Z. (2023). Adaptive learning and artificial intelligence in the educational space. E3S Web of Conferences, 451. https://doi.org/10.1051/e3sconf/202345106011
  • Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. Ai and Ethics, 2(3), 431–440. https://doi.org/10.1007/s43681-021-00096-7
  • Akintayo, O., Eden, C. A., Ayeni, O. O., & Onyebuchi, N. C. (2024). Integrating AI with emotional and social learning in primary education: Developing a holistic adaptive learning ecosystem. Computer Science & IT Research Journal, 5(5), 1076–1089. https://doi.org/10.51594/csitrj.v5i5.1116
  • Alashwal, M. (2024). Empowering education through AI: Potential benefits and future implications for instructional pedagogy. https://doi.org/10.20319/ictel.2024.201212
  • Alshehri, B. (2023). Pedagogical paradigms in the ai era: Insights from Saudi educators on the long-term implications of ai integration in classroom teaching. International Journal of Educational Sciences and Arts, 2(8), 159–180. https://doi.org/10.59992/IJESA.2023.v2n8p7
  • Amod, H., & Mkhize, S. W. (2023). Supporting midwifery students during clinical practice: Results of a systematic scoping review. Interactive Journal of Medical Research, 12, Article e36380. https://doi.org/10.2196/36380
  • Anoir, L., Chelliq, I., Khaldi, M., & Khaldi, M. (2024). Design of an intelligent tutor system for the personalization of learning activities using case-based reasoning and multi-agent system. International Journal of Computing and Digital Systems, 15(1), 459–469. https://doi.org/10.12785/ijcds/160136
  • Ansor, F., Zulkifli, N. A., Jannah, D. S. M., & Krisnaresanti, A. (2023). Adaptive learning based on artificial intelligence to overcome student academic inequalities. Journal of Social Science Utilizing Technology, 1(4), 202–213. https://doi.org/10.55849/jssut.v1i4.663
  • Anuyahong, B., Rattanapong, C., & Patcha, I. (2023). Analyzing the impact of artificial intelligence in personalized learning and adaptive assessment in higher education. International Journal of Research and Scientific Innovation. XInternational Journal of Research and Scientific Innovation, X(), 88–93. https://doi.org/10.51244/IJRSI.2023.10412
  • Anwar, M. R., & Ahyarudin, H. A. (2023). Ai-powered Arabic language education in the era of society 5.0. Iaic Transactions on Sustainable Digital Innovation, 5(1), 50–57. https://doi.org/10.34306/itsdi.v5i1.607
  • Avraham, G., Taylor, J. A., Breska, A., Ivry, R. B., & McDougle, S. D. (2022). Contextual effects in sensorimotor adaptation adhere to associative learning rules. eLife, 11, Article e75801. https://doi.org/10.7554/eLife.75801

A Critical Glance at Adaptive Learning Systems Using Artificial Intelligence: A Systematic Review and Qualitative Synthesis of Contemporary Research Literature

Yıl 2024, Cilt: 15 Sayı: 3, 3519 - 3547, 28.12.2024
https://doi.org/10.51460/baebd.1525452

Öz

This study aims to critically examine the current research on AI-powered adaptive learning systems by synthesizing studies to identify trends, gaps, and challenges. It also explores the applications, benefits, challenges, and future directions of these systems in education. The research design employs a systematic review and qualitative thematic synthesis following PRISMA guidelines. Data collection involves a comprehensive literature search across databases such as ERIC, JSTOR, IEEE Xplore, Google Scholar, Web of Science, and Scopus. Inclusion criteria focus on peer-reviewed articles and high-quality grey literature from the past ten years. Data analysis includes coding and thematic mapping to integrate findings into a comprehensive narrative, ensuring rigor through triangulation, peer debriefing, and reflexivity. The findings reveal significant themes related to the role of AI in adaptive learning, including machine learning algorithms, natural language processing, and AI-driven data analysis. Applications of adaptive learning systems are demonstrated in personalized learning pathways, adaptive assessments, intelligent tutoring systems, and support for diverse learning needs. Case studies highlight the effectiveness of these systems in enhancing student engagement and learning outcomes. This study provides a comprehensive overview of the potential of AI-powered adaptive learning systems to transform education. It identifies significant benefits such as improved learning outcomes, increased engagement, scalability, and cost-effectiveness. The study also addresses challenges like data quality, ethical considerations, and institutional resistance, providing a balanced view of the current landscape. AI-powered adaptive learning systems have innovative potential in personalizing and improving educational experiences. While the benefits are significant, addressing challenges related to data quality, ethical considerations, and educator support is crucial. Future research should focus on long-term impacts, ethical implications, and integrating emotional and social learning to create a holistic educational environment.

Kaynakça

  • Abbas, N., Ali, I., Manzoor, R., Hussain, T., & Hussain, M. H. A. (2023). Role of artificial intelligence tools in enhancing students’ educational performance at higher levels. Journal of Artificial Intelligence, Machine Learning and Neural Network, (35), 36–49. https://doi.org/10.55529/jaimlnn.35.36.49
  • Adeleye, O. (2024). Innovative teaching methodologies in the era of artificial intelligence: A review of inclusive educational practices. World Journal of Advanced Engineering Technology and Sciences, 11(2), 069–079. https://doi.org/10.30574/wjaets.2024.11.2.0091
  • Aggarwal, D., Sharma, D., & Saxena, A. B. (2023). Exploring the role of artificial intelligence for augmentation of adaptable sustainable education. Asian Journal of Advanced Research and Reports, 17(11), 179–184. https://doi.org/10.9734/ajarr/2023/v17i11563
  • Akavova, A., Temirkhanova, Z., & Lorsanova, Z. (2023). Adaptive learning and artificial intelligence in the educational space. E3S Web of Conferences, 451. https://doi.org/10.1051/e3sconf/202345106011
  • Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. Ai and Ethics, 2(3), 431–440. https://doi.org/10.1007/s43681-021-00096-7
  • Akintayo, O., Eden, C. A., Ayeni, O. O., & Onyebuchi, N. C. (2024). Integrating AI with emotional and social learning in primary education: Developing a holistic adaptive learning ecosystem. Computer Science & IT Research Journal, 5(5), 1076–1089. https://doi.org/10.51594/csitrj.v5i5.1116
  • Alashwal, M. (2024). Empowering education through AI: Potential benefits and future implications for instructional pedagogy. https://doi.org/10.20319/ictel.2024.201212
  • Alshehri, B. (2023). Pedagogical paradigms in the ai era: Insights from Saudi educators on the long-term implications of ai integration in classroom teaching. International Journal of Educational Sciences and Arts, 2(8), 159–180. https://doi.org/10.59992/IJESA.2023.v2n8p7
  • Amod, H., & Mkhize, S. W. (2023). Supporting midwifery students during clinical practice: Results of a systematic scoping review. Interactive Journal of Medical Research, 12, Article e36380. https://doi.org/10.2196/36380
  • Anoir, L., Chelliq, I., Khaldi, M., & Khaldi, M. (2024). Design of an intelligent tutor system for the personalization of learning activities using case-based reasoning and multi-agent system. International Journal of Computing and Digital Systems, 15(1), 459–469. https://doi.org/10.12785/ijcds/160136
  • Ansor, F., Zulkifli, N. A., Jannah, D. S. M., & Krisnaresanti, A. (2023). Adaptive learning based on artificial intelligence to overcome student academic inequalities. Journal of Social Science Utilizing Technology, 1(4), 202–213. https://doi.org/10.55849/jssut.v1i4.663
  • Anuyahong, B., Rattanapong, C., & Patcha, I. (2023). Analyzing the impact of artificial intelligence in personalized learning and adaptive assessment in higher education. International Journal of Research and Scientific Innovation. XInternational Journal of Research and Scientific Innovation, X(), 88–93. https://doi.org/10.51244/IJRSI.2023.10412
  • Anwar, M. R., & Ahyarudin, H. A. (2023). Ai-powered Arabic language education in the era of society 5.0. Iaic Transactions on Sustainable Digital Innovation, 5(1), 50–57. https://doi.org/10.34306/itsdi.v5i1.607
  • Avraham, G., Taylor, J. A., Breska, A., Ivry, R. B., & McDougle, S. D. (2022). Contextual effects in sensorimotor adaptation adhere to associative learning rules. eLife, 11, Article e75801. https://doi.org/10.7554/eLife.75801
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilim, Teknoloji ve Mühendislik Eğitimi ve Programlarının Geliştirilmesi, Alan Eğitimleri (Diğer)
Bölüm Makaleler
Yazarlar

Rusen Meylani 0000-0002-3121-6088

Erken Görünüm Tarihi 28 Aralık 2024
Yayımlanma Tarihi 28 Aralık 2024
Gönderilme Tarihi 31 Temmuz 2024
Kabul Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 3

Kaynak Göster

APA Meylani, R. (2024). A Critical Glance at Adaptive Learning Systems Using Artificial Intelligence: A Systematic Review and Qualitative Synthesis of Contemporary Research Literature. Batı Anadolu Eğitim Bilimleri Dergisi, 15(3), 3519-3547. https://doi.org/10.51460/baebd.1525452