Research Article
BibTex RIS Cite

Optimization of Welding Parameters of AISI 431 and AISI 1020 Joints Joined by Friction Welding Using Taguchi Method

Year 2022, Volume: 9 Issue: 1, 453 - 470, 30.06.2022
https://doi.org/10.35193/bseufbd.1075980

Abstract

Martensitic stainless steel AISI 431 and low carbon steel AISI 1020 are materials used together in many different industries. However, important problems are encountered when welding (fusion welding) these materials to each other. For this reason, friction welding process (Solid-state welding) is used to join these dissimilar metals. There are very few studies on joining these materials with friction welding. Therefore, the optimization of the welding parameters used in joining these dissimilar steel pairs with friction welding is of great important. In addition, the effects of the factors dependent on friction welding parameters need to be well understood. In this study, AISI 431 and AISI 1020 steel bars were successfully joined by friction welding, and the effects of welding parameters on tensile strength and axial shortening were investigated, and welding parameters were optimized using Taguchi method to obtain quality weld joints. The experimental results of the study showed that the highest tensile strength (573.32 MPa) of the joints was 54.53%, higher than the lowest tensile strength (370.99 MPa), the highest axial shortening (23.18 mm) was 650.16%, higher than the lowest axial shortening (3.09 mm). The optimal parameters for average axial shortening and average tensile strength were determined as A3B1C3 and A3B3C2; and the highest percentage contribution values for axial shortening and tensile strength were found to be 51.55% (rotating speed) and 63.90% (rotating speed); and R2 values for the average axial shortening and average tensile strengths were found to be 97% and 99.3%, respectively.

References

  • Althouse, A. D., Turnquist, C. H., Bowditch, W. A., Bowditch, K. E., & Bowditch, M. A. (2020). Modern welding. 12th ed. The Goodheart-Wilcox Company, Inc.
  • Kalpakjian, S., & Schmid, S. R. (2013). Manufacturing Engineering and Technology. Seventh ed. Pearson Prentice-Hall, Hoboken, NJ, USA.
  • Handa, A., & Chawla, V. (2013). Mechanical characterization of friction welded dissimilar steels at 1000rpm. Materials Engineering/Materialove Inzinierstvo, 20, 102-111.
  • Cary, H. B., & Helzer, S. C. (2005). Modern welding technology. 6th ed. Pearson Prentice-Hall, Upper Saddle River, New Jersey, Ohio, USA.
  • Kumar Rajak, D., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34, 2613-2637. https://doi.org/10.1080/01694243.2020.1780716.
  • Guo, J. (2015). Solid state welding processes in manufacturing. Springer, London, 569-592.
  • Rombaut, P. (2011) Joining of dissimilar materials through rotary friction welding. Mech. Constr. Prod.
  • Adin, M. Ş., & Okumuş, M. (2021). Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 Steels. Arabian Journal for Science and Engineering, 1-10.
  • Abass, M. H., Abood, A. N., Alali, M., Hussein, S. K., & Nawi, S. A. (2021). Mechanical Properties and Microstructure Evolution in Arc Stud Welding Joints of AISI 1020 with AISI 316L and AISI 304. Metallography, Microstructure, and Analysis, 1-13.
  • [Wu, W., Hu, S., & Shen, J. (2015). Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel. Materials & Design (1980-2015), 65, 855-861.
  • Singh, D. K., Sahoo, G., Basu, R., Sharma, V., & Mohtadi-Bonab, M. (2018). Investigation on the microstructure-mechanical property correlation in dissimilar steel welds of stainless steel SS 304 and medium carbon steel EN 8. Journal of Manufacturing Processes, 36, 281-292.
  • Kumar, D., Ramesh, M., & Kumar, A. (2021). Effect of variable thickness and service temperature of copper coating on the plane strain fracture toughness of AISI 1020 steel substrate and brittle to ductile transition temperature. Materials Today: Proceedings, 50, 2294-2298.
  • Çivi, C., & İren, E. (2021). The effect of welding on reliability of mechanical properties of AISI 1020 and AISI 6150 steel materials. Revista de Metalurgia, 57, e186.
  • Shukla, A., Joshi, V., & Shukla, B. (2018). Analysis of shielded metal arc welding parameter on depth of penetration on AISI 1020 plates using response surface methodology. Procedia manufacturing, 20, 239-246.
  • Rajasekhar, A. (2015). Heat treatment methods applied to AISI 431 martensitic stainless steels. International Journal of Scientific & Engineering Research, 6, 547-553.
  • Bloom, F. K. (1953). Effect of Heat Treatment and Related Factors on Straight-Chromium Stainless Steels. Corrosion, 9, 56-65.
  • Li, R-d., Li, J-l., Xiong, J-t., Zhang, F-s., Ke, Z., & Ji, C-z. (2012). Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process. Transactions of Nonferrous Metals Society of China, 22, 2665-2671.
  • Ren, F., Chen, F., Chen, J., & Tang, X. (2018). Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel. Journal of Manufacturing Processes, 31, 640-649.
  • Kimura, M., Iijima, T., Kusaka, M., Kaizu, K., & Fuji, A. (2016). Joining phenomena and tensile strength of friction welded joint between Ti–6Al–4V titanium alloy and low carbon steel. Journal of Manufacturing Processes, 24, 203-211.
  • Winiczenko, R. (2016). Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. The International Journal of Advanced Manufacturing Technology, 84, 941-955.
  • Kimura, M., Kasuya, K., Kusaka, M., Kaizu, K., & Fuji, A. (2009). Effect of friction welding condition on joining phenomena and joint strength of friction welded joint between brass and low carbon steel. Science and Technology of Welding and Joining, 14, 404-412.
  • Udayakumar, T., Raja, K., Husain, T. A., & Sathiya, P. (2014). Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints. Materials &Design, 53, 226-235. https://doi.org/10.1016/j.matdes.2013.07.002
  • Anitha, P., Majumder, M., Saravanan, V., & Rajakumar, S. (2018). Microstructural characterization and mechanical properties of friction-welded IN718 and SS410 dissimilar joint. Metallography, Microstructure, and Analysis, 7, 277-287.
  • Stalin, B., Ravichandran, M., Marichamy, S., Devi, T. C., Alagarsamy, S., & Dhinakaran, V. (2020). Friction welding parametric optimization of AISI 310L austenitic stainless steel weld joints-Grey relational investigation. in AIP Conference Proceedings, 2283(1), 020141.
  • Handa, A., & Chawla, V. (2014). Investigation of mechanical properties of friction-welded AISI 304 with AISI 1021 dissimilar steels. The International Journal of Advanced Manufacturing Technology, 75, 1493-1500.
  • Montgomery, D. C. (2017). Design and analysis of experiments. Ninth ed. John wiley & sons.
  • Taguchi G (1987). System of experimental design, quality resources. New York, USA.
  • Ramarao, M., King, M. F. L., Sivakumar, A., Manikandan, V., Vijayakumar, M., & Subbiah, R. (2021). Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach. Materials Today: Proceedings, 1-6.
  • Kishore, K., Krishna, P. G., Veladri, K., & Ali, S. Q. (2010). Analysis of defects in gas shielded arc welding of AISI1040 steel using Taguchi method. ARPN Journal of Engineering and Applied Sciences, 5, 37-41.
  • Pal, A. (2015). MIG welding parametric optimisation using taguchi's orthogonal array and analysis of variance. International Journal of Research Review in Engineering Science & Technology, 4, 211-217.
  • Javadi, Y., Sadeghi, S., & Najafabadi, M. A. (2014). Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding. Materials & Design, 55, 27-34.
  • Ross, P. J. (1996). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design.
  • ASTM (2008). ASTM-E8/E8M Standard Test Methods for Tension Testing of Metallic Materials. ASTM international, West Conshohocken, PA.
  • Gotawala, N., & Shrivastava, A. (2021). Investigation of interface microstructure and mechanical properties of rotatory friction welded dissimilar aluminum-steel joints. Materials Science and Engineering: A, 825, 141900.
  • Pandiarajan, S., Kumaran, S. S., Kumaraswamidhas, L. & Saravanan, R. (2016). Interfacial microstructure and optimization of friction welding by Taguchi and ANOVA method on SA 213 tube to SA 387 tube plate without backing block using an external tool. Journal of Alloys and Compounds, 654, 534-545.
  • Adin, M.Ş., & İşcan, B. (2022). Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method. European Mechanical Science, 6, 17-26.
  • Kam, M., İpekçi, A., & Argun, K. (2022). Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221078133
  • Tiwary, V. K., Padmakumar, A., & Malik, V. (2022). Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544062221089849
  • Kam, M. (2021). Effects of deep cryogenic treatment on machinability, hardness and microstructure in dry turning process of tempered steels. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(4), 927-936.
  • Gürbüz, H., & Gönülaçar, Y. E. (2021). Optimization and evaluation of dry and minimum quantity lubricating methods on machinability of AISI 4140 using Taguchi design and ANOVA. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235, 1211-1227.
  • Başar, G., & Mistikoğlu, S. (2019). Cu/Al levhaların sürtünme karıştırma kaynağında Taguchi metodu ile çekme mukavemeti ve sertlik için optimum kaynak parametrelerinin tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, 1595-1608.
  • Gürbüz, H., & Baday, Ş. (2019). CNC torna tezgâhlarında ayna ve punta basıncının yüzey pürüzlülüğü ve titreşim üzerine etkisinin Taguchi metodu ile optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 119-134.

Taguchi Yöntemi Kullanılarak Sürtünme Kaynağı ile Birleştirilen AISI 431 ve AISI 1020 Bağlantılarının Kaynak Parametrelerinin Optimizasyonu

Year 2022, Volume: 9 Issue: 1, 453 - 470, 30.06.2022
https://doi.org/10.35193/bseufbd.1075980

Abstract

Martensitik paslanmaz çelik AISI 431 ve düşük karbonlu çelik AISI 1020 birçok farklı endüstride birlikte kullanılan malzemelerdir. Ancak bu malzemeleri kaynak ederken (Fusion welding) önemli sorunlarla karşılaşılmaktadır. Bu nedenle, birbirine benzemeyen bu metalleri birleştirmek için sürtünme kaynağı işlemi (Solid-state welding) kullanılmaktadır. Bu malzemelerin sürtünme kaynağı ile birleştirilmesi konusunda çok az çalışma bulunmaktadır. Bu yüzden, birbirine benzemeyen bu çelik çiftlerinin sürtünme kaynağı ile birleştirilmesinde kullanılan kaynak parametrelerinin optimizasyonu büyük önem taşımaktadır. Ayrıca sürtünme kaynağı parametrelerine bağlı faktörlerin etkilerinin iyi anlaşılması gerekmektedir. Bu çalışmada, AISI 431 ve AISI 1020 çelik çubuklar sürtünme kaynağı ile başarılı bir şekilde birleştirilmiş, kaynak parametrelerinin çekme mukavemeti ve eksenel kısalma üzerindeki etkileri araştırılmış ve kaliteli kaynak bağlantıları elde etmek için Taguchi yöntemi kullanılarak kaynak parametreleri optimize edilmiştir. Çalışmanın deneysel sonuçları, bağlantıların en yüksek çekme dayanımının (573.32 MPa) %54.53, en düşük çekme dayanımından (370.99 MPa) daha yüksek olduğunu, en yüksek eksenel kısalmanın (23.18 mm) %650.16, en düşük eksenel kısalmadan (3,09 mm) daha yüksek olduğunu göstermiştir. Ortalama eksenel kısalma ve ortalama çekme mukavemeti için optimal parametreler A3B1C3 ve A3B3C2 olarak belirlendi; ve sırasıyla, eksenel kısalma ve çekme mukavemeti için en yüksek yüzde katkıdeğerleri %51.55 (dönme hızı) ve %63.90 (dönme hızı); ortalama eksenel kısalma ve ortalama çekme dayanımları için R2 değerleri %97 ve %99.3 olarak bulunmuştur.

References

  • Althouse, A. D., Turnquist, C. H., Bowditch, W. A., Bowditch, K. E., & Bowditch, M. A. (2020). Modern welding. 12th ed. The Goodheart-Wilcox Company, Inc.
  • Kalpakjian, S., & Schmid, S. R. (2013). Manufacturing Engineering and Technology. Seventh ed. Pearson Prentice-Hall, Hoboken, NJ, USA.
  • Handa, A., & Chawla, V. (2013). Mechanical characterization of friction welded dissimilar steels at 1000rpm. Materials Engineering/Materialove Inzinierstvo, 20, 102-111.
  • Cary, H. B., & Helzer, S. C. (2005). Modern welding technology. 6th ed. Pearson Prentice-Hall, Upper Saddle River, New Jersey, Ohio, USA.
  • Kumar Rajak, D., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34, 2613-2637. https://doi.org/10.1080/01694243.2020.1780716.
  • Guo, J. (2015). Solid state welding processes in manufacturing. Springer, London, 569-592.
  • Rombaut, P. (2011) Joining of dissimilar materials through rotary friction welding. Mech. Constr. Prod.
  • Adin, M. Ş., & Okumuş, M. (2021). Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 Steels. Arabian Journal for Science and Engineering, 1-10.
  • Abass, M. H., Abood, A. N., Alali, M., Hussein, S. K., & Nawi, S. A. (2021). Mechanical Properties and Microstructure Evolution in Arc Stud Welding Joints of AISI 1020 with AISI 316L and AISI 304. Metallography, Microstructure, and Analysis, 1-13.
  • [Wu, W., Hu, S., & Shen, J. (2015). Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel. Materials & Design (1980-2015), 65, 855-861.
  • Singh, D. K., Sahoo, G., Basu, R., Sharma, V., & Mohtadi-Bonab, M. (2018). Investigation on the microstructure-mechanical property correlation in dissimilar steel welds of stainless steel SS 304 and medium carbon steel EN 8. Journal of Manufacturing Processes, 36, 281-292.
  • Kumar, D., Ramesh, M., & Kumar, A. (2021). Effect of variable thickness and service temperature of copper coating on the plane strain fracture toughness of AISI 1020 steel substrate and brittle to ductile transition temperature. Materials Today: Proceedings, 50, 2294-2298.
  • Çivi, C., & İren, E. (2021). The effect of welding on reliability of mechanical properties of AISI 1020 and AISI 6150 steel materials. Revista de Metalurgia, 57, e186.
  • Shukla, A., Joshi, V., & Shukla, B. (2018). Analysis of shielded metal arc welding parameter on depth of penetration on AISI 1020 plates using response surface methodology. Procedia manufacturing, 20, 239-246.
  • Rajasekhar, A. (2015). Heat treatment methods applied to AISI 431 martensitic stainless steels. International Journal of Scientific & Engineering Research, 6, 547-553.
  • Bloom, F. K. (1953). Effect of Heat Treatment and Related Factors on Straight-Chromium Stainless Steels. Corrosion, 9, 56-65.
  • Li, R-d., Li, J-l., Xiong, J-t., Zhang, F-s., Ke, Z., & Ji, C-z. (2012). Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process. Transactions of Nonferrous Metals Society of China, 22, 2665-2671.
  • Ren, F., Chen, F., Chen, J., & Tang, X. (2018). Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel. Journal of Manufacturing Processes, 31, 640-649.
  • Kimura, M., Iijima, T., Kusaka, M., Kaizu, K., & Fuji, A. (2016). Joining phenomena and tensile strength of friction welded joint between Ti–6Al–4V titanium alloy and low carbon steel. Journal of Manufacturing Processes, 24, 203-211.
  • Winiczenko, R. (2016). Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. The International Journal of Advanced Manufacturing Technology, 84, 941-955.
  • Kimura, M., Kasuya, K., Kusaka, M., Kaizu, K., & Fuji, A. (2009). Effect of friction welding condition on joining phenomena and joint strength of friction welded joint between brass and low carbon steel. Science and Technology of Welding and Joining, 14, 404-412.
  • Udayakumar, T., Raja, K., Husain, T. A., & Sathiya, P. (2014). Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints. Materials &Design, 53, 226-235. https://doi.org/10.1016/j.matdes.2013.07.002
  • Anitha, P., Majumder, M., Saravanan, V., & Rajakumar, S. (2018). Microstructural characterization and mechanical properties of friction-welded IN718 and SS410 dissimilar joint. Metallography, Microstructure, and Analysis, 7, 277-287.
  • Stalin, B., Ravichandran, M., Marichamy, S., Devi, T. C., Alagarsamy, S., & Dhinakaran, V. (2020). Friction welding parametric optimization of AISI 310L austenitic stainless steel weld joints-Grey relational investigation. in AIP Conference Proceedings, 2283(1), 020141.
  • Handa, A., & Chawla, V. (2014). Investigation of mechanical properties of friction-welded AISI 304 with AISI 1021 dissimilar steels. The International Journal of Advanced Manufacturing Technology, 75, 1493-1500.
  • Montgomery, D. C. (2017). Design and analysis of experiments. Ninth ed. John wiley & sons.
  • Taguchi G (1987). System of experimental design, quality resources. New York, USA.
  • Ramarao, M., King, M. F. L., Sivakumar, A., Manikandan, V., Vijayakumar, M., & Subbiah, R. (2021). Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach. Materials Today: Proceedings, 1-6.
  • Kishore, K., Krishna, P. G., Veladri, K., & Ali, S. Q. (2010). Analysis of defects in gas shielded arc welding of AISI1040 steel using Taguchi method. ARPN Journal of Engineering and Applied Sciences, 5, 37-41.
  • Pal, A. (2015). MIG welding parametric optimisation using taguchi's orthogonal array and analysis of variance. International Journal of Research Review in Engineering Science & Technology, 4, 211-217.
  • Javadi, Y., Sadeghi, S., & Najafabadi, M. A. (2014). Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding. Materials & Design, 55, 27-34.
  • Ross, P. J. (1996). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design.
  • ASTM (2008). ASTM-E8/E8M Standard Test Methods for Tension Testing of Metallic Materials. ASTM international, West Conshohocken, PA.
  • Gotawala, N., & Shrivastava, A. (2021). Investigation of interface microstructure and mechanical properties of rotatory friction welded dissimilar aluminum-steel joints. Materials Science and Engineering: A, 825, 141900.
  • Pandiarajan, S., Kumaran, S. S., Kumaraswamidhas, L. & Saravanan, R. (2016). Interfacial microstructure and optimization of friction welding by Taguchi and ANOVA method on SA 213 tube to SA 387 tube plate without backing block using an external tool. Journal of Alloys and Compounds, 654, 534-545.
  • Adin, M.Ş., & İşcan, B. (2022). Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method. European Mechanical Science, 6, 17-26.
  • Kam, M., İpekçi, A., & Argun, K. (2022). Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221078133
  • Tiwary, V. K., Padmakumar, A., & Malik, V. (2022). Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544062221089849
  • Kam, M. (2021). Effects of deep cryogenic treatment on machinability, hardness and microstructure in dry turning process of tempered steels. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(4), 927-936.
  • Gürbüz, H., & Gönülaçar, Y. E. (2021). Optimization and evaluation of dry and minimum quantity lubricating methods on machinability of AISI 4140 using Taguchi design and ANOVA. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235, 1211-1227.
  • Başar, G., & Mistikoğlu, S. (2019). Cu/Al levhaların sürtünme karıştırma kaynağında Taguchi metodu ile çekme mukavemeti ve sertlik için optimum kaynak parametrelerinin tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, 1595-1608.
  • Gürbüz, H., & Baday, Ş. (2019). CNC torna tezgâhlarında ayna ve punta basıncının yüzey pürüzlülüğü ve titreşim üzerine etkisinin Taguchi metodu ile optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 119-134.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Şükrü Adin 0000-0002-2307-9669

Bahattin İşcan 0000-0002-6100-1555

Şehmus Baday 0000-0003-4208-8779

Publication Date June 30, 2022
Submission Date February 19, 2022
Acceptance Date May 20, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Adin, M. Ş., İşcan, B., & Baday, Ş. (2022). Optimization of Welding Parameters of AISI 431 and AISI 1020 Joints Joined by Friction Welding Using Taguchi Method. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 453-470. https://doi.org/10.35193/bseufbd.1075980

Cited By