Research Article
BibTex RIS Cite

Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola

Year 2019, Volume: 59 Issue: 3, 59 - 69, 30.09.2019
https://doi.org/10.16955/bitkorb.597214

Abstract



Pseudomonas syringae pv.
phaseolicola
(Psp) is a
seed-borne bacterium which causes halo blight disease in common bean. This
study aimed the determination of plant growth-promoting traits (such as IAA,
phosphate solubilization) and antagonistic potentials (such as siderophore and ammonia
productions) of endophytic plant growth-promoting bacteria (PGPB) from healthy
bean plants growing in different regions against Psp in vitro conditions. A total of 131 bacteria were primarily
characterized as putative PGPB and tested for antagonist activity against Psp in dual culture tests. Seventy-one
bacterial isolates demonstrated antagonistic activities against Psp isolate in varying ratios. Among
these 71 isolates, 30 representative bacterial isolates from the different
regions/fields were selected. On the basis of morphological, physiological,
biochemical characteristics and confirmation by MALDI-TOF analyses, 30
endophytic antagonist isolates were identified as belonging to 10 genera, 24
different species. According to results obtained, 10 isolates belong to Bacillus spp., 6 isolates belong to Pseudomonas spp., 4 isolates belong to Rhizobium radiobacter, 2 isolates belong
to Arthrobacter spp., 2 isolates
belong to Achromobacter spanius, 2 isolates belong to Serratia liquefaciens, 1 isolate belongs to Acinetobacter calcoaceticus, Exiguobacterium sp., Microbacterium hydrocarbonoxydans, and Ochrobactrum anthropi. The largest and
lowest inhibition zone was produced by endophytic bacterial isolates Pseudomonas gessardii (4.85) and Bacillus licheniformis (1.35). Among the
tested antagonist bacterial isolates, 10 isolates were positive for the
production of α-amylase, 7 isolates positive for phosphate solubilization, 29
isolates positive for siderophore production, 11 isolates positive for protease
production. All selected bacterial isolates produced IAA and ammonia in
relatively varying amounts. P. gessardii
produced a relatively large amount of extracellular siderophore (5.83), Exiguobacterium sp. produced a
relatively large amount of extracellular protease (5.25), P. gessardii and O. anthropi
produced a relatively large amount of extracellular IAA (161.39 µg/ml) and Acinetobacter calcoaceticus produced a
relatively large amount of phosphatase (2.63). This is the first study reporting
bean plants harbor endophytes having plant growth promoting activities with
antagonistic potential against Psp.







Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü

Project Number

TAGEM-BS-15/09-03/02-07

Thanks

This study was supported by TAGEM under the project name TAGEM-BS-15/09-03/02-07.

References

  • Barghouthi S., Salman M., 2010. Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua radical elongation. Biocontrol Science and Technology, 20 (4), 423-435.
  • Barrows-Broaddus J., Dwinell L.D., Kerr T.J., 1985. Evaluation of Arthrobacter sp. for biological control of the pitch canker fungus (Fusarium moniliforme var. subglutinans) on slash pines. Canadian Journal of Microbiology, 31 (10), 888-892.
  • Bastas K., Sahin F., 2016. Evaluation of seedborne bacterial pathogens on common bean cultivars grown in central Anatolia region, Turkey. European Journal of Plant Pathology, 147, 239–253.
  • Batool F., Rehman Y., Hasnain S., 2016. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science, 9, 313-322.
  • Beer S.V., RundleJ.R., Norelli J.L., 1984. Recent progress in the development of biological control of fire blight—a review. Acta Hort, 151,195–201.
  • Benlioglu K., Ozakman M., 1993. Evaluation of two serological methods for the identification of halo blight pathogen (Pseudomonas savastanoi pv. phaseolicola) of beans. Journal of Turkish Phytopathology, 22, 75–84.
  • Berg G.,Hallmann J., 2006. Control of Plant Pathogenic Fungi with Bacterial Endophytes. In: Schulz, B.J.E., Boyle, C.J.C. and Sieber, T.N., Eds., Microbial Root Endophytes, Springer, Berlin, 53-69.
  • Bozkurt I.A., Soylu S., 2001. Farklı fasulye çeşitlerinin fasulye hale yanıklığı etmeni P.s. pv. phaseolicola ırklarına karşı gösterdiği reaksiyonların belirlenmesi. Türkiye IX. Fitopatoloji Kongresi, 3–8 Eylul, Tekirdağ, p 506–514.
  • Bozkurt, İ.A., Soylu S., 2011. Determination of responses of different bean cultivars against races of Pseudomonas syringae pv. phaseolicola, causal agent of halo blight of bean. Euphytica, 179, 417-425.
  • Bozkurt, İ.A., Soylu, S., 2016. Determination of effects of Plant Growth Promoting Rhizobacteria (PGPR) on seed germination and shoot growth of parsley (Petroselinum crispum L.). Turkey 6th Plant Protection Congress with International Participation 5-8 September 2016, Konya, TURKEY, p. 149.
  • Cappuccino J.C., Sherman N., 1992. In: Microbiology: A laboratory Manual, third ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Compant S., Clément C, Sessitsch A., 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry. 42, 669–678.
  • Deinema M.H., van Loosdrecht M., Scholten A., 1985. Some Physiological Characteristics of Acinetobacter spp. Accumulating Large Amounts of Phosphate. Water Science & Technology, 17, 119-125.
  • Dilfuza E., 2011. Comparative study of antagonistic activity of scots pine root associated mycorrhizal fungus-bacteria and wheat associated bacteria against plant pathogenic fungi. Iğdır University Journal of Instituon Science & Technology 1(2), 57-60.
  • Dilfuza E., Dilfuza J., Hashemb A., 2015. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences 22, 773–779
  • Dobbelaere S., Vanderleyden J., Okon Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Critical Reviews in Plant Sciences, 22, 107–149. Donmez M.F., 2004. Determination of resistance against bacterial pathogens in various bean genotypes (Phaseolus vulgaris L.) grown in the provinces of Erzurum and Erzincan. Ataturk University (Ph.D. Thesis) p 178.
  • Dowling D.N., O’Gara F., 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnol, 12, 133–141.
  • Döbereiner J., 1992. History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis, 13, 1–13.
  • FAO 2017. http://www.fao.org (Erişim tarihi: 01.06.2018).
  • El-Goorani M.A., Beer S.V., 1991. Antibiotic production by strains of Erwinia herbicola and their interaction with Erwinia amylovora in immature pear fruits. Phytopathology, 81,121.
  • El-Sayed W.S., Akhkha A., El-Naggar M.Y., Elbadry M., 2014. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology 5, Article 651.
  • Gamal-Eldin H., Elbadry M., Mahfouz S., Abdelaziz, S., 2008. Screening of fluorescent pseudomonad bacteria isolated from rhizospheres of cultivated and wild plants in vitro for plant growth promoting traits. Journal of Agricultural Science, 33, 3365–3383.
  • Gibbins L.N., 1978. Erwinia herbicola: a review and perspective. Proceedings International Conference Plant Pathogy Bacteriology 4th Anger 2, 403–431.
  • Glick B.R., 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology., 41, 109–117.
  • Glick B.R., Cheng Z., Czarny J., Duan J., 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology.,119, 329–39.
  • Glickmann E., Dessaux Y., 1995. A Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61 (2), 793–796.
  • Kang S.M., Joo G.J., Hamayun M., Na C.I., Shin D.H., Kim Y.K., Hong J.K., Lee I.J., 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters., 31, 277-281.
  • Kara, M., Soylu, E.M., Kurt, Ş., Soylu, S. 2016. Determination of antagonistic efficiency of endophytic bacteria against gray mold disease agent Botrytis cinerea in vitro conditions. Turkey 6th Plant Protection Congress with International Participation, 5-8 September 2016 Konya, TURKEY, p. 156.
  • Kumar P., Dubey R.C.,Maheshwari D.K., 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493–499.
  • Leben C., Rusch V., Schmitthenner A.F., 1968. The colonization of soybean buds by Pseudomonas glycinea and other bacteria. Phytopathology, 58,1677–1681.
  • Leben,C., Miller T.D.,1973. A pathogenic pseudomonad from healthy field-grown soybean plants. Phytopathology, 63,1464–1467.
  • Leisinger T., Margraff R., 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol Reviews, 43, 422–442.
  • LelliottR.A., Stead D.E., 1987. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell, Oxford, UK.
  • Lindow S.E., Arny D.C., Upper C.D., 1983. Biological control of frost injury: an isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria. Phytopathology, 73, 1097–1102.
  • Lodewyckx C., Vangronsveld J., Porteous F., Moore E.R.B., Taghavi S., Mezgeay M., van der Lelie. D., 2002. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21, 583–606.
  • Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, ThomasC., Ongena M., 2014. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Research in Microbiology, 165, 695-704.
  • Morrisey R. F., Dugan E. P., Koths J. S., 1976. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biology and Biochemistry, 8, 23–28.
  • Narula S., Anand R.C., Dudeja S.S., 2013. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. Journal of Food Legumes 26, 73-79.
  • Ojiambo P.S., Scherm H., 2006. Biological and application-oriented factors influencing plant disease suppression by biological control: A meta-analytical review. Phytopathology, 96, 1168-1174.
  • Patten C.L., Glick B.R., 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied Environmental Microbiology. 68, 3795–3801.
  • Pavlovic M., Konrad R., Iwobi A.N., Sing A., Busch U., Huber I., 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328, 46–53.
  • Perneel M., Heyrman J., Adiobo A., De Maeyer K., Raaijmakers J. M., De Vos P., Höfte M., 2007. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103 (4), 1007-1020.
  • Podile A.R., Kishore G.K., 2006. Plant growth-promoting rhizobacteria. In: Gnanamanickam SS, editor. Plant-Associated Bacteria. Springer; Netherlands: pp. 195–230.
  • Reinhold-Hurek B., Hurek T., 2011. Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14, 435-443.
  • Saettler A.W., StadtS.J., Pontius L.T., 1981. Effects of inoculation time and cultivar on internal infection of bean seed by P. s. pv. phaseolicola. Journal of Seed Technology, 6, 23–30. Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda Mdel C., Glick B.R., 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99.
  • SchaadN.W., Jones J.B., Lacy G.H., 2001. Laboratory guide for identification of plant pathogenic bacteria, Third Edition, 131.
  • SchippersA., BoseckerK., Spröer C., Schumann P., 2005. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. International Journal of Systematic and Evolutionary Microbiology, 55, 655-660.
  • Schwartz H.F., Galvez G.E., 1981. Bean production and Pest Constrains in Latin America. In H. F. Schwartz & G. E. Galvez (Eds.), Bean production problems in tropics Cali, Colombia: International Center for Tropical Agriculture pp. 3–14.
  • Schwyn B., Neilands J.B., 1987. Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
  • Soylu, S., Kara, M., Üremiş, İ., Kurt, Ş., Soylu, E.M., Uysal, A., 2018. Determination of plant growth promoting traits of bacterial endophytes isolated and identified from invasive plant water Hyacinth eichhornia crassipes in Orontes river of Turkey. 1. International Mediterranean Symposium, 01-03 November 2018, Mersin/Turkey. pp 349-350.
  • Sülü, S.M., Bozkurt, İ.A., Soylu, S. 2016. Bitki Büyüme Düzenleyici ve Biyolojik Mücadele Etmeni Olarak Bakteriyel Endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21, 103-111.
  • Taylor J.D., Dudley C.L., Presly L., 1979. Studies of halo-blight seed infection and disease transmission in dwarf beans. Annals of Applied Biology, 93, 267-277.
  • WangX., Mavrodi D.V., Ke L., Mavrodi O.V., Yang M., Thomashow L.S., ZhengN., Weller D.M., Zhang J., 2015. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microbiology & Biotechnology. 8, 404-18.
  • Webster D.M., Atkin J.D., Cross J.E., 1983. Bacterial blights of snap beans and their control. Plant Disease, 67, 935-940.
  • Vacheron J., Desbrosses G., Bouffaud M.-L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C.,2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.
  • Völksch B, Ullrich M., FritscheW., 1992. Identification and population dynamics of bacteria in leaf spots of soybean. Microbial Ecology, 24, 305–311.
  • Völksch B., Ullrich M., Fritsche W., 1993. Occurrence of antimicrobial activities of bacteria from soybean leaf spots. J. Basic Microbiology, 33, 349–355.

Fasulye bitkisinden elde edilen endofit bakterilerin bitki gelişimini teşvik edici ve antagonistik özelliklerinin Pseudomonas syringae pv. phaseolicola etmenine karşı karekterizasyonu

Year 2019, Volume: 59 Issue: 3, 59 - 69, 30.09.2019
https://doi.org/10.16955/bitkorb.597214

Abstract



Pseudomonas
syringae
pv. phaseolicola (Psp)
fasulye bitkisinde Hale yanıklığı hastalığına sebep olan tohum kökenli bir
bakteriyel hastalık etmenidir. Bu çalışmanın amacı, farklı bölgelerde yetişen
sağlıklı fasulye bitkilerinden izole edilen endofitik bitki gelişimini teşvik
eden bakterilerin (PGPB) Psp üzerine antagonistik
(siderofor ve amonyak üretimi gibi) ve bitki gelişimini teşvik eden mekanizmalarının
(IAA üretimi, fosfatı indirgeme özelliği gibi) in vitro koşullarda karakterizasyonudur. Araştırma sonunda elde
edilen 131 PGPB arasında 71 izolat Psp
etmenine karşı değişen oranlarda engelleme zonu oluşturmuş olup, bu izolatları
temsilen 30 izolatın teşhisleri, antagonistik ve bitki gelişimini teşvik eden mekanizmaları
araştırılmıştır. Morfolojik, fizyolojik, biyokimyasal ve MALDI-TOF analizler,
elde edilen izolatların 10 cins 24 farklı türe ait olduğunu göstermiştir. Bu
izolatlar arasında 10 izolat Bacillus spp.,
6 izolat Pseudomonas spp., 4 izolat Rhizobium radiobacter, 2 izolat Arthrobacter spp., 2 izolat Achromobacter spanius, 2 izolat Serratia liquefaciens, 1’er izolat Acinetobacter calcoaceticus, Exiguobacterium sp., Microbacterium hydrocarbonoxydans
ve Ochrobactrum anthropi olarak
teşhis edilmiştir. Psp’ye karşı en yüksek
engelleme zonu Pseudomonas gessardii
(4.85) izolatı tarafından, en düşük engelleme zonu ise Bacillus licheniformis (1.35) tarafından oluşturulmuştur. Test
edilen izolatlardan 10 izolat α-amylase pozitif, 7 izolat fosfataz pozitif, 29
izolat siderofor üretmiş, 11 izolat proteaz pozitif bulunmuştur. Tüm izolatlar
IAA ve amonyak üretimi açısından değişken değerlerde pozitif bulunmuştur. En
yüksek siderofor üretimi P. gessardii
(5.83 indeks değeri), en yüksek protease üretimi Exiguobacterium sp. (5.25 indeks değeri), en yüksek IAA üretimi P. gessardii ve O. anthropi izolatları (161.39 µg/ml), en yüksek fosfor çözme
kapasitesi Acinetobacter calcoaceticus
izolatı (2.63 indeks değeri) tarafından gösterilmiştir. Bu çalışma ile ilk kez fasulye
bitkisinde bitki gelişimini teşvik eden ve Psp’ye
antagonistik etkiye sahip endofit bakteriler elde edilmiştir.




Project Number

TAGEM-BS-15/09-03/02-07

References

  • Barghouthi S., Salman M., 2010. Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua radical elongation. Biocontrol Science and Technology, 20 (4), 423-435.
  • Barrows-Broaddus J., Dwinell L.D., Kerr T.J., 1985. Evaluation of Arthrobacter sp. for biological control of the pitch canker fungus (Fusarium moniliforme var. subglutinans) on slash pines. Canadian Journal of Microbiology, 31 (10), 888-892.
  • Bastas K., Sahin F., 2016. Evaluation of seedborne bacterial pathogens on common bean cultivars grown in central Anatolia region, Turkey. European Journal of Plant Pathology, 147, 239–253.
  • Batool F., Rehman Y., Hasnain S., 2016. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science, 9, 313-322.
  • Beer S.V., RundleJ.R., Norelli J.L., 1984. Recent progress in the development of biological control of fire blight—a review. Acta Hort, 151,195–201.
  • Benlioglu K., Ozakman M., 1993. Evaluation of two serological methods for the identification of halo blight pathogen (Pseudomonas savastanoi pv. phaseolicola) of beans. Journal of Turkish Phytopathology, 22, 75–84.
  • Berg G.,Hallmann J., 2006. Control of Plant Pathogenic Fungi with Bacterial Endophytes. In: Schulz, B.J.E., Boyle, C.J.C. and Sieber, T.N., Eds., Microbial Root Endophytes, Springer, Berlin, 53-69.
  • Bozkurt I.A., Soylu S., 2001. Farklı fasulye çeşitlerinin fasulye hale yanıklığı etmeni P.s. pv. phaseolicola ırklarına karşı gösterdiği reaksiyonların belirlenmesi. Türkiye IX. Fitopatoloji Kongresi, 3–8 Eylul, Tekirdağ, p 506–514.
  • Bozkurt, İ.A., Soylu S., 2011. Determination of responses of different bean cultivars against races of Pseudomonas syringae pv. phaseolicola, causal agent of halo blight of bean. Euphytica, 179, 417-425.
  • Bozkurt, İ.A., Soylu, S., 2016. Determination of effects of Plant Growth Promoting Rhizobacteria (PGPR) on seed germination and shoot growth of parsley (Petroselinum crispum L.). Turkey 6th Plant Protection Congress with International Participation 5-8 September 2016, Konya, TURKEY, p. 149.
  • Cappuccino J.C., Sherman N., 1992. In: Microbiology: A laboratory Manual, third ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Compant S., Clément C, Sessitsch A., 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry. 42, 669–678.
  • Deinema M.H., van Loosdrecht M., Scholten A., 1985. Some Physiological Characteristics of Acinetobacter spp. Accumulating Large Amounts of Phosphate. Water Science & Technology, 17, 119-125.
  • Dilfuza E., 2011. Comparative study of antagonistic activity of scots pine root associated mycorrhizal fungus-bacteria and wheat associated bacteria against plant pathogenic fungi. Iğdır University Journal of Instituon Science & Technology 1(2), 57-60.
  • Dilfuza E., Dilfuza J., Hashemb A., 2015. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences 22, 773–779
  • Dobbelaere S., Vanderleyden J., Okon Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Critical Reviews in Plant Sciences, 22, 107–149. Donmez M.F., 2004. Determination of resistance against bacterial pathogens in various bean genotypes (Phaseolus vulgaris L.) grown in the provinces of Erzurum and Erzincan. Ataturk University (Ph.D. Thesis) p 178.
  • Dowling D.N., O’Gara F., 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnol, 12, 133–141.
  • Döbereiner J., 1992. History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis, 13, 1–13.
  • FAO 2017. http://www.fao.org (Erişim tarihi: 01.06.2018).
  • El-Goorani M.A., Beer S.V., 1991. Antibiotic production by strains of Erwinia herbicola and their interaction with Erwinia amylovora in immature pear fruits. Phytopathology, 81,121.
  • El-Sayed W.S., Akhkha A., El-Naggar M.Y., Elbadry M., 2014. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology 5, Article 651.
  • Gamal-Eldin H., Elbadry M., Mahfouz S., Abdelaziz, S., 2008. Screening of fluorescent pseudomonad bacteria isolated from rhizospheres of cultivated and wild plants in vitro for plant growth promoting traits. Journal of Agricultural Science, 33, 3365–3383.
  • Gibbins L.N., 1978. Erwinia herbicola: a review and perspective. Proceedings International Conference Plant Pathogy Bacteriology 4th Anger 2, 403–431.
  • Glick B.R., 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology., 41, 109–117.
  • Glick B.R., Cheng Z., Czarny J., Duan J., 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology.,119, 329–39.
  • Glickmann E., Dessaux Y., 1995. A Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61 (2), 793–796.
  • Kang S.M., Joo G.J., Hamayun M., Na C.I., Shin D.H., Kim Y.K., Hong J.K., Lee I.J., 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters., 31, 277-281.
  • Kara, M., Soylu, E.M., Kurt, Ş., Soylu, S. 2016. Determination of antagonistic efficiency of endophytic bacteria against gray mold disease agent Botrytis cinerea in vitro conditions. Turkey 6th Plant Protection Congress with International Participation, 5-8 September 2016 Konya, TURKEY, p. 156.
  • Kumar P., Dubey R.C.,Maheshwari D.K., 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493–499.
  • Leben C., Rusch V., Schmitthenner A.F., 1968. The colonization of soybean buds by Pseudomonas glycinea and other bacteria. Phytopathology, 58,1677–1681.
  • Leben,C., Miller T.D.,1973. A pathogenic pseudomonad from healthy field-grown soybean plants. Phytopathology, 63,1464–1467.
  • Leisinger T., Margraff R., 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol Reviews, 43, 422–442.
  • LelliottR.A., Stead D.E., 1987. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell, Oxford, UK.
  • Lindow S.E., Arny D.C., Upper C.D., 1983. Biological control of frost injury: an isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria. Phytopathology, 73, 1097–1102.
  • Lodewyckx C., Vangronsveld J., Porteous F., Moore E.R.B., Taghavi S., Mezgeay M., van der Lelie. D., 2002. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21, 583–606.
  • Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, ThomasC., Ongena M., 2014. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Research in Microbiology, 165, 695-704.
  • Morrisey R. F., Dugan E. P., Koths J. S., 1976. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biology and Biochemistry, 8, 23–28.
  • Narula S., Anand R.C., Dudeja S.S., 2013. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. Journal of Food Legumes 26, 73-79.
  • Ojiambo P.S., Scherm H., 2006. Biological and application-oriented factors influencing plant disease suppression by biological control: A meta-analytical review. Phytopathology, 96, 1168-1174.
  • Patten C.L., Glick B.R., 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied Environmental Microbiology. 68, 3795–3801.
  • Pavlovic M., Konrad R., Iwobi A.N., Sing A., Busch U., Huber I., 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328, 46–53.
  • Perneel M., Heyrman J., Adiobo A., De Maeyer K., Raaijmakers J. M., De Vos P., Höfte M., 2007. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103 (4), 1007-1020.
  • Podile A.R., Kishore G.K., 2006. Plant growth-promoting rhizobacteria. In: Gnanamanickam SS, editor. Plant-Associated Bacteria. Springer; Netherlands: pp. 195–230.
  • Reinhold-Hurek B., Hurek T., 2011. Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14, 435-443.
  • Saettler A.W., StadtS.J., Pontius L.T., 1981. Effects of inoculation time and cultivar on internal infection of bean seed by P. s. pv. phaseolicola. Journal of Seed Technology, 6, 23–30. Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda Mdel C., Glick B.R., 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99.
  • SchaadN.W., Jones J.B., Lacy G.H., 2001. Laboratory guide for identification of plant pathogenic bacteria, Third Edition, 131.
  • SchippersA., BoseckerK., Spröer C., Schumann P., 2005. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. International Journal of Systematic and Evolutionary Microbiology, 55, 655-660.
  • Schwartz H.F., Galvez G.E., 1981. Bean production and Pest Constrains in Latin America. In H. F. Schwartz & G. E. Galvez (Eds.), Bean production problems in tropics Cali, Colombia: International Center for Tropical Agriculture pp. 3–14.
  • Schwyn B., Neilands J.B., 1987. Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
  • Soylu, S., Kara, M., Üremiş, İ., Kurt, Ş., Soylu, E.M., Uysal, A., 2018. Determination of plant growth promoting traits of bacterial endophytes isolated and identified from invasive plant water Hyacinth eichhornia crassipes in Orontes river of Turkey. 1. International Mediterranean Symposium, 01-03 November 2018, Mersin/Turkey. pp 349-350.
  • Sülü, S.M., Bozkurt, İ.A., Soylu, S. 2016. Bitki Büyüme Düzenleyici ve Biyolojik Mücadele Etmeni Olarak Bakteriyel Endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21, 103-111.
  • Taylor J.D., Dudley C.L., Presly L., 1979. Studies of halo-blight seed infection and disease transmission in dwarf beans. Annals of Applied Biology, 93, 267-277.
  • WangX., Mavrodi D.V., Ke L., Mavrodi O.V., Yang M., Thomashow L.S., ZhengN., Weller D.M., Zhang J., 2015. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microbiology & Biotechnology. 8, 404-18.
  • Webster D.M., Atkin J.D., Cross J.E., 1983. Bacterial blights of snap beans and their control. Plant Disease, 67, 935-940.
  • Vacheron J., Desbrosses G., Bouffaud M.-L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C.,2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.
  • Völksch B, Ullrich M., FritscheW., 1992. Identification and population dynamics of bacteria in leaf spots of soybean. Microbial Ecology, 24, 305–311.
  • Völksch B., Ullrich M., Fritsche W., 1993. Occurrence of antimicrobial activities of bacteria from soybean leaf spots. J. Basic Microbiology, 33, 349–355.
There are 57 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Kamil Duman

Soner Soylu

Project Number TAGEM-BS-15/09-03/02-07
Publication Date September 30, 2019
Submission Date July 26, 2019
Acceptance Date September 2, 2019
Published in Issue Year 2019 Volume: 59 Issue: 3

Cite

APA Duman, K., & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin, 59(3), 59-69. https://doi.org/10.16955/bitkorb.597214
AMA Duman K, Soylu S. Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin. September 2019;59(3):59-69. doi:10.16955/bitkorb.597214
Chicago Duman, Kamil, and Soner Soylu. “Characterization of Plant Growth-Promoting Traits and Antagonistic Potentials of Endophytic Bacteria from Bean Plants Against Pseudomonas Syringae Pv. Phaseolicola”. Plant Protection Bulletin 59, no. 3 (September 2019): 59-69. https://doi.org/10.16955/bitkorb.597214.
EndNote Duman K, Soylu S (September 1, 2019) Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin 59 3 59–69.
IEEE K. Duman and S. Soylu, “Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola”, Plant Protection Bulletin, vol. 59, no. 3, pp. 59–69, 2019, doi: 10.16955/bitkorb.597214.
ISNAD Duman, Kamil - Soylu, Soner. “Characterization of Plant Growth-Promoting Traits and Antagonistic Potentials of Endophytic Bacteria from Bean Plants Against Pseudomonas Syringae Pv. Phaseolicola”. Plant Protection Bulletin 59/3 (September 2019), 59-69. https://doi.org/10.16955/bitkorb.597214.
JAMA Duman K, Soylu S. Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin. 2019;59:59–69.
MLA Duman, Kamil and Soner Soylu. “Characterization of Plant Growth-Promoting Traits and Antagonistic Potentials of Endophytic Bacteria from Bean Plants Against Pseudomonas Syringae Pv. Phaseolicola”. Plant Protection Bulletin, vol. 59, no. 3, 2019, pp. 59-69, doi:10.16955/bitkorb.597214.
Vancouver Duman K, Soylu S. Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Plant Protection Bulletin. 2019;59(3):59-6.

Cited By













136481365013649