Review
BibTex RIS Cite

Developments in Calcium Propionate Production for Sustainability

Year 2025, Volume: 12 Issue: 2, 781 - 800, 30.11.2025
https://doi.org/10.35193/bseufbd.1767200

Abstract

Calcium propionate is widely used as a preservative in both the food and feed industries due to its antifungal effectiveness, safety, and nutritional properties. Traditionally, it is produced through the neutralization of propionic acid with calcium hydroxide. This method is economically advantageous and technically straightforward. However, growing concerns regarding sustainability and environmental performance have led to the search for greener production approaches. Current research focuses on methods such as chemical synthesis, direct neutralization, biotechnological fermentation, electrochemical synthesis, waste valorization, and enzymatic conversion. This review compiles data from scientific and technical literature and examines these methods by considering key criteria, such as scalability, economic feasibility, environmental impact, process complexity, and product quality. The findings reveal that chemical synthesis and direct neutralization remain the most practical and cost-effective methods. However, biotechnological fermentation and waste valorization approaches clearly demonstrate the highest levels of sustainability and environmental performance, indicating significant progress toward green manufacturing. Nevertheless, although fermentation and enzymatic conversion processes reduce environmental impact and support low-carbon, circular production models, they still face challenges in terms of efficiency and scalability. Additionally, electrochemical synthesis and waste valorization methods are promising due to their energy efficiency and potential for resource recovery, while enzymatic methods stand out for their high product selectivity and mild reaction conditions. Overall, this study has been written as a literature-based decision support tool for anyone interested in calcium propionate production, aiming to identify or develop more sustainable, resource-efficient, and environmentally responsible calcium propionate production technologies.

References

  • Black, B. A., Zannini, E., Curtis, J. M, & Gänzle, M. G. (2013). Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Applied and Environmental Microbiology, 79(6), 1866–73.
  • Sorathiya, K. B., Melo, A., Hogg, M. C., & Pintado, M. (2025). Organic acids in food preservation: Exploring synergies, molecular insights, and sustainable applications. Sustainability, 17(8), 3434.
  • Mirshekari, A., Madani, B., & Golding, J. B. (2017). Suitability of combination of calcium propionate and chitosan for preserving minimally processed banana quality. Journal of the Science of Food and Agriculture, 97(11), 3706–3711.
  • Maximize Market Research. (2024). Global calcium propionate market. India, https://www.maximizemarketresearch.com/market-report/global-calcium-propionate-market/25135/, (November 12, 2025).
  • Yang, X., Zhang, S., Lei, Y., Wei, M., Liu, X., Yu, H., Xie, P., & Sun, B. (2023). Preservation of stewed beef chunks by using calcium propionate and tea polyphenols. LWT, 176, 114491.
  • dos Santos, F. F., Brochine, L., Nacimento, R. A, Moreira, F. M., Gameiro, A. H., & Gallo, S. B. (2022). Economic performance of high-energy diets and supplementation with chromium propionate or calcium salts of palm oil in ewes’ production. Revista Brasileira de Zootecnia, 51, e20210063.
  • Zhang, F., Nan, X., Wang, H., Guo, Y., & Xiong, B. (2020). Research on the applications of calcium propionate in dairy cows: A review. Animals, 10(8), 1336.
  • Birbir, M., & Çakırlı Doğu, N. (2003). The evaluation of antifungal effect of calcium propionate on different mold species. Biotechnology & Biotechnological Equipment, 17(1), 74–80.
  • Sequeira, S. O., Phillips, A. J. L., Cabrita, E. J., Macedo, M. F. (2017). Antifungal treatment of paper with calcium propionate and parabens: Short-term and long-term effects. International Biodeterioration and Biodegradation, 120, 203–215.
  • Pampaloni, B., & Brandi, M. (2022). Mineral water as food for bone: an overview. International Journal of Bone Fragility, 2(2), 48–55.
  • Huey, Y. W., Zulkipli, A. S., Tajarudin, H. A., & Salleh, R. M. (2021). Physicochemical properties of pre-treated cuttlebone powder and its potential as an alternative calcium source. Journal of Food Processing and Preservation, 45, e15831.
  • Paster, N., Bartov, I., & Perelman, A. (1985). Studies of the fungistatic activity of antifungal compounds in mash and pelleted feeds. Poultry Science, 64(9), 1673–1677.
  • EFSA Panel on Food Additives and Nutrient Sources. (2014). Scientific opinion on the re‐evaluation of propionic acid (E280), sodium propionate (E281), calcium propionate (E282), and potassium propionate (E283) as food additives. EFSA Journal, 12(7), 3779.
  • Vidra, A., & Németh, Á. (2018). Bio-produced propionic acid: A review. Periodica Polytechnica Chemical Engineering, 62(1), 57–67.
  • Zhang, F., Zhao, Y., Wang, Y., Wang, H., Guo, Y., & Xiong, B. (2022). Effects of calcium propionate on milk performance and serum metabolome of dairy cows in early lactation. Animal Feed Science and Technology, 283, 115185.
  • Carrillo-Muro, O., Rivera-Villegas, A., Hernández-Briano, P., López-Carlos, M. A., Aguilera-Soto, J. I., Estrada-Angulo, A., Medina-Flores, C. A., & Mendez-Llorente, F. (2022). Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Ruminant Research, 207, 106618.
  • Liu, Z., & Liu, Y. (2018). Mitigation of greenhouse gas emissions from animal production. Greenhouse Gases: Science and Technology, 8(4), 627–638.
  • Rivera-Villegas, A., Carrillo-Muro, O., Rodríguez-Cordero, D., Hernández-Briano, P., Sánchez-Barbosa, O.Y., Lazalde-Cruz, R., Castro-Pérez, B.I., & Plascencia, A. (2024). Effects of supplemental calcium propionate and concentrate level: Growth performance, body fat reserves, and health of high-risk beef calves. Veterinary Sciences, 11(8), 336.
  • Okon, B., Ibom, L. A., Anlade, Y. D. R. ., & Dauda, A. (2023). A biotechnology perspective of livestock nutrition on feed additives: a mini review. Nigerian Journal of Animal Production, 49(5), 47–58.
  • Rodriguez-Cordero, D., Carrillo-Muro, O., Hernandez-Briano, P., Rivera-Villegas, A., & Estrada-Angulo, A. (2023). Effect of dietary calcium propionate inclusion level and duration in high-risk newly received stocker calves: Growth performance, body fat reserves, and health. Agriculture, 13(11), 2062.
  • Zhang, F., Tang, X., & Xiong, B. (2025). Optimal Calcium Propionate Supplementation in Early-Lactation Dairy Cows Improves Milk Yield and Alters Milk Composition. Animals, 15(20), 2995.
  • Wang, X., Zhu, M., Loor, J.J., Jiang, Q., Zhu, Y., Li, W., Du, X., Song, Y., Gao, W., Lei, L., Wang, J., Liu, G., & Li, X. (2022). Propionate alleviates fatty acid–induced mitochondrial dysfunction, oxidative stress, and apoptosis by upregulating PPARG coactivator 1 alpha in hepatocytes. Journal of Dairy Science, 105(5), 4581–4592.
  • Osorio-Terán, A. I., Mendoza, G. D., Miranda-Romero, L. A., Martínez-Gomez, D., Hernández-García, P. A., Rangel-Ramírez, V. V., & Lee-Rangel, H. A. (2025). Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs. Veterinary Sciences, 12(4), 298.
  • Roskam, E., Kenny, D. A., Kelly, A. K., O'Flaherty, V., & Waters, S. M. (2024). Dietary supplementation with calcium peroxide improves methane mitigation potential of finishing beef cattle. Animal, 18(11), 101340.
  • Alam, S., Shah, H. U., Afzal, M., & Magan, N. (2014). Influence of calcium propionate, water activity and storage time on mold incidence and aflatoxins production in broiler starter feed. Animal Feed Science and Technology, 188, 137–144.
  • Whitlow, L. W., & Hagler, W. M. (2005). Molds and mycotoxins in feedstuffs–Prevention and treatment. In Proceedings―Florida Ruminant Nutrition Symposium, pp. 123-142
  • Ullmann’s Encyclopedia of Industrial Chemistry. (2000). Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA
  • Huazhong Agricultural University. (2014, October 22). Preparation method of calcium propionate by egg shell (China Patent No. CN102675082B). Retrieved from https://patents.google.com/patent/CN102675082B/en
  • BASF Aktiengesellschaft. (1987, October 13). Preparation of calcium propionate (U.S. Patent No. US 4,700,000 A). Retrieved from https://patents.google.com/patent/US4700000A/en
  • Mahmood, A., Zahra, S., Mahmood, R., & Sheikh, A. (2023). Synthesis of calcium propionate from indigenous limestone from Swat area in Pakistan. European Journal of Chemistry, 14(4), 460–465.
  • Teles, J. H. (2024). Sustainable production of propionic acid and derivatives on an industrial scale. ChemSusChem, 17(9), e202301666.
  • Niu, S., Li, Y. J., Han, K., Zhao, J. L., & Lu, C. M. (2012). Thermal decomposition characteristics of calcium-based organic compounds under carbon dioxide enriched atmosphere through thermogravimetric analysis. Advanced Materials Research, 516–517, 494–501.
  • Tiwari, R., Sathesh-Prabu, C., & Lee, S. K. (2022). Bioproduction of propionic acid using levulinic acid by engineered Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 10, 939248
  • Bicchieri, M., Valentini, F., Calcaterra, A., & Talamo, M. (2017). Newly developed nano-calcium carbonate and nano-calcium propanoate for the deacidification of library and archival materials. Journal of Analytical Methods in Chemistry, 2017, 2372789.
  • Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(12), 515–538.
  • Shi, Y., Li, R., Zheng, J., Xue, Y., Tao, Y., & Yu, B. (2022). High-yield production of propionate from 1,2-propanediol by engineered Pseudomonas putida KT2440, a robust strain with highly oxidative capacity. Journal of Agricultural and Food Chemistry, 70(51), 16263–16272.
  • Uğur, M., Durmaz, M., Kocakerim, M. M., & Yartaşı, A. (2024). Dissolution behavior and kinetic investigation of colemanite ore in propionic acid solution. International Journal of Chemistry and Technology, 8(2), 143–152.
  • Thanahiranya, P., Charoensuppanimit, P., Soottitantawat, A., Arpornwichanop, A., Thongchul, N., & Assabumrungrat, S. (2022). Sustainable process design of propionic acid production from glycerol: A comparative study of bio-based and petroleum-based technologies. ACS Sustainable Chemistry & Engineering, 10(45), 14761–14774.
  • Kjellin, P., Rajasekharan, A. K., Currie, F., & Handa, P. (2016). Investigation of calcium phosphate formation from calcium propionate and triethyl phosphate. Ceramics International, 42(12), 14061–14065.
  • Rodriguez, B. A., Stowers, C. C., Pham, V., & Cox, B. M. (2014). The production of propionic acid, propanol, and propylene via sugar fermentation: An industrial perspective on the progress, technical challenges, and future outlook. Green Chemistry, 16(4), 1066–1076.
  • Eş, I., Khaneghah, A. M., Hashemi, S. M. B., & Koubaa, M. (2017). Current advances in biological production of propionic acid. Biotechnology Letters, 39(5), 635–645.
  • Yadav, V. K., Yadav, K. K., Tirth, V., Gnanamoorthy, G., Gupta, N., Algahtani, A., Islam, S., Choudhary, N., Modi, S., & Jeon, B.-H. (2021). Extraction of value-added minerals from various agricultural, industrial and domestic wastes. Materials, 14(21), 6333.
  • Minaria, M., & Mohadi, R. (2016). Preparation and characterization of calcium oxide from crab shells (Portunus pelagicus) and its application in biodiesel synthesis of waste cooking oil, palm and coconut oil. Science and Technology Indonesia, 1(1), 1–7.
  • Zhang, F., Wang, Y., Hui, N., Nan, X., Guo, Y., & Xiong, B. (2022). Calcium propionate supplementation has minor effects on major ruminal bacterial community composition of early lactation dairy cows. Frontiers in Microbiology, 13, 847488.
  • Velázquez-Cruz, L. A., Hernández-García, P. A., Mendoza-Martínez, G. D., Espinosa-Ayala, E., Lee-Rangel, H. A., Vázquez-Silva, G., Razo-Ortíz, P. B., Díaz-Galván, C., Orzuna-Orzuna, J. F., & de la Torre-Hernández, M. E. (2024). Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Veterinary Sciences, 11(12), 604.
  • Gurumurthy, C. V., & Govindarao, V. M. H. (1974). Rate model and mechanism of liquid-phase oxidation of propionaldehyde. Industrial & Engineering Chemistry Fundamentals, 13(1), 9–17.
  • Valor, A., Reguera, E. & Sánchez-Sinencio, F. (2002). Synthesis and X-ray diffraction study of calcium salts of some carboxylic acids. Powder Diffraction, 17(1), 13–18.
  • Boz, M. A., Küçük, V. A., & Akın, M. B. (2024). Investigation of rapid chemical recycling of waste polyethylene terephthalate under microwave effect using calcined dolomite as catalyst. Journal of the Turkish Chemical Society Section A: Chemistry, 11(3), 1025–1036.
  • He, T., Wang, X., Long, S., Li, J., Wu, Z., Guo, Y., Sun, F., & Chen, Z. (2023). Calcium propionate supplementation mitigated adverse effects of incubation temperature shift on in vitro fermentation by modulating microbial composition. Fermentation, 9(6), 544.
  • Agnihotri, S., Yin, D. M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu-Imer, D.Y., Taherzadeh, M.J. (2022). A glimpse of the world of volatile fatty acids production and application: A review. Bioengineered, 13(1), 1249–1275.
  • Zhou, J., Shang, X., Wang, Z., Zhu, C., & Wang, S. (2019). Effects of calcium concentration on up-flow multistage anaerobic reactor performance in treating bagasse spraying wastewater. Bioresources, 14(2), 4254–4269.
  • Laramore, S., & Scarpa, J. (n.d.). pH and alkalinity management in aquaculture hatcheries. USA, https://shellfish.ifas.ufl.edu/wp-content/uploads/pH-and-Alkalinity-Fact-Sheet-for-Hatcheries-Final-Draft.pdf, (November 12, 2025).
  • Badsara, S. S., Ucheniya, K., Chouhan, A., & Gurjar, A. (2025). Electrochemical synthesis: An alliance of electrochemistry and organic synthesis for value-added moieties. The Chemical Record, 25, e2500092.
  • Chaitanya, N. K., Rajpurohit, A., Nair, P. S., & Chatterjee, P. (2023). Electrochemical synthesis of propionic acid from reduction of ethanol and carbon dioxide at various applied potentials. Biochemical Engineering Journal, 194, 108896.
  • Bayer, T., Wu, S., Snajdrova, R., Baldenius, K., & Bornscheuer, U. T. (2025). An update: Enzymatic synthesis for industrial applications. Angewandte Chemie International Edition, 64, e202505976.
  • Sun, Y., Zhang, J., Sun, Z., & Zhang, L. (2018). Biodiesel production using calcium-based catalyst from venus shell: Modeling of startup production in an industrial reactor. Environmental Progress & Sustainable Energy, 38(3), e13053.
  • Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kolotylo, V., & Kieliszek, M. (2022). Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Applied Microbiology and Biotechnology, 106(17), 5433–5448.
  • Alonso, S., Rendueles, M., & Díaz, M. (2015). Microbial production of specialty organic acids from renewable and waste materials. Critical Reviews in Biotechnology, 35(4), 497–513.
  • Carrillo-Muro, O., Rivera-Villegas, A., Hernandez-Briano, P., Lopez-Carlos, M. A., & Castro-Perez, B. I. (2023). Effect of dietary calcium propionate inclusion period on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Agriculture, 13(8), 1–14.
  • Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., & Chen, J. (2012). Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology, 32(4), 374–381.
  • Dishisha, T., Ståhl, Å., Lundmark, S., & Hatti-Kaul, R. (2013). An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresource Technology, 135, 504–512.
  • Soares Santos, I. M. T., Ramirez Brenes, R. G., Figueiredo, F. R., Martínez Prata, D., Bojorge Ramirez, N. I., & Pereira, N., Jr. (2025). Sustainable production of propionic acid from xylose and glycerol by Acidipropionibacterium acidipropionici DSM 4900: A biorefinery approach. Processes, 13(11), 3556.
  • McIlroy, S., Kirkegaard, R., Dueholm, M., Fernando, E., Karst, S., Albertsen, M., & Nielsen, P. (2017). Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Frontiers in Microbiology, 8, 1134.
  • Sarmiento-Vásquez, Z., Vandenberghe, L., Rodrigues, C., Oliveira A. Tanobe, V., Marín, O., Pereira, G. V. de M., Rogez, H. L. G., Góes-Neto, A., & Soccol, C. R. (2021). Cocoa pod husk valorization: Alkaline–enzymatic pre-treatment for propionic acid production. Cellulose, 28(6), 4009–4024.
  • Zhang, M., Zhang, D., Du, J., Zhou, B., Wang, D., Liu, X., Yan, C., Liang, J., & Zhou, L. (2023). Enhancing propionic acid production in the acidogenic fermentation of food waste facilitated by a fungal mash under neutral pH. Journal of Environmental Management, 327, 116901.
  • Puengrang, P., Suraraksa, B., Prommeenate, P., Boonapatcharoen, N., Cheevadhanarak, S., Tanticharoen, M., & Kusonmano, K. (2020). Diverse microbial community profiles of propionate-degrading cultures derived from different sludge sources of anaerobic wastewater treatment plants. Microorganisms, 8(2), 277.
  • Ranaei, V., Pilevar, Z., Mousavi Khaneghah, A., & Hosseini, H. (2020). Propionic acid: Method of production, current state and perspectives. Food Technology and Biotechnology, 58(2), 115–127.
  • Handojo, L., Wardani, A. K., Regina, D., Bella, C., Kresnowati, M. T. A. P., & Wenten, I. G. (2019). Electro-membrane processes for organic acid recovery. RSC Advances, 9, 7854–7869.
  • Ahmed, T. A. E., Wu, L., Younes, M., & Hincke, M. (2021). Biotechnological applications of eggshell: Recent advances. Frontiers in Bioengineering and Biotechnology, 9, 675364.
  • Wang, Z., Jin, Y., & Yang, S.-T. (2015). High cell density propionic acid fermentation with an acid-tolerant strain of Propionibacterium acidipropionici. Biotechnology and Bioengineering, 112(3), 502–511.
  • Antone, U., Ciprovica, I., Zolovs, M., Scerbaka, R., & Liepins, J. (2023). Propionic acid fermentation—Study of substrates, strains, and antimicrobial properties. Fermentation, 9(1), 26.
  • Farhadi, S., Khosravi-Darani, K., Mashayekh, M., Mortazavian, A.M., Mohammadi, A., & Shahraz, F. (2013). Production of propionic acid in a fermented dairy beverage. International Journal of Dairy Technology, 66(1), 127–134.
  • Wang, Z., & Yang, S.-T. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresource Technology, 137, 116–123.
  • Himmi, E. H., Bories, A., Boussaid, A., & Hassani, L. (2000). Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Applied Microbiology and Biotechnology, 53(4), 435–440.
  • Cavero-Olguin, V.H., Dishisha, T. & Hatti-Kaul, R. (2023) Membrane-based continuous fermentation with cell recycling for propionic acid production from glycerol by Acidipropionibacterium acidipropionici. Microbial Cell Factories, 22, 43.
  • Dishisha, T., Jain, M., & Hatti-Kaul, R. (2024). High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici. Microbial Cell Factories, 23, 91.
  • Schmidt, A., Sturm, G., Lapp, C., Siebert, D., Saravia, F., Horn, H., Ravi, P. P., Lemmer, A., & Gescher, J. (2018). Development of a production chain from vegetable biowaste to platform chemicals. Microbial Cell Factories, 17, 90.
  • Elghandour, M. M. Y., Kholif, A. E., Salem, A. Z. M., de Oca, R. M, Barbabosa, A., Mariezcurrena, M., & Olafadehan, O. A. (2016). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. Journal of Cleaner Production, 135, 194–200.
  • Brand, T.P.H., Roest, K., Brdjanović, D., Chen, G.H., & Loosdrecht, M.C.M. (2014). Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 117(6), 1839–1847.
  • Ekman, A., & Börjesson, P. (2011). Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. Journal of Cleaner Production, 19(11), 1257–1265.
  • Watanabe, Y., Suzuki, R., Koike, S., Nagashima, K., Mochizuki, M., Forster, R.J., & Kobayashi, Y. (2010). In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. Journal of Dairy Science, 93(11), 5258–5267.

Sürdürülebilirlik İçin Kalsiyum Propiyonat Üretimindeki Gelişmeler

Year 2025, Volume: 12 Issue: 2, 781 - 800, 30.11.2025
https://doi.org/10.35193/bseufbd.1767200

Abstract

Kalsiyum propiyonat, antifungal etkinliği, güvenliği ve besleyici özellikleri sayesinde koruyucu olarak hem gıda hem de yem endüstrilerinde yaygın olarak kullanılır. Geleneksel olarak, propiyonik asidin kalsiyum hidroksit ile nötralizasyonu yoluyla üretilir. Söz konusu yöntem ekonomik ve teknik açıdan basittir. Ancak, sürdürülebilirlik ve çevresel performans endişeleri, daha çevreci üretim arayışlarına neden olmaktadır. Araştırmalar kimyasal sentez, doğrudan nötralizasyon, biyoteknolojik fermantasyon, elektrokimyasal sentez, atık değerlendirme ve enzimatik dönüşüm yöntemleri üzerine yoğunlaşmaktadır. Bu derleme, bilimsel ve teknik literatürdeki verileri bir araya getirmekte ve üzerine yoğunlaşılan yöntemleri ölçeklenebilirlik, ekonomik uygulanabilirlik, çevresel etki, süreç karmaşıklığı ve ürün kalitesi kriterlerini göz önüne alarak incelemektedir. Yapılan çalışma sonucunda, kimyasal sentez ve doğrudan nötralizasyonun hâlâ en uygulanabilir ve maliyet açısından en uygun yöntemler olduğunu ortaya koymaktadır. Bununla birlikte biyoteknolojik fermantasyon ve atık değerlendirme yaklaşımlarının en yüksek sürdürülebilirlik ve çevresel performansı sergilemekte olduğu aşikardır. Bu durum yeşil üretim yönünde önemli ilerlemeler olduğunu göstermektedir. Ancak, fermantasyon ve enzimatik dönüşüm süreçleri, çevresel yükü azaltıp, düşük karbonlu, döngüsel üretim modellerini desteklese de, verimlilik ve ölçeklenme açısından zorluklarla karşılaşmaktadır. Ayrıca, elektrokimyasal sentez ve atık değerlendirme yöntemleri, enerji verimliliği ve kaynak geri kazanımı sayesinde umut verici proseslerdir. Enzimatik yöntemler, ise yüksek ürün seçiciliği ve yumuşak reaksiyon koşulları ile öne çıkmaktadır. Genel olarak, bu çalışma kalsiyum propiyonat üretimi ile ilgilenen herkes için daha sürdürülebilir, kaynak verimli ve çevresel açıdan sorumlu kalsiyum propiyonat üretim teknolojilerinin belirlenmesi veya geliştirilmesi amacıyla literatür temelli bir karar destek aracı olarak hazırlanmıştır.

References

  • Black, B. A., Zannini, E., Curtis, J. M, & Gänzle, M. G. (2013). Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Applied and Environmental Microbiology, 79(6), 1866–73.
  • Sorathiya, K. B., Melo, A., Hogg, M. C., & Pintado, M. (2025). Organic acids in food preservation: Exploring synergies, molecular insights, and sustainable applications. Sustainability, 17(8), 3434.
  • Mirshekari, A., Madani, B., & Golding, J. B. (2017). Suitability of combination of calcium propionate and chitosan for preserving minimally processed banana quality. Journal of the Science of Food and Agriculture, 97(11), 3706–3711.
  • Maximize Market Research. (2024). Global calcium propionate market. India, https://www.maximizemarketresearch.com/market-report/global-calcium-propionate-market/25135/, (November 12, 2025).
  • Yang, X., Zhang, S., Lei, Y., Wei, M., Liu, X., Yu, H., Xie, P., & Sun, B. (2023). Preservation of stewed beef chunks by using calcium propionate and tea polyphenols. LWT, 176, 114491.
  • dos Santos, F. F., Brochine, L., Nacimento, R. A, Moreira, F. M., Gameiro, A. H., & Gallo, S. B. (2022). Economic performance of high-energy diets and supplementation with chromium propionate or calcium salts of palm oil in ewes’ production. Revista Brasileira de Zootecnia, 51, e20210063.
  • Zhang, F., Nan, X., Wang, H., Guo, Y., & Xiong, B. (2020). Research on the applications of calcium propionate in dairy cows: A review. Animals, 10(8), 1336.
  • Birbir, M., & Çakırlı Doğu, N. (2003). The evaluation of antifungal effect of calcium propionate on different mold species. Biotechnology & Biotechnological Equipment, 17(1), 74–80.
  • Sequeira, S. O., Phillips, A. J. L., Cabrita, E. J., Macedo, M. F. (2017). Antifungal treatment of paper with calcium propionate and parabens: Short-term and long-term effects. International Biodeterioration and Biodegradation, 120, 203–215.
  • Pampaloni, B., & Brandi, M. (2022). Mineral water as food for bone: an overview. International Journal of Bone Fragility, 2(2), 48–55.
  • Huey, Y. W., Zulkipli, A. S., Tajarudin, H. A., & Salleh, R. M. (2021). Physicochemical properties of pre-treated cuttlebone powder and its potential as an alternative calcium source. Journal of Food Processing and Preservation, 45, e15831.
  • Paster, N., Bartov, I., & Perelman, A. (1985). Studies of the fungistatic activity of antifungal compounds in mash and pelleted feeds. Poultry Science, 64(9), 1673–1677.
  • EFSA Panel on Food Additives and Nutrient Sources. (2014). Scientific opinion on the re‐evaluation of propionic acid (E280), sodium propionate (E281), calcium propionate (E282), and potassium propionate (E283) as food additives. EFSA Journal, 12(7), 3779.
  • Vidra, A., & Németh, Á. (2018). Bio-produced propionic acid: A review. Periodica Polytechnica Chemical Engineering, 62(1), 57–67.
  • Zhang, F., Zhao, Y., Wang, Y., Wang, H., Guo, Y., & Xiong, B. (2022). Effects of calcium propionate on milk performance and serum metabolome of dairy cows in early lactation. Animal Feed Science and Technology, 283, 115185.
  • Carrillo-Muro, O., Rivera-Villegas, A., Hernández-Briano, P., López-Carlos, M. A., Aguilera-Soto, J. I., Estrada-Angulo, A., Medina-Flores, C. A., & Mendez-Llorente, F. (2022). Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Ruminant Research, 207, 106618.
  • Liu, Z., & Liu, Y. (2018). Mitigation of greenhouse gas emissions from animal production. Greenhouse Gases: Science and Technology, 8(4), 627–638.
  • Rivera-Villegas, A., Carrillo-Muro, O., Rodríguez-Cordero, D., Hernández-Briano, P., Sánchez-Barbosa, O.Y., Lazalde-Cruz, R., Castro-Pérez, B.I., & Plascencia, A. (2024). Effects of supplemental calcium propionate and concentrate level: Growth performance, body fat reserves, and health of high-risk beef calves. Veterinary Sciences, 11(8), 336.
  • Okon, B., Ibom, L. A., Anlade, Y. D. R. ., & Dauda, A. (2023). A biotechnology perspective of livestock nutrition on feed additives: a mini review. Nigerian Journal of Animal Production, 49(5), 47–58.
  • Rodriguez-Cordero, D., Carrillo-Muro, O., Hernandez-Briano, P., Rivera-Villegas, A., & Estrada-Angulo, A. (2023). Effect of dietary calcium propionate inclusion level and duration in high-risk newly received stocker calves: Growth performance, body fat reserves, and health. Agriculture, 13(11), 2062.
  • Zhang, F., Tang, X., & Xiong, B. (2025). Optimal Calcium Propionate Supplementation in Early-Lactation Dairy Cows Improves Milk Yield and Alters Milk Composition. Animals, 15(20), 2995.
  • Wang, X., Zhu, M., Loor, J.J., Jiang, Q., Zhu, Y., Li, W., Du, X., Song, Y., Gao, W., Lei, L., Wang, J., Liu, G., & Li, X. (2022). Propionate alleviates fatty acid–induced mitochondrial dysfunction, oxidative stress, and apoptosis by upregulating PPARG coactivator 1 alpha in hepatocytes. Journal of Dairy Science, 105(5), 4581–4592.
  • Osorio-Terán, A. I., Mendoza, G. D., Miranda-Romero, L. A., Martínez-Gomez, D., Hernández-García, P. A., Rangel-Ramírez, V. V., & Lee-Rangel, H. A. (2025). Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs. Veterinary Sciences, 12(4), 298.
  • Roskam, E., Kenny, D. A., Kelly, A. K., O'Flaherty, V., & Waters, S. M. (2024). Dietary supplementation with calcium peroxide improves methane mitigation potential of finishing beef cattle. Animal, 18(11), 101340.
  • Alam, S., Shah, H. U., Afzal, M., & Magan, N. (2014). Influence of calcium propionate, water activity and storage time on mold incidence and aflatoxins production in broiler starter feed. Animal Feed Science and Technology, 188, 137–144.
  • Whitlow, L. W., & Hagler, W. M. (2005). Molds and mycotoxins in feedstuffs–Prevention and treatment. In Proceedings―Florida Ruminant Nutrition Symposium, pp. 123-142
  • Ullmann’s Encyclopedia of Industrial Chemistry. (2000). Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA
  • Huazhong Agricultural University. (2014, October 22). Preparation method of calcium propionate by egg shell (China Patent No. CN102675082B). Retrieved from https://patents.google.com/patent/CN102675082B/en
  • BASF Aktiengesellschaft. (1987, October 13). Preparation of calcium propionate (U.S. Patent No. US 4,700,000 A). Retrieved from https://patents.google.com/patent/US4700000A/en
  • Mahmood, A., Zahra, S., Mahmood, R., & Sheikh, A. (2023). Synthesis of calcium propionate from indigenous limestone from Swat area in Pakistan. European Journal of Chemistry, 14(4), 460–465.
  • Teles, J. H. (2024). Sustainable production of propionic acid and derivatives on an industrial scale. ChemSusChem, 17(9), e202301666.
  • Niu, S., Li, Y. J., Han, K., Zhao, J. L., & Lu, C. M. (2012). Thermal decomposition characteristics of calcium-based organic compounds under carbon dioxide enriched atmosphere through thermogravimetric analysis. Advanced Materials Research, 516–517, 494–501.
  • Tiwari, R., Sathesh-Prabu, C., & Lee, S. K. (2022). Bioproduction of propionic acid using levulinic acid by engineered Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 10, 939248
  • Bicchieri, M., Valentini, F., Calcaterra, A., & Talamo, M. (2017). Newly developed nano-calcium carbonate and nano-calcium propanoate for the deacidification of library and archival materials. Journal of Analytical Methods in Chemistry, 2017, 2372789.
  • Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(12), 515–538.
  • Shi, Y., Li, R., Zheng, J., Xue, Y., Tao, Y., & Yu, B. (2022). High-yield production of propionate from 1,2-propanediol by engineered Pseudomonas putida KT2440, a robust strain with highly oxidative capacity. Journal of Agricultural and Food Chemistry, 70(51), 16263–16272.
  • Uğur, M., Durmaz, M., Kocakerim, M. M., & Yartaşı, A. (2024). Dissolution behavior and kinetic investigation of colemanite ore in propionic acid solution. International Journal of Chemistry and Technology, 8(2), 143–152.
  • Thanahiranya, P., Charoensuppanimit, P., Soottitantawat, A., Arpornwichanop, A., Thongchul, N., & Assabumrungrat, S. (2022). Sustainable process design of propionic acid production from glycerol: A comparative study of bio-based and petroleum-based technologies. ACS Sustainable Chemistry & Engineering, 10(45), 14761–14774.
  • Kjellin, P., Rajasekharan, A. K., Currie, F., & Handa, P. (2016). Investigation of calcium phosphate formation from calcium propionate and triethyl phosphate. Ceramics International, 42(12), 14061–14065.
  • Rodriguez, B. A., Stowers, C. C., Pham, V., & Cox, B. M. (2014). The production of propionic acid, propanol, and propylene via sugar fermentation: An industrial perspective on the progress, technical challenges, and future outlook. Green Chemistry, 16(4), 1066–1076.
  • Eş, I., Khaneghah, A. M., Hashemi, S. M. B., & Koubaa, M. (2017). Current advances in biological production of propionic acid. Biotechnology Letters, 39(5), 635–645.
  • Yadav, V. K., Yadav, K. K., Tirth, V., Gnanamoorthy, G., Gupta, N., Algahtani, A., Islam, S., Choudhary, N., Modi, S., & Jeon, B.-H. (2021). Extraction of value-added minerals from various agricultural, industrial and domestic wastes. Materials, 14(21), 6333.
  • Minaria, M., & Mohadi, R. (2016). Preparation and characterization of calcium oxide from crab shells (Portunus pelagicus) and its application in biodiesel synthesis of waste cooking oil, palm and coconut oil. Science and Technology Indonesia, 1(1), 1–7.
  • Zhang, F., Wang, Y., Hui, N., Nan, X., Guo, Y., & Xiong, B. (2022). Calcium propionate supplementation has minor effects on major ruminal bacterial community composition of early lactation dairy cows. Frontiers in Microbiology, 13, 847488.
  • Velázquez-Cruz, L. A., Hernández-García, P. A., Mendoza-Martínez, G. D., Espinosa-Ayala, E., Lee-Rangel, H. A., Vázquez-Silva, G., Razo-Ortíz, P. B., Díaz-Galván, C., Orzuna-Orzuna, J. F., & de la Torre-Hernández, M. E. (2024). Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Veterinary Sciences, 11(12), 604.
  • Gurumurthy, C. V., & Govindarao, V. M. H. (1974). Rate model and mechanism of liquid-phase oxidation of propionaldehyde. Industrial & Engineering Chemistry Fundamentals, 13(1), 9–17.
  • Valor, A., Reguera, E. & Sánchez-Sinencio, F. (2002). Synthesis and X-ray diffraction study of calcium salts of some carboxylic acids. Powder Diffraction, 17(1), 13–18.
  • Boz, M. A., Küçük, V. A., & Akın, M. B. (2024). Investigation of rapid chemical recycling of waste polyethylene terephthalate under microwave effect using calcined dolomite as catalyst. Journal of the Turkish Chemical Society Section A: Chemistry, 11(3), 1025–1036.
  • He, T., Wang, X., Long, S., Li, J., Wu, Z., Guo, Y., Sun, F., & Chen, Z. (2023). Calcium propionate supplementation mitigated adverse effects of incubation temperature shift on in vitro fermentation by modulating microbial composition. Fermentation, 9(6), 544.
  • Agnihotri, S., Yin, D. M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu-Imer, D.Y., Taherzadeh, M.J. (2022). A glimpse of the world of volatile fatty acids production and application: A review. Bioengineered, 13(1), 1249–1275.
  • Zhou, J., Shang, X., Wang, Z., Zhu, C., & Wang, S. (2019). Effects of calcium concentration on up-flow multistage anaerobic reactor performance in treating bagasse spraying wastewater. Bioresources, 14(2), 4254–4269.
  • Laramore, S., & Scarpa, J. (n.d.). pH and alkalinity management in aquaculture hatcheries. USA, https://shellfish.ifas.ufl.edu/wp-content/uploads/pH-and-Alkalinity-Fact-Sheet-for-Hatcheries-Final-Draft.pdf, (November 12, 2025).
  • Badsara, S. S., Ucheniya, K., Chouhan, A., & Gurjar, A. (2025). Electrochemical synthesis: An alliance of electrochemistry and organic synthesis for value-added moieties. The Chemical Record, 25, e2500092.
  • Chaitanya, N. K., Rajpurohit, A., Nair, P. S., & Chatterjee, P. (2023). Electrochemical synthesis of propionic acid from reduction of ethanol and carbon dioxide at various applied potentials. Biochemical Engineering Journal, 194, 108896.
  • Bayer, T., Wu, S., Snajdrova, R., Baldenius, K., & Bornscheuer, U. T. (2025). An update: Enzymatic synthesis for industrial applications. Angewandte Chemie International Edition, 64, e202505976.
  • Sun, Y., Zhang, J., Sun, Z., & Zhang, L. (2018). Biodiesel production using calcium-based catalyst from venus shell: Modeling of startup production in an industrial reactor. Environmental Progress & Sustainable Energy, 38(3), e13053.
  • Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kolotylo, V., & Kieliszek, M. (2022). Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Applied Microbiology and Biotechnology, 106(17), 5433–5448.
  • Alonso, S., Rendueles, M., & Díaz, M. (2015). Microbial production of specialty organic acids from renewable and waste materials. Critical Reviews in Biotechnology, 35(4), 497–513.
  • Carrillo-Muro, O., Rivera-Villegas, A., Hernandez-Briano, P., Lopez-Carlos, M. A., & Castro-Perez, B. I. (2023). Effect of dietary calcium propionate inclusion period on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Agriculture, 13(8), 1–14.
  • Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., & Chen, J. (2012). Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology, 32(4), 374–381.
  • Dishisha, T., Ståhl, Å., Lundmark, S., & Hatti-Kaul, R. (2013). An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresource Technology, 135, 504–512.
  • Soares Santos, I. M. T., Ramirez Brenes, R. G., Figueiredo, F. R., Martínez Prata, D., Bojorge Ramirez, N. I., & Pereira, N., Jr. (2025). Sustainable production of propionic acid from xylose and glycerol by Acidipropionibacterium acidipropionici DSM 4900: A biorefinery approach. Processes, 13(11), 3556.
  • McIlroy, S., Kirkegaard, R., Dueholm, M., Fernando, E., Karst, S., Albertsen, M., & Nielsen, P. (2017). Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Frontiers in Microbiology, 8, 1134.
  • Sarmiento-Vásquez, Z., Vandenberghe, L., Rodrigues, C., Oliveira A. Tanobe, V., Marín, O., Pereira, G. V. de M., Rogez, H. L. G., Góes-Neto, A., & Soccol, C. R. (2021). Cocoa pod husk valorization: Alkaline–enzymatic pre-treatment for propionic acid production. Cellulose, 28(6), 4009–4024.
  • Zhang, M., Zhang, D., Du, J., Zhou, B., Wang, D., Liu, X., Yan, C., Liang, J., & Zhou, L. (2023). Enhancing propionic acid production in the acidogenic fermentation of food waste facilitated by a fungal mash under neutral pH. Journal of Environmental Management, 327, 116901.
  • Puengrang, P., Suraraksa, B., Prommeenate, P., Boonapatcharoen, N., Cheevadhanarak, S., Tanticharoen, M., & Kusonmano, K. (2020). Diverse microbial community profiles of propionate-degrading cultures derived from different sludge sources of anaerobic wastewater treatment plants. Microorganisms, 8(2), 277.
  • Ranaei, V., Pilevar, Z., Mousavi Khaneghah, A., & Hosseini, H. (2020). Propionic acid: Method of production, current state and perspectives. Food Technology and Biotechnology, 58(2), 115–127.
  • Handojo, L., Wardani, A. K., Regina, D., Bella, C., Kresnowati, M. T. A. P., & Wenten, I. G. (2019). Electro-membrane processes for organic acid recovery. RSC Advances, 9, 7854–7869.
  • Ahmed, T. A. E., Wu, L., Younes, M., & Hincke, M. (2021). Biotechnological applications of eggshell: Recent advances. Frontiers in Bioengineering and Biotechnology, 9, 675364.
  • Wang, Z., Jin, Y., & Yang, S.-T. (2015). High cell density propionic acid fermentation with an acid-tolerant strain of Propionibacterium acidipropionici. Biotechnology and Bioengineering, 112(3), 502–511.
  • Antone, U., Ciprovica, I., Zolovs, M., Scerbaka, R., & Liepins, J. (2023). Propionic acid fermentation—Study of substrates, strains, and antimicrobial properties. Fermentation, 9(1), 26.
  • Farhadi, S., Khosravi-Darani, K., Mashayekh, M., Mortazavian, A.M., Mohammadi, A., & Shahraz, F. (2013). Production of propionic acid in a fermented dairy beverage. International Journal of Dairy Technology, 66(1), 127–134.
  • Wang, Z., & Yang, S.-T. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresource Technology, 137, 116–123.
  • Himmi, E. H., Bories, A., Boussaid, A., & Hassani, L. (2000). Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Applied Microbiology and Biotechnology, 53(4), 435–440.
  • Cavero-Olguin, V.H., Dishisha, T. & Hatti-Kaul, R. (2023) Membrane-based continuous fermentation with cell recycling for propionic acid production from glycerol by Acidipropionibacterium acidipropionici. Microbial Cell Factories, 22, 43.
  • Dishisha, T., Jain, M., & Hatti-Kaul, R. (2024). High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici. Microbial Cell Factories, 23, 91.
  • Schmidt, A., Sturm, G., Lapp, C., Siebert, D., Saravia, F., Horn, H., Ravi, P. P., Lemmer, A., & Gescher, J. (2018). Development of a production chain from vegetable biowaste to platform chemicals. Microbial Cell Factories, 17, 90.
  • Elghandour, M. M. Y., Kholif, A. E., Salem, A. Z. M., de Oca, R. M, Barbabosa, A., Mariezcurrena, M., & Olafadehan, O. A. (2016). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. Journal of Cleaner Production, 135, 194–200.
  • Brand, T.P.H., Roest, K., Brdjanović, D., Chen, G.H., & Loosdrecht, M.C.M. (2014). Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 117(6), 1839–1847.
  • Ekman, A., & Börjesson, P. (2011). Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. Journal of Cleaner Production, 19(11), 1257–1265.
  • Watanabe, Y., Suzuki, R., Koike, S., Nagashima, K., Mochizuki, M., Forster, R.J., & Kobayashi, Y. (2010). In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. Journal of Dairy Science, 93(11), 5258–5267.
There are 81 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Review
Authors

Muhammed Bora Akın 0000-0003-3841-1633

Publication Date November 30, 2025
Submission Date August 20, 2025
Acceptance Date October 19, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Akın, M. B. (2025). Developments in Calcium Propionate Production for Sustainability. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 781-800. https://doi.org/10.35193/bseufbd.1767200