Research Article
BibTex RIS Cite

Biokütle Tipi Kurulu Atık Su Arıtma Tesisinin Enerji Geri Kazanım Analizi

Year 2023, , 169 - 184, 30.03.2023
https://doi.org/10.21605/cukurovaumfd.1273770

Abstract

Enerji üretimi, biyokütle teknolojisi olarak adlandırılan bitki, hayvan veya bazen insan materyalinden de elde edilebilir. Biyokütle hammaddesi, bilinçli olarak yetiştirilen enerji bitkilerinden, gıda mahsullerinin atıklarından, ağaç veya orman artıklarından, bahçecilikten, hayvancılıktan, gıda işlemeden veya kanalizasyon tesislerinden kaynaklanan insan atıklarından elde edilebilir. Bu çalışmada, kurulu bir atık su arıtma tesisinin enerji geri kazanım analizi yapılmıştır. Yani, çalışmada, atık su arıtma tesisinden elde edilebilecek enerji geri kazanımının fiziksel ve kimyasal analizleri netleştirilmiştir. Bu kapsamda, günlük atık su giriş suyu debisi, atık su giriş suyu 24 saatlik ortalama sıcaklığı, atık su giriş suyu 24 saatlik pH ortalaması, atık su giriş suyu 24 saatlik iletkenlik ortalaması, gaz jeneratörü günlük gaz tüketimi, dizel jeneratörü günlük enerji üretimi, şehir hattından gerçekleştirilen günlük enerji tüketimi, gaz jeneratörü enerji üretimi, su arıtma tesisinin toplam enerji tüketimi ve arıtma tesisinin günlük gaz üretimi gibi parametreler tespit edilmiştir. Tesisin su arıtımını sağlama görevi vardır, bu nedenle tesiste, kayda değer bir enerji tüketiminin oluşabileceği beklenen bir durumdur. Ancak, insan atığı üzerinde gerçekleştirilen yakma işlemlerinin sağladığı biokütle teknolojisi ile enerjinin ne kadarının geri kazanılabileceği hususu önemlidir. Yani, bu çalışmada tesisin tükettiği toplam enerjinin %78,29'unun arıtma tesisinde meydana gelen bu işlemlerle geri kazanıldığı rapor edilmiştir. Öte yandan, Türkiye'nin bu kurulu santralinde geri kazanılan bu enerji miktarının toplam 14.200 GWh'ye karşılık geldiği bildirildi. Geri kazanılan enerji miktarının yanı sıra, biokütle enerji üretiminden sorumlu olan metan gazı miktarının deşarjı da dikkate alınan fiziksel ve kimyasal parametrelere göre analiz edilmiştir. Örneğin, yapılan analizler, atık su sıcaklığının artmasının metan gazı oluşum miktarının azalmasına neden olduğunu göstermiştir. Öte yandan, iletkenlik ve asitlik derecesinin artması ise metan gazı üretim miktarının artmasına neden olmuştur.

References

  • 1. Chow, J., Kopp, R.J., Portneym P.R., 2003. Energy Resources and Global Development, Science, 302, 1528-1531.
  • 2. Ramalho, E., Sequeira, T., Santos, M., 2018. The Effect of Income on the Energy Mix: Are Democracies More Sustainable? Global Environmental Change: Human and Policy Dimensions, 51, 10-21.
  • 3. Sequeira, T.N., Santos, M.S., 2018. Does Country-Risk Influence Electricity Production Worldwide? Journal of Policy Modeling, 40(4), 730-746.
  • 4. Ilhan, A., Bilgili, M., Sahin, B., 2022. Wind Farm and Installed Wind Power Analyses of Turkey, Cukurova University Journal of the Faculty of Engineering, 37(1), 171-185.
  • 5. Ilhan, A., Bilgili, M., Sari, M., Sahin, B., 2021. Aerodynamic Analysis of Onshore Commercial Large Scale Wind Turbine, Cukurova University Journal of the Faculty of Engineering, 36(4), 965-977.
  • 6. Li, M., Luo, N., Lu, Y., 2017. Biomass Energy Technological Paradigm (BETP): Trends in This Sector, Sustainability, 9(4), 1-28.
  • 7. Csereklyei, Z., Varas, M., Stern, D., 2016. Energy and Economic Growth: The 524 Stylized Facts, Energy Journal, 37(2), 223-255.
  • 8. Azevedo, S.G., Sequeira, T., Luis Mendes, M.S., 2019. Biomass-Related Sustainability: A Review of the Literature and Interpretive Structural Modeling, Energy, 171, 1107-1125.
  • 9. Sgroi, F., Donia, E., Alesi, D.R., 2018. Renewable Energies, Business Models and Local Growth, Land Use Policy, 72, 110-115.
  • 10. Ilhan, A., 2019. Aerodynamics and Statistical Analyses of Conventional and Diffuser Augmented Wind Turbines. PhD Thesis, Cukurova University, Institute of Natural and Applied Sciences, Department of Mechanical Engineering, Adana, 481.
  • 11. MENR, 2022. Republic of Turkey Ministry of Energy and Natural Resources, https://enerji.gov.tr/.
  • 12. Baykus, N., Karpuzcu M., 2021. The Effects of Wastewater on the Chemical and Physical Properties of Fine-Grained Soils, European Journal of Science and Technology, 31, 771-775.
  • 13. Levlin, E., 2007. Conductivity Measurements for Controlling Municipal Waste-Water Treatment. Polish-Swedish-Ukrainian Seminar, 23-24 November 2007, Ustron, Poland, 51-62.
  • 14. Waste Dashboard, How to Handle Wastewater Treatment and Disposal? https://evreka.co/blog/how-to-handle-wastewater-treatment-and-disposal/. Date of Access: 24.02.2023, Ankara.
  • 15. Aguado, D., Montoya, T., Ferrer, J., Seco, A., 2006. Relating Ions Concentration Variations to Conductivity Variations in a Sequencing Batch Reactor Operated for Enhanced Biological Phosphorus Removal, Environmental Modelling and Software, 21(6), 845-851.
  • 16. Alisawi, H.A.O., 2020. Performance of Wastewater Treatment During Variable Temperature, Applied Water Science, 10(89), 1-6.
  • 17. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater Engineering: Treatment and Reuse - 4th ed. Metcalf & Eddy, Inc., McGraw-Hill, New York, USA.
  • 18. IPCC Intergovernmental Panel on Climate Change, 2001. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK.
  • 19. Atlas Scientific, The Importance of Electrical Conductivity of Wastewater, https://atlas-scientific.com/blog/electrical-conductivity-of-wastewater/. Date of Access: 24.02.2023, New York.
  • 20. Berkem, A.R., Baykut, S., 1977. Fizikokimya. Fatih Yayınevi Matbaası, İstanbul, 2345.

Energy Recovery Analysıs of A Biomass Type of Installed Waste Water Treatment Plant

Year 2023, , 169 - 184, 30.03.2023
https://doi.org/10.21605/cukurovaumfd.1273770

Abstract

Energy production can also be obtained from plant, animal or sometimes human material, referred to be the biomass technology. The biomass raw material can be obtained from purposely grown energy crops, waste from food crops, wood or forest residues, horticulture, animal farming, food processing, or human waste from sewage plants. In this study, energy recovery analysis of an installed waste water treatment plant was conducted. The physical and chemical analyses of energy recovery that can be obtained from waste water treatment plant were clarified. In this regards, parameters including daily wastewater inlet water flow rate, wastewater inlet water 24 hourly average temperature, wastewater inlet water 24 hourly pH average, wastewater inlet water 24 hourly conductivity average, gas generator daily gas consumption, diesel generator daily energy generation, daily energy consumption from the city line, gas generator energy generation, total energy consumption of the water treatment plant, and daily gas generation of the treatment plant were identified. The plant has the duty of providing water treatment, so it is certain that noteworthy energy consumption in the plant can occur is an expected situation. However, the point that how much of the energy can be regained by the biomass technology provided by the burning processes conducted on the human waste is important. Namely, it is reported in this study that 78.29% of the total energy consumed by the plant was regained by these processes occurred in the treatment facility. On the other hand, this amount of recovered energy was reported to correspond a total of 14.200 GWh in this installed plant of Turkey. Apart from the amount of the recovered energy, the discharge of the amount of the methane gas which is responsible of the biomass energy generation was also analyzed according to the considered physical and chemical parameters. For instance, the analyses have shown that the increase of the waste water temperature causes decrease on the amount of the methane gas generation. On the other hand, the conductivity and the degree of acidity increase resulted the increase of the amount of the methane gas production.

References

  • 1. Chow, J., Kopp, R.J., Portneym P.R., 2003. Energy Resources and Global Development, Science, 302, 1528-1531.
  • 2. Ramalho, E., Sequeira, T., Santos, M., 2018. The Effect of Income on the Energy Mix: Are Democracies More Sustainable? Global Environmental Change: Human and Policy Dimensions, 51, 10-21.
  • 3. Sequeira, T.N., Santos, M.S., 2018. Does Country-Risk Influence Electricity Production Worldwide? Journal of Policy Modeling, 40(4), 730-746.
  • 4. Ilhan, A., Bilgili, M., Sahin, B., 2022. Wind Farm and Installed Wind Power Analyses of Turkey, Cukurova University Journal of the Faculty of Engineering, 37(1), 171-185.
  • 5. Ilhan, A., Bilgili, M., Sari, M., Sahin, B., 2021. Aerodynamic Analysis of Onshore Commercial Large Scale Wind Turbine, Cukurova University Journal of the Faculty of Engineering, 36(4), 965-977.
  • 6. Li, M., Luo, N., Lu, Y., 2017. Biomass Energy Technological Paradigm (BETP): Trends in This Sector, Sustainability, 9(4), 1-28.
  • 7. Csereklyei, Z., Varas, M., Stern, D., 2016. Energy and Economic Growth: The 524 Stylized Facts, Energy Journal, 37(2), 223-255.
  • 8. Azevedo, S.G., Sequeira, T., Luis Mendes, M.S., 2019. Biomass-Related Sustainability: A Review of the Literature and Interpretive Structural Modeling, Energy, 171, 1107-1125.
  • 9. Sgroi, F., Donia, E., Alesi, D.R., 2018. Renewable Energies, Business Models and Local Growth, Land Use Policy, 72, 110-115.
  • 10. Ilhan, A., 2019. Aerodynamics and Statistical Analyses of Conventional and Diffuser Augmented Wind Turbines. PhD Thesis, Cukurova University, Institute of Natural and Applied Sciences, Department of Mechanical Engineering, Adana, 481.
  • 11. MENR, 2022. Republic of Turkey Ministry of Energy and Natural Resources, https://enerji.gov.tr/.
  • 12. Baykus, N., Karpuzcu M., 2021. The Effects of Wastewater on the Chemical and Physical Properties of Fine-Grained Soils, European Journal of Science and Technology, 31, 771-775.
  • 13. Levlin, E., 2007. Conductivity Measurements for Controlling Municipal Waste-Water Treatment. Polish-Swedish-Ukrainian Seminar, 23-24 November 2007, Ustron, Poland, 51-62.
  • 14. Waste Dashboard, How to Handle Wastewater Treatment and Disposal? https://evreka.co/blog/how-to-handle-wastewater-treatment-and-disposal/. Date of Access: 24.02.2023, Ankara.
  • 15. Aguado, D., Montoya, T., Ferrer, J., Seco, A., 2006. Relating Ions Concentration Variations to Conductivity Variations in a Sequencing Batch Reactor Operated for Enhanced Biological Phosphorus Removal, Environmental Modelling and Software, 21(6), 845-851.
  • 16. Alisawi, H.A.O., 2020. Performance of Wastewater Treatment During Variable Temperature, Applied Water Science, 10(89), 1-6.
  • 17. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater Engineering: Treatment and Reuse - 4th ed. Metcalf & Eddy, Inc., McGraw-Hill, New York, USA.
  • 18. IPCC Intergovernmental Panel on Climate Change, 2001. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK.
  • 19. Atlas Scientific, The Importance of Electrical Conductivity of Wastewater, https://atlas-scientific.com/blog/electrical-conductivity-of-wastewater/. Date of Access: 24.02.2023, New York.
  • 20. Berkem, A.R., Baykut, S., 1977. Fizikokimya. Fatih Yayınevi Matbaası, İstanbul, 2345.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Akın İlhan This is me 0000-0003-3590-5291

Publication Date March 30, 2023
Published in Issue Year 2023

Cite

APA İlhan, A. (2023). Energy Recovery Analysıs of A Biomass Type of Installed Waste Water Treatment Plant. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 169-184. https://doi.org/10.21605/cukurovaumfd.1273770