BibTex RIS Cite

Teknoloji Destekli Ortamda Matematiksel Modelleme Sürecindeki Bilişsel ve Üst Bilişsel Eylemler Arasındaki Geçişler

Year 2016, Volume: 10 Issue: 1, 0 - 0, 26.06.2016
https://doi.org/10.17522/nefefmed.15854

Abstract

Bu çalışmanın amacı, teknoloji destekli ortamda matematiksel modelleme sürecinde sergilenen bilişsel ve üst bilişsel eylemler arasındaki geçişleri açıklamaktır. Durum çalışması niteliğindeki araştırmanın katılımcıları Ortaöğretim Matematik Öğretmenliği Programı’nın birinci sınıfında öğrenim gören dokuz öğretmen adayıdır. Veriler, dokuz öğretmen adayının oluşturduğu üç grubun simülasyon, deneysel ve teorik modelleme problemlerini çözerken alınan video kayıtlarının çözümlemelerinden, yazılı yanıt kağıtlarından, GeoGebra çözüm dosyalarından ve araştırmacıların gözlem notlarından derlenmiştir. Matematiksel modelleme sürecinde gerçekleşen üst bilişsel eylemler planlama, izleme, değerlendirme ve tahmin boyutlarında ele alınmıştır. Katılımcıların modelleme sürecindeki eylemleri ve aralarındaki geçişler grafiklere aktarılmıştır. Simülasyon modelleme probleminde en az süreye ihtiyaç duyulmuştur. En fazla zihinsel geçiş teorik modellemede iken en az geçiş deneysel modellemede olmuştur. Süreçte en çok planlama, en az tahmin eylemiyle karşılaşılmıştır. Üst bilişsel eylemler modelleme sürecinin basamakları arasındaki düzensiz veya beklenmedik geçişleri etkileyen ve süreci düzenleyen rol oynamıştır. Bilişsel ve üst bilişsel eylemler süreçte ardışık olarak meydana gelmemiş, modelleme sürecinde eş zamanlı ve iç içe geçmiş bir süreci oluşturmuşlardır.

References

  • Altun, M. (2012). Ortaöğretimde matematik öğretimi. (17. Baskı) Alfa Aktüel Yayınları, Bursa.
  • Akpınar, Y. (1999). Bilgisayar destekli öğretim ve uygulamalar. Ankara: Anı Yayıncılık.
  • Baki, A. (2002). Öğrenen ve öğretenler için bilgisayar destekli matematik. BİTAV-Ceren Yayın Dağıtım, İstanbul.
  • Berry, J. & Houston, K. (1995). Mathematical modelling. Bristol: J. W. Arrowsmith Ltd.
  • Blomhøj, M. & Jensen T. H. (2006). What’s all the fuss about competencies? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P.L. Galbraith and M. Niss: Modelling and Applications in Mathematics Education. New York: Springer, 2(2), 45-56.
  • Blum, W. & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics. Chichester: Horwood. 222-231.
  • Blum, W. & Niss, M. (1991). Applied mathematical problem solving, modelling, application, and links to other subjects-state, trends and ıssues in mathematics instruction. Educational Studies in Mathematics. 22(1), 37- 68.
  • Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education-Discussion document. Zentralblatt für Didaktik der Mathematik. 34(5), 229-239.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. In Kaiser, G., Sriraman B. & Blomhøj, M. (Eds.) Zentralblatt für Didaktik der Mathematik. 38(2), 86-95.
  • Brown, A. L. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, Motivation, and Understanding. Chapter 3 (pp. 65-116). London: LEA Lawrence Erlbaum Associates, Hillsdale, New Jersey.
  • Daniels, D. (2002). Metacognition and reflection. Educational Psychology. http://dennisgdaniels.com/tikiindex.php?page=Metacognition%20and%20Reflection adresinden 03. 05. 2014 tarihinde alınmıştır.
  • Desoete, A. & Roeyers, H. (2002). Off-line metacognition-a domain- specific retardation in young children with learning disabilities?. Learning Disability Quarterly. 25, Spring.
  • Desoete, A., Roeyers, H. & Buysse, A.(2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disability. 34(5), September/October .435–449.
  • English, L. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM—The International Journal on Mathematics Education. 41(1-2), 161-181.
  • English, L. D. & Watters, J. J. (2004). Mathematical modeling in the early school years. Mathematics Education Research Journal, 16(3), 59-80.
  • Fang, Z., & Cox, B. E. (1999). Emergent metacognition: a study of preschoolers’ literate behavior. Journal of Research in Childhood Education, 13, 175-187.
  • Fernandez, M. L., Hadaway, N. & Wilson, J. W. (1994). Problem solving: Managing it all. The Mathematics Teacher, Vol. 87, No. 3, pp. 195 - 199.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring. American Psychologist, 34 (10) 906-911, October 1979.
  • Fox, J. (2006). A justification for mathematical modelling experiences in the preparatory classroom. Grootenboer, Peter and Zevenbergen, Robyn and Chinnappan, Mohan, Eds. Proceedings 29th annual conference of the Mathematics Education Research Group of Australasia. 1, 21-228.
  • Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 143-162.
  • Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49(2), 193-223.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama. Yüksek lisans tezi, Dokuz Eylül Üniversitesi, İzmir.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2013). Teknoloji destekli ortamda matematiksel modellemede modelin doğrulanmasındaki yaklaşımların ve düşünme süreçlerinin kavramsallaştırılması. Educational Sciences: Theory and Practice. 13(4), 2487-2508.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2014). Matematiksel modellemede GeoGebra kullanımı: Boy-ayak uzunluğu problemi. Pamukkale Üniversitesi, Eğitim Fakültesi Dergisi, 36 (2), 29-44.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2015). Teknoloji destekli ortamda matematiksel modellemede ortaya çıkan üst bilişsel yapılar. Turkish Journal of Computer and Mathematics Education, 6(2), 179-208.
  • Hıdıroğlu, Ç. N. (2015). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analizi: Bilişsel ve üst bilişsel yapılar üzerine bir açıklama. Doktora tezi, Dokuz Eylül Üniversitesi, İzmir.
  • Jacobs, J. E. & Paris, S.G. (1987). Children’s metacognition about reading: Issues in definition, measurement, and instruction. Educational Psychologist, 22, 255-278.
  • Kaiser, G. (2005). Introduction to the working group “Applications and modelling”. CERME4 Proceedings, pp. 1611-1622.
  • Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik. 38(3), 302-310.
  • Leiß, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modeling-Task analyses, student competencies, and teacher interventions. Journal für Mathematikdidaktik, 31(1), 119-141.
  • Lesh, R. & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching. Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R. & Zawojewski, J. (2007). Problem solving and modeling. In Lester, F. K. (Ed.), Second handbook of research on mathematics teaching and learning. 2nd ed. City, ST: Information Age Publishers, Inc.
  • Lingefjärd, T. (2000). Mathematical modeling by prospective teachers using technology. Electronically published doctoral dissertation, University of Georgia. http://ma-serv.did.gu.se/matematik/thomas.htm adresinden 28.11.2010 tarihinde alınmıştır.
  • Lucangeli, D. & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition, 3 (2), 121-139.
  • Maaß, K. (2006) What are Modelling Competencies? Zentralblatt für Didaktik der Mathematik. 38 (2),113-142.
  • Magiera, M. T. & Zawojewski, J. (2011). Characterizations of social-based and self-based contexts associated with students’ awareness, evaluation, and regulation of their thinking during small-group mathematical modeling. Journal for Research in Mathematics Education, 42(5), 486-520.
  • Matos, J. & Carreira, S. (1995). Cognitive processes and representations involved in applied problem solving. In: Sloyer, C.; Blum, W.; Huntley, I. (Eds.). Advances and Perspectives in the Teaching of Mathematical Modeling and Applications (ICTMA 6). Yorklyn: Water Street Mathematics, 71-80.
  • Matos, J. & Carreira, S. (1997). The quest for meaning in students’ mathematical modeling. In: Houston, Ken; Blum, Werner; Huntley, Ian; Neill, N. (Eds.). Teaching and Learning Mathematical Modeling (ICTMA 7). Chichester: Horwood Publishing, 63-75.
  • Miles, H. B. & Huberman, A.M. (1994). Qualitative data analysis. 2. Baskı, Thousand Oaks, CA: Sage.
  • Milli Eğitim Bakanlığı [MEB], (2013). Ortaöğretim 9-12 matematik dersi öğretim programı. Ankara: MEB Basımevi.
  • Peter Koop, A. (2004). Fermi problems in primary mathematics classrooms: pupils’ interactive modelling processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville, Queensland: MERGA.
  • Pressley, M. & McCormick, C. (1995). Advanced educational psychology for educators, researchers, and policymakers. New York: HarperCollins.
  • Saeki, A. & Matsuzaki, A. (2011). Dual modelling cycle framework for responding to the diversities of modellers. Proceedings of ICTMA15, CD-ROM (7pages). Melbourne, Australia: Australia Catholic University.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (s. 334– 370). Macmillan: New York.
  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science. 26,113-125.
  • Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychological Review. 7: 351–371.
  • Schunk, D. H. (2013). Learning theories: An educational perspective. 6th edition. Harlow: Pearson.
  • Shahbari, J., Daher, W. & Raslan, S. (2014). Mathematical knowledge and the cognitive and metacognitive processes emerged in model-eliciting activities. International Journal of New Trends in Education and Their Implications, 5 (2), 209-2019.
  • Stemler, L. K. (1997). Educational characteristics of multimedia: A literature review. Journal of Educational and Hypermedia, 6(3/4), 339-359.
  • Stillman, G., Galbraith, P., Brown, J. & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. Mathematics: Essential Research, Essential Practice. 2, 688- 697.
  • Treilibs, V., Burkhardt, H. & Low, B. (1980). Formulation processes in mathematical modelling. Nottingham: University of Nottingham Shell Centre for Mathematical Education.
  • Türk Dil Kurumu [TDK], (2015). Büyük Türkçe Sözlük. http://tdk.gov.tr/ adresinden 29.1.2015 tarihinde alınmıştır.
  • Wilburne, J. M. (1997). The effect of teaching metacognitive strategies to preservice elementary school teachers on their mathematical problem solving achievement and attitude. Doctoral Thesis. Temple University, Philadelphia.
  • Yin, R. (2008). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage.
  • Zawojewski, J. S., Lesh, R., & English, L. D. (2003). A models and modelling perspective on the role of small group learning. In R. A. Lesh & H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching. (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum.
Year 2016, Volume: 10 Issue: 1, 0 - 0, 26.06.2016
https://doi.org/10.17522/nefefmed.15854

Abstract

References

  • Altun, M. (2012). Ortaöğretimde matematik öğretimi. (17. Baskı) Alfa Aktüel Yayınları, Bursa.
  • Akpınar, Y. (1999). Bilgisayar destekli öğretim ve uygulamalar. Ankara: Anı Yayıncılık.
  • Baki, A. (2002). Öğrenen ve öğretenler için bilgisayar destekli matematik. BİTAV-Ceren Yayın Dağıtım, İstanbul.
  • Berry, J. & Houston, K. (1995). Mathematical modelling. Bristol: J. W. Arrowsmith Ltd.
  • Blomhøj, M. & Jensen T. H. (2006). What’s all the fuss about competencies? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P.L. Galbraith and M. Niss: Modelling and Applications in Mathematics Education. New York: Springer, 2(2), 45-56.
  • Blum, W. & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics. Chichester: Horwood. 222-231.
  • Blum, W. & Niss, M. (1991). Applied mathematical problem solving, modelling, application, and links to other subjects-state, trends and ıssues in mathematics instruction. Educational Studies in Mathematics. 22(1), 37- 68.
  • Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education-Discussion document. Zentralblatt für Didaktik der Mathematik. 34(5), 229-239.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. In Kaiser, G., Sriraman B. & Blomhøj, M. (Eds.) Zentralblatt für Didaktik der Mathematik. 38(2), 86-95.
  • Brown, A. L. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, Motivation, and Understanding. Chapter 3 (pp. 65-116). London: LEA Lawrence Erlbaum Associates, Hillsdale, New Jersey.
  • Daniels, D. (2002). Metacognition and reflection. Educational Psychology. http://dennisgdaniels.com/tikiindex.php?page=Metacognition%20and%20Reflection adresinden 03. 05. 2014 tarihinde alınmıştır.
  • Desoete, A. & Roeyers, H. (2002). Off-line metacognition-a domain- specific retardation in young children with learning disabilities?. Learning Disability Quarterly. 25, Spring.
  • Desoete, A., Roeyers, H. & Buysse, A.(2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disability. 34(5), September/October .435–449.
  • English, L. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM—The International Journal on Mathematics Education. 41(1-2), 161-181.
  • English, L. D. & Watters, J. J. (2004). Mathematical modeling in the early school years. Mathematics Education Research Journal, 16(3), 59-80.
  • Fang, Z., & Cox, B. E. (1999). Emergent metacognition: a study of preschoolers’ literate behavior. Journal of Research in Childhood Education, 13, 175-187.
  • Fernandez, M. L., Hadaway, N. & Wilson, J. W. (1994). Problem solving: Managing it all. The Mathematics Teacher, Vol. 87, No. 3, pp. 195 - 199.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring. American Psychologist, 34 (10) 906-911, October 1979.
  • Fox, J. (2006). A justification for mathematical modelling experiences in the preparatory classroom. Grootenboer, Peter and Zevenbergen, Robyn and Chinnappan, Mohan, Eds. Proceedings 29th annual conference of the Mathematics Education Research Group of Australasia. 1, 21-228.
  • Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 143-162.
  • Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49(2), 193-223.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama. Yüksek lisans tezi, Dokuz Eylül Üniversitesi, İzmir.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2013). Teknoloji destekli ortamda matematiksel modellemede modelin doğrulanmasındaki yaklaşımların ve düşünme süreçlerinin kavramsallaştırılması. Educational Sciences: Theory and Practice. 13(4), 2487-2508.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2014). Matematiksel modellemede GeoGebra kullanımı: Boy-ayak uzunluğu problemi. Pamukkale Üniversitesi, Eğitim Fakültesi Dergisi, 36 (2), 29-44.
  • Hıdıroğlu, Ç. N. & Bukova Güzel, E. (2015). Teknoloji destekli ortamda matematiksel modellemede ortaya çıkan üst bilişsel yapılar. Turkish Journal of Computer and Mathematics Education, 6(2), 179-208.
  • Hıdıroğlu, Ç. N. (2015). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analizi: Bilişsel ve üst bilişsel yapılar üzerine bir açıklama. Doktora tezi, Dokuz Eylül Üniversitesi, İzmir.
  • Jacobs, J. E. & Paris, S.G. (1987). Children’s metacognition about reading: Issues in definition, measurement, and instruction. Educational Psychologist, 22, 255-278.
  • Kaiser, G. (2005). Introduction to the working group “Applications and modelling”. CERME4 Proceedings, pp. 1611-1622.
  • Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik. 38(3), 302-310.
  • Leiß, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modeling-Task analyses, student competencies, and teacher interventions. Journal für Mathematikdidaktik, 31(1), 119-141.
  • Lesh, R. & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching. Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R. & Zawojewski, J. (2007). Problem solving and modeling. In Lester, F. K. (Ed.), Second handbook of research on mathematics teaching and learning. 2nd ed. City, ST: Information Age Publishers, Inc.
  • Lingefjärd, T. (2000). Mathematical modeling by prospective teachers using technology. Electronically published doctoral dissertation, University of Georgia. http://ma-serv.did.gu.se/matematik/thomas.htm adresinden 28.11.2010 tarihinde alınmıştır.
  • Lucangeli, D. & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition, 3 (2), 121-139.
  • Maaß, K. (2006) What are Modelling Competencies? Zentralblatt für Didaktik der Mathematik. 38 (2),113-142.
  • Magiera, M. T. & Zawojewski, J. (2011). Characterizations of social-based and self-based contexts associated with students’ awareness, evaluation, and regulation of their thinking during small-group mathematical modeling. Journal for Research in Mathematics Education, 42(5), 486-520.
  • Matos, J. & Carreira, S. (1995). Cognitive processes and representations involved in applied problem solving. In: Sloyer, C.; Blum, W.; Huntley, I. (Eds.). Advances and Perspectives in the Teaching of Mathematical Modeling and Applications (ICTMA 6). Yorklyn: Water Street Mathematics, 71-80.
  • Matos, J. & Carreira, S. (1997). The quest for meaning in students’ mathematical modeling. In: Houston, Ken; Blum, Werner; Huntley, Ian; Neill, N. (Eds.). Teaching and Learning Mathematical Modeling (ICTMA 7). Chichester: Horwood Publishing, 63-75.
  • Miles, H. B. & Huberman, A.M. (1994). Qualitative data analysis. 2. Baskı, Thousand Oaks, CA: Sage.
  • Milli Eğitim Bakanlığı [MEB], (2013). Ortaöğretim 9-12 matematik dersi öğretim programı. Ankara: MEB Basımevi.
  • Peter Koop, A. (2004). Fermi problems in primary mathematics classrooms: pupils’ interactive modelling processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville, Queensland: MERGA.
  • Pressley, M. & McCormick, C. (1995). Advanced educational psychology for educators, researchers, and policymakers. New York: HarperCollins.
  • Saeki, A. & Matsuzaki, A. (2011). Dual modelling cycle framework for responding to the diversities of modellers. Proceedings of ICTMA15, CD-ROM (7pages). Melbourne, Australia: Australia Catholic University.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (s. 334– 370). Macmillan: New York.
  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science. 26,113-125.
  • Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychological Review. 7: 351–371.
  • Schunk, D. H. (2013). Learning theories: An educational perspective. 6th edition. Harlow: Pearson.
  • Shahbari, J., Daher, W. & Raslan, S. (2014). Mathematical knowledge and the cognitive and metacognitive processes emerged in model-eliciting activities. International Journal of New Trends in Education and Their Implications, 5 (2), 209-2019.
  • Stemler, L. K. (1997). Educational characteristics of multimedia: A literature review. Journal of Educational and Hypermedia, 6(3/4), 339-359.
  • Stillman, G., Galbraith, P., Brown, J. & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. Mathematics: Essential Research, Essential Practice. 2, 688- 697.
  • Treilibs, V., Burkhardt, H. & Low, B. (1980). Formulation processes in mathematical modelling. Nottingham: University of Nottingham Shell Centre for Mathematical Education.
  • Türk Dil Kurumu [TDK], (2015). Büyük Türkçe Sözlük. http://tdk.gov.tr/ adresinden 29.1.2015 tarihinde alınmıştır.
  • Wilburne, J. M. (1997). The effect of teaching metacognitive strategies to preservice elementary school teachers on their mathematical problem solving achievement and attitude. Doctoral Thesis. Temple University, Philadelphia.
  • Yin, R. (2008). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage.
  • Zawojewski, J. S., Lesh, R., & English, L. D. (2003). A models and modelling perspective on the role of small group learning. In R. A. Lesh & H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching. (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum.
There are 55 citations in total.

Details

Journal Section Makaleler
Authors

Çağlar Naci Hıdıroğlu This is me

Esra Bukova Güzel

Publication Date June 26, 2016
Submission Date June 27, 2016
Published in Issue Year 2016 Volume: 10 Issue: 1

Cite

APA Hıdıroğlu, Ç. N., & Bukova Güzel, E. (2016). Teknoloji Destekli Ortamda Matematiksel Modelleme Sürecindeki Bilişsel ve Üst Bilişsel Eylemler Arasındaki Geçişler. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 10(1). https://doi.org/10.17522/nefefmed.15854