Araştırma Makalesi
BibTex RIS Kaynak Göster

Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar

Yıl 2024, , 141 - 149, 27.03.2024
https://doi.org/10.34087/cbusbed.1405966

Öz

Kolanjiyokarsinom (CHOL) erken teşhis edilmesi zor olan ve oldukça yüksek düzeyde öldürücü bir kanser türüdür. CHOL tanısında radyolojik görüntülemede kısıtlılıklar mevcuttur ve biyopsi ile tanı yöntemi gibi invaziv tanı yöntemleri dışında genetik tabanlı ve özgün biyobelirteçlerin belirlenmesi zorunlu hale gelmektedir. Literatürde bu amaçlar gerçekleştirilen çalışmalar çalışmalardan farklı olarak bizim çalışmamızda öncelikle intrahepatik (iCHOL) ve ekstrahepatik (eCHOL) kolanjiyokarsinom hastalarında ortak upregüle olan genler belirlenmiştir. Ayrıca çalışmamızda klinikte CHOL kanserlerinin LIHC kanserinden ayırt edici tanısının zor olması sebebiyle CHOL hastalarında hepatoselüler karsinomdan (LICH) farklı olarak ve LIHC hastaları ile ortak olarak upregüle edilen genlerin tespit edilmesi de amaçlanmıştır. Hastaların gen yoğunluk verileri NCBI Gene Expression Omnibus (GEO) veri tabanından (GSE121248, GSE132305 ve GSE45001) sağlanmıştır. Çalışmada R LIMMA paketinde yer alan lineer modelleme yöntemi kullanılarak kanserli olan ve olmayan örnekler arasında upregüle genler (differentially expressed genes-DEGs) tespit edilmiştir. Tespit edilen genlerin hangi biyolojik yolaklara etki ettiğini belirlemek için Gen seti zenginleştirme analizi (Fonksiyonel zenginleştirme analizi) (GSEA) ShinyGO 0.80 webtool kullanılarak yapılmıştır. Sonuçlarımıza göre CHOL hastalarında LIHC hastalarından farklı olarak upregüle edilen 4 gene (F2R, ITGA11, LAMC2 ve LAMB3) odaklanılmıştır. CHOL ve LIHC hastalarında ise ortak olarak upregüle edilen 2 gen (COL1A1, ITGA2) tespit edilmiştir. Söz konusu genlerinin ortak olarak işaret ettiği biyolojik yolaklar PI3K-Akt sinyal yolağı ve ekstraselüler matriks (ECM)-reseptör etkileşimi süreçleridir. Belirlenen genler ile protein-protein ve ilaç etkileşim çalışmaları sonuçları klinik denemeler ile desteklenip CHOL ile LIHC kanserlerinin ayırt edilmesinde etkin bir şekilde hedeflenebilecektir.

Etik Beyan

Bu çalışmada kullanılan kanseri hastalarının gen yoğunluklarına ait bilgiler herkesin kullanımına açık olan NCBI Gene Expression Omnibus (GEO) veri tabanından alındığından dolayı etik kurul onayı gerekli olmamaktadır.

Destekleyen Kurum

Maddi destek mevcut değildir.

Kaynakça

  • 1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. A Cancer Journal for Clinicians, 2018, 68(6):394–424. https://doi.org/10.3322/caac.21492
  • 2. Aloia T., Pawlik T.M., Taouli B., et al. Intrahepatic bile ducts. In: AJCC Cancer Staging Manual, 8th ed, Amin MB (Ed), AJCC, Chicago. 2017, p.295.
  • 3. Khan S.A., Tavolari S., Brandi G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39 Suppl 1:19-31. doi: 10.1111/liv.14095.
  • 4. Shin D.W., Moon S.H., Kim J.H. Diagnosis of Cholangiocarcinoma. Diagnostics (Basel). 2023, 8;13(2):233. doi: 10.3390/diagnostics13020233.
  • 5. Panjala, C., Sénécal, D., Bridges, M.D., Kim, G.P., Nakhleh, R.E., Nguyen, J.H., ve ark. The Diagnostic Conundrum and Liver Transplantation Outcome for Combined Hepatocellular‐Cholangiocarcinoma. American Journal of Transplantation 2010, 10: 1263–126. doi:10.1111/j.1600-6143.2010.03062.x
  • 6. Choi J.H., Ro J.Y. Combined Hepatocellular-Cholangiocarcinoma: An Update on Pathology and Diagnostic Approach. Biomedicines. 2022, 10(8):1826. doi: 10.3390/biomedicines10081826.
  • 7. Huang J.L., Sun Y., Wu Z.H., Zhu H.J., Xia G.J., Zhu X.S., ve ark. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms. J Cancer Res Clin Oncol. 2023, 149(12):10161-10168. doi: 10.1007/s00432-023-04935-4.
  • 8. Ponnoprat D., Inkeaw P., Chaijaruwanich J., Traisathit P., Sripan P., Inmutto N., et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scans. Med Biol Eng Comput. 2020, 58(10):2497-2515. doi: 10.1007/s11517-020-02229-2.
  • 9. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, ve ark. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 2015, 43(7), e47–e47. doi: 10.1093/nar/gkv00
  • 10. Chandrashekar D.S., Karthikeyan S.K., Korla P.K., Patel H., Shovon A.R., Athar M., ve ark. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022, 25:18-27. doi: 10.1016/j.neo.2022.01.001.
  • 11. Ge S.X., Jung D., Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics, 2020, 8(36):2628–2629, https://doi.org/10.1093/bioinformatics/btz931
  • 12. Shen H., Bai X., Liu J., Liu P., Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol. 2022, 10;12:1001400. doi: 10.3389/fonc.2022.1001400. PMID: 36300097; PMCID: PMC9590411.
  • 13. Xiao Y., Zhang B., Cloyd J.M., Alaimo L., Xu G., Du S., ve ark. Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers (Basel). 2022, 5;14(13):3284. doi: 10.3390/cancers14133284.
  • 14. Joseph N.M., Tsokos C.G., Umetsu S.E., Shain A.H., Kelley R.K., Onodera C., ve ark. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J Pathol. 2019, 248(2):164-178. doi: 10.1002/path.5243.
  • 15. Mok S.R., Mohan S., Grewal N., Elfant A.B., Judge T.A. A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma. J Gastrointest Oncol. 2016, 7(4):570-9. doi: 10.21037/jgo.2016.04.01.
  • 16. Normanno N., Martinelli E., Melisi D., Pinto C., Rimassa L., Santini D., ve ark. Role of molecular genetics in the clinical management of cholangiocarcinoma. ESMO Open. 2022, 7(3):100505. doi: 10.1016/j.esmoop.2022.100505.
  • 17. Kutlu A., Arda M., Atak E., Ulukaya E. Identification of key genes and pathways for cholangiocarcinoma using an integrated bioinformatics analysis Int J Med Biochem 2022, 5(3):137-151 doi: 10.14744/ijmb.2022.18199
  • 18. Ma H.P., Chang H.L., Bamodu O.A., Yadav V.K., Huang T.Y., Wu A.T.H., ve ark. Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metastasis. Cancers (Basel). 2019, 7;11(6):786. doi: 10.3390/cancers11060786.
  • 19. Rattanasinchai C., Navasumrit P., Ruchirawat M. Elevated ITGA2 expression promotes collagen type I-induced clonogenic growth of intrahepatic cholangiocarcinoma. Sci Rep. 2022, 27;12(1):22429. doi: 10.1038/s41598-022-26747-1.

Common Biological Pathways Triggered by Different Genes in Cholangiocarcinoma and Hepatocellular Carcinoma Patients

Yıl 2024, , 141 - 149, 27.03.2024
https://doi.org/10.34087/cbusbed.1405966

Öz

Cholangiocarcinoma (CHOL) is a highly lethal type of cancer that is difficult to diagnose early. There are limitations in radiological imaging in the diagnosis of CHOL, and it becomes necessary to determine genetic-based and specific biomarkers other than invasive diagnostic methods such as biopsy diagnosis. Unlike the studies in the literature that carried out these purposes, in our study, the genes that were commonly upregulated in intrahepatic (iCHOL) and extrahepatic (eCHOL) cholangiocarcinoma patients were determined. In addition, our study aimed to identify genes that are upregulated in CHOL patients, differently from hepatocellular carcinoma (LICH), and in common with LIHC patients, since it is difficult to differentiate CHOL cancers from LIHC cancers in the clinic. Gene expression data of the patients were provided from the NCBI Gene Expression Omnibus (GEO) database (GSE121248, GSE132305 and GSE45001). In the study, upregulated genes (differentially expressed genes-DEGs) were detected between cancerous and non-cancerous samples using the linear modeling method in the R LIMMA package. Gene set enrichment analysis (Functional enrichment analysis) (GSEA) was performed using ShinyGO 0.80 webtool to determine which biological pathways the detected genes affect. According to our results, we focused on 4 genes (F2R, ITGA11, LAMC2 and LAMB3) that were upregulated in CHOL patients differently than in LIHC patients. Two commonly upregulated genes (COL1A1, ITGA2) were detected in CHOL and LIHC patients. The biological pathways that the genes in question commonly indicate are the PI3K-Akt signaling pathway and extracellular matrix (ECM)-receptor interaction processes. The identified genes and the results of protein-protein and drug interaction studies will be supported by clinical trials and can be effectively targeted to differentiate CHOL and LIHC cancers.

Kaynakça

  • 1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. A Cancer Journal for Clinicians, 2018, 68(6):394–424. https://doi.org/10.3322/caac.21492
  • 2. Aloia T., Pawlik T.M., Taouli B., et al. Intrahepatic bile ducts. In: AJCC Cancer Staging Manual, 8th ed, Amin MB (Ed), AJCC, Chicago. 2017, p.295.
  • 3. Khan S.A., Tavolari S., Brandi G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39 Suppl 1:19-31. doi: 10.1111/liv.14095.
  • 4. Shin D.W., Moon S.H., Kim J.H. Diagnosis of Cholangiocarcinoma. Diagnostics (Basel). 2023, 8;13(2):233. doi: 10.3390/diagnostics13020233.
  • 5. Panjala, C., Sénécal, D., Bridges, M.D., Kim, G.P., Nakhleh, R.E., Nguyen, J.H., ve ark. The Diagnostic Conundrum and Liver Transplantation Outcome for Combined Hepatocellular‐Cholangiocarcinoma. American Journal of Transplantation 2010, 10: 1263–126. doi:10.1111/j.1600-6143.2010.03062.x
  • 6. Choi J.H., Ro J.Y. Combined Hepatocellular-Cholangiocarcinoma: An Update on Pathology and Diagnostic Approach. Biomedicines. 2022, 10(8):1826. doi: 10.3390/biomedicines10081826.
  • 7. Huang J.L., Sun Y., Wu Z.H., Zhu H.J., Xia G.J., Zhu X.S., ve ark. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms. J Cancer Res Clin Oncol. 2023, 149(12):10161-10168. doi: 10.1007/s00432-023-04935-4.
  • 8. Ponnoprat D., Inkeaw P., Chaijaruwanich J., Traisathit P., Sripan P., Inmutto N., et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scans. Med Biol Eng Comput. 2020, 58(10):2497-2515. doi: 10.1007/s11517-020-02229-2.
  • 9. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, ve ark. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 2015, 43(7), e47–e47. doi: 10.1093/nar/gkv00
  • 10. Chandrashekar D.S., Karthikeyan S.K., Korla P.K., Patel H., Shovon A.R., Athar M., ve ark. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022, 25:18-27. doi: 10.1016/j.neo.2022.01.001.
  • 11. Ge S.X., Jung D., Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics, 2020, 8(36):2628–2629, https://doi.org/10.1093/bioinformatics/btz931
  • 12. Shen H., Bai X., Liu J., Liu P., Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol. 2022, 10;12:1001400. doi: 10.3389/fonc.2022.1001400. PMID: 36300097; PMCID: PMC9590411.
  • 13. Xiao Y., Zhang B., Cloyd J.M., Alaimo L., Xu G., Du S., ve ark. Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers (Basel). 2022, 5;14(13):3284. doi: 10.3390/cancers14133284.
  • 14. Joseph N.M., Tsokos C.G., Umetsu S.E., Shain A.H., Kelley R.K., Onodera C., ve ark. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J Pathol. 2019, 248(2):164-178. doi: 10.1002/path.5243.
  • 15. Mok S.R., Mohan S., Grewal N., Elfant A.B., Judge T.A. A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma. J Gastrointest Oncol. 2016, 7(4):570-9. doi: 10.21037/jgo.2016.04.01.
  • 16. Normanno N., Martinelli E., Melisi D., Pinto C., Rimassa L., Santini D., ve ark. Role of molecular genetics in the clinical management of cholangiocarcinoma. ESMO Open. 2022, 7(3):100505. doi: 10.1016/j.esmoop.2022.100505.
  • 17. Kutlu A., Arda M., Atak E., Ulukaya E. Identification of key genes and pathways for cholangiocarcinoma using an integrated bioinformatics analysis Int J Med Biochem 2022, 5(3):137-151 doi: 10.14744/ijmb.2022.18199
  • 18. Ma H.P., Chang H.L., Bamodu O.A., Yadav V.K., Huang T.Y., Wu A.T.H., ve ark. Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metastasis. Cancers (Basel). 2019, 7;11(6):786. doi: 10.3390/cancers11060786.
  • 19. Rattanasinchai C., Navasumrit P., Ruchirawat M. Elevated ITGA2 expression promotes collagen type I-induced clonogenic growth of intrahepatic cholangiocarcinoma. Sci Rep. 2022, 27;12(1):22429. doi: 10.1038/s41598-022-26747-1.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gizem Ayna Duran 0000-0002-2168-753X

Yayımlanma Tarihi 27 Mart 2024
Gönderilme Tarihi 17 Aralık 2023
Kabul Tarihi 6 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ayna Duran, G. (2024). Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 11(1), 141-149. https://doi.org/10.34087/cbusbed.1405966
AMA Ayna Duran G. Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar. CBU-SBED. Mart 2024;11(1):141-149. doi:10.34087/cbusbed.1405966
Chicago Ayna Duran, Gizem. “Kolanjiyokarsinom Ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11, sy. 1 (Mart 2024): 141-49. https://doi.org/10.34087/cbusbed.1405966.
EndNote Ayna Duran G (01 Mart 2024) Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11 1 141–149.
IEEE G. Ayna Duran, “Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar”, CBU-SBED, c. 11, sy. 1, ss. 141–149, 2024, doi: 10.34087/cbusbed.1405966.
ISNAD Ayna Duran, Gizem. “Kolanjiyokarsinom Ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11/1 (Mart 2024), 141-149. https://doi.org/10.34087/cbusbed.1405966.
JAMA Ayna Duran G. Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar. CBU-SBED. 2024;11:141–149.
MLA Ayna Duran, Gizem. “Kolanjiyokarsinom Ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 11, sy. 1, 2024, ss. 141-9, doi:10.34087/cbusbed.1405966.
Vancouver Ayna Duran G. Kolanjiyokarsinom ve Hepatoselüler Karsinom Hastalarında Farklı Genler Tarafından Tetiklenen Ortak Biyolojik Yolaklar. CBU-SBED. 2024;11(1):141-9.