Balance With a Two-Legged Robot With Artificial Neural Network Support
Year 2019,
, 143 - 157, 12.03.2019
Ahmet Burak Tatar
,
Beyda Taşar
,
Alper Kadir Tanyıldızı
Abstract
Robots
are usually designed by inspiration from living creatures in the nature. It is
inspired by the behaviors of 4 legged animals in the nature and various
characteristics are given to robots. Many animals with four legs have the
ability to walk and even walk new-born. The physiological developments of these
creatures are completed in the mother’s womb and soon after birth, bone and leg
muscle groups are available. It is a well-known fact that living beings can
stay in balance by standing up to their legs after birth and carry out their
neurological signals to the muscles of the legs. In this study, we have studied
the robot kinematics and dynamics of 2-legged robot which resembles a 4-legged
robot in the light of this study, and the robotic ability of the robot to stand
on the ground with an artificial neural network(ANN) support. For the dynamic
motion, the planar model of the robot is considered and 7-axis motion equations
are obtained. The aim of the robot is to be able to stand up from the ground
and stay in balance and it is aimed to be realized with the use of an artificial
neural network structure as learning result. Conventional PID control method
has been used for control signals that should be applied to robot joints.
System responses were obtained graphically and the results were evaluated.
References
- Todd, D, J., Walking machines, an introduction to legged robots, Koran Page, London, 1985.
- Raibert, M, H., Legged robots that balance, MIT Press, Cambridge, M.A., 1986.
- Fitzgerald, D., Hunt, T., Leiro, A., HydroDog; A quadruped robot actuated by soft fluidic muscles, Worcester Polytechnic Institute Worcester, Massachusetts, USA, 2015, pp. 12.
- Agarwal, S., Mahapatra, A., Roy, S, S., Dynamics and optimal feet force distributions of a realistic four-legged robot, International Journal of Robotics and Automation(IJRA), 2012, pp. 223.
- Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and the BigDog Team., BigDog the rough-terrain quadruped robot, Proceedings of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, 2008, pp. 10822.
- Denavit, J., Hartenberg, R, S., A kinematic for lower-pair mechanisms based on matrices, ASME Jappl. Mechan., 1955, pp. 215-221.
- Zhang, D., Gao, Z., Forward kinematics, performance analysis, and multi-objective optimization of a bio-inspired parallel manipulator, Robotics and Computer-Integrated Manufacturing, 2012, pp.484-492.
- Nahangi, M., Yeung, J., Haas, C, T., Walbridge, S., West, J., Automated assembly discrepancy feedback using 3D imaging and forward kinematics, Automation in Construction, 2015, pp.36-46.
- Schilling, J, R., Fundamentals of robotics analysis and control, Prentice-Hall of India Private Limited, New Delhi, 2003, pp.204-2019.
- Aström, K, J., Hägglund, T., PID controllers; theory, design and tunning, North Carolina: Instrument Society of America, 1995, pp.70.
- Aström, K, J., Hägglund, T., Advanced PID Control, North Carolina, ISA: Instrument Society of America, 2005.
- Wang, S, C., Interdisciplinary computing in java programming, Artif Neural Network, Part II, 2003, pp.81-100.
- Melingui, A., Escande, C., Benoudjit, N., Merzouki, R., Mbede, J, B., Qualitive approach for forward kinematic modeling of a compact bionic handling assistant trunk, The International Federation of Automatic Control, Cape Town, South Africa, 2014, pp. 9353-9358.
- Laboudi, Z., Chikhi, S., Comparison of genetic algorithm and quantum genetic algorithm, Int Arab J Inform Technol;9(3), 2012.
İki Bacaklı Bir Robotun Yapay Sinir Ağı Desteği İle Denge Sağlaması
Year 2019,
, 143 - 157, 12.03.2019
Ahmet Burak Tatar
,
Beyda Taşar
,
Alper Kadir Tanyıldızı
Abstract
Robotlar genellikle doğadaki canlılardan
esinlenerek tasarlanmaktadır. Özellikle eklem bacaklı robot çalışmalarında 4 bacaklı
robotlara çok geniş yer verilmektedir. Doğada 4 bacaklı hayvanların
davranışlarından esinlenerek robotlara çeşitli özellikler kazandırılmaktadır.
Dört bacaklı olan birçok hayvan doğar doğmaz ayağa kalkabilme ve hatta
yürüyebilme becerisine sahiptir. Bu canlıların fizyolojik gelişimleri anne
karnında tamamlanmakta ve doğduktan hemen sonra kemik ve bacak kas grupları
kullanılabilir duruma gelmektedir. Canlının doğduktan sonra ayağa kalkarak
dengede kalabilmesinin bacak kaslarına beyinden iletilen nörolojik sinyallerle
gerçekleştirildiği açıkça bilinen bir gerçektir. Bu bilgiler ışığında bu
çalışmada 4 bacaklı bir robotu andıran 2 bacaklı bir robotun düzlemsel
kinematiği ve dinamiği elde edilerek robotun ayakta dengede kalabilme
kabiliyetinin bir yapay sinir ağı desteği ile robota kazandırılması ele
alınmıştır. Dinamik hareket için robotun düzlemsel modeli ele alınmış ve 7
eksenli hareket denklemleri elde edilmiştir. Robotun yerden kalkarak ayakta
dengede kalabilmesi amaçlanmış ve bunun bir yapay sinir ağ yapısının kullanımı
ile öğrenme sonucunda gerçekleştirilebilmesi hedeflenmiştir. Robotun
eklemlerine uygulanması gereken kontrol sinyalleri için klasik PID kontrol
yöntemi kullanılmıştır. Sistem cevapları grafiksel olarak elde edilmiş ve
sonuçlar değerlendirilmiştir.
References
- Todd, D, J., Walking machines, an introduction to legged robots, Koran Page, London, 1985.
- Raibert, M, H., Legged robots that balance, MIT Press, Cambridge, M.A., 1986.
- Fitzgerald, D., Hunt, T., Leiro, A., HydroDog; A quadruped robot actuated by soft fluidic muscles, Worcester Polytechnic Institute Worcester, Massachusetts, USA, 2015, pp. 12.
- Agarwal, S., Mahapatra, A., Roy, S, S., Dynamics and optimal feet force distributions of a realistic four-legged robot, International Journal of Robotics and Automation(IJRA), 2012, pp. 223.
- Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and the BigDog Team., BigDog the rough-terrain quadruped robot, Proceedings of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, 2008, pp. 10822.
- Denavit, J., Hartenberg, R, S., A kinematic for lower-pair mechanisms based on matrices, ASME Jappl. Mechan., 1955, pp. 215-221.
- Zhang, D., Gao, Z., Forward kinematics, performance analysis, and multi-objective optimization of a bio-inspired parallel manipulator, Robotics and Computer-Integrated Manufacturing, 2012, pp.484-492.
- Nahangi, M., Yeung, J., Haas, C, T., Walbridge, S., West, J., Automated assembly discrepancy feedback using 3D imaging and forward kinematics, Automation in Construction, 2015, pp.36-46.
- Schilling, J, R., Fundamentals of robotics analysis and control, Prentice-Hall of India Private Limited, New Delhi, 2003, pp.204-2019.
- Aström, K, J., Hägglund, T., PID controllers; theory, design and tunning, North Carolina: Instrument Society of America, 1995, pp.70.
- Aström, K, J., Hägglund, T., Advanced PID Control, North Carolina, ISA: Instrument Society of America, 2005.
- Wang, S, C., Interdisciplinary computing in java programming, Artif Neural Network, Part II, 2003, pp.81-100.
- Melingui, A., Escande, C., Benoudjit, N., Merzouki, R., Mbede, J, B., Qualitive approach for forward kinematic modeling of a compact bionic handling assistant trunk, The International Federation of Automatic Control, Cape Town, South Africa, 2014, pp. 9353-9358.
- Laboudi, Z., Chikhi, S., Comparison of genetic algorithm and quantum genetic algorithm, Int Arab J Inform Technol;9(3), 2012.