Research Article
BibTex RIS Cite

Investigating Seventh Grade Students' Metacognitive Failures in the Mathematical Modeling Process

Year 2025, Issue: 64, 2230 - 2254, 30.06.2025
https://doi.org/10.53444/deubefd.1620514

Abstract

The aim of this study is to reveal the metacognitive failures of seventh grade students in the mathematical modeling process. For this purpose, red flag situations and three types of metacognitive failures defined by Goos (1998) were examined. An explanatory/descriptive case study was used in the study. The participants of the study consisted of two students studying in the seventh grade of a public school in the Black Sea Region and selected by criterion sampling, one of the purposeful sampling methods. The Football Field Problem was used to reveal the red flag situations and types of metacognitive failures. Data were collected using the think aloud technique. Data analysis was carried out in the stages of transcribing the data obtained from the think aloud and interviews, coding the thoughts that the students could express, and defining the red flags and metacognitive failures in the mathematical modeling process. The results of the study showed that the students experienced some metacognitive failures related to concepts such as measurement, measurement unit conversions, circle, diameter and radius, ratio and proportion. At the end of the study, it was determined that the students experienced metacognitive blindness 11 times, metacognitive mirage four times, and metacognitive vandalism five times. The types of metacognitive failure such as ‘blindness’, ‘mirage’, ‘vandalism’ that emerged in the study are reinforced especially in cases where monitoring and evaluation cannot be done together.

References

  • Alifiani, A., & Faradiba, S. S. (2021). Mathematics pre-service teacher’s metacognitive failure in mathematics online learning. Jurnal Riset Pendidikan Matematika, 8(2), 179-190. https://dx.doi.org/10.21831/jrpm.v8i2.43366
  • Arsuk, S., & Sezgin-Memnun, D. (2020). Yedinci sınıf öğrencilerinde üstbiliş destekli problem çözme stratejileri öğretiminin öğrenci başarısına ve üstbiliş becerilere etkisi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(2), 559-573.
  • Aşık, G., & Erktin, E. (2019). Üstbilişsel deneyimlerin üstbiliş bilgisi ile problem çözme ilişkisindeki aracılık etkisi. Eğitim ve Bilim, 44(197).
  • Aydın, E., & Ünsever, Ö. (2024). Erken çocuklukta üstbilişin doğası, desteklenmesi ve değerlendirilmesi. Yaşadıkça Eğitim Dergisi.
  • Baltacı, S., Yıldız, A. ve Güven, B. (2014). Knowledge types used by eighth grade gifted students while solving problems. Bolema, 28 (50), 1032-1055.
  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. Trends in teaching and learning of mathematical modelling: ICTMA14, 15-30.
  • Blum, W. (2015). Quality teaching of mathematical modeling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–96). Cham: Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications and links to other subjects-state, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37-68.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
  • Bukova-Güzel, E., Tekin-Dede, A., Hıdıroğlu, Ç. N., Kula-Ünver, S., & Özaltun-Çelik, A., (2016). Matematik eğitiminde matematiksel modelleme:araştırmacılar eğitimciler ve öğrenciler için. Bukova Güzel Esra (Ed.). Ankara: Pegem Akademi.
  • Cantimer, G., & Şengül, S. (2017). Ortaokul 7. ve 8. sınıf öğrencilerinin çember konusundaki kavram yanılgıları ve hataları. Gazi Eğitim Bilimleri Dergisi, 3(1).
  • Cengiz, C., & Karataş, F. Ö. (2016). Yansıtıcı düşünme ve öğretimi. Milli Eğitim Dergisi, 45(211), 5-27.
  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Lawrence Erlbaum Associates, Inc.
  • Creswell, J. W. (2003). Research design: qualitative, quantitative and mixed methods approaches. California: Sage Publications.
  • Çiftci, O., & Tatar, E. (2015). Güncellenen ortaöğretim matematik öğretim programı hakkında öğretmen görüşleri. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 6(2), 285-298. https://doi.org/10.16949/turcomat.15375
  • Dağlı, H. (2010). İlköğretim beşinci sınıf öğrencilerinin çevre, alan ve hacim konularına ilişkin kavram yanılgıları. [Yayınlanmamış yüksek lisans tezi]. Afyon Kocatepe Üniversitesi.
  • Demir, Ö., & Doğanay, A. (2008). Bilişsel koçluk yoluyla öğretilen bilişsel farkındalık stratejilerinin akademik başarıya etkisi. Journal Of Educational Sciences & Practices, 7(14).
  • Demircioğlu, H., Argün, Z., & Bulut, S. (2010). A case study: assessment of preservice secondary mathematics teachers’ metacognitive behaviour in the problem-solving process. ZDM, 42, 493-502.
  • Desoete, A. (2001). Off-line metacognition in children with mathematics learning disabilities. Ghent, Faculty of Psychology and Educational Sciences, Ghent, Belgium.
  • Doğan, A., & Çetin, İ. (2009). Doğru ve ters orantı konusundaki 7. ve 9. sınıf öğrencilerinin kavram yanılgıları. Uşak Üniversitesi Sosyal Bilimler Dergisi, 2(2), 118-128. https://doi.org/10.12780/UUSBD47
  • English, L. D. (2003). Reconciling theory, research, and practice: A models and modelling perspective. Educational Studies in Mathematics, 54(2-3), 225-248.
  • Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols with descriptions and explanations of thinking. Mind, Culture, and Activity, 5(3), 178–186.
  • Faradiba, S., Sa'dijah, C., Parta, N., & Rahardjo, S. (2019). Looking without seeing: the role of metacognitive blindness of student with high math anxiety, International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 7(2), 53-65
  • Flavell, J. H. (1971). First discussant’s comments: What is memory development the development of?. Human development, 14(4), 272-278.
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Hillsdale: Erlbaum.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive- developmental inquiry. The American Psychologist, 34(10), 906–911.
  • Flavell, J. H. (1987). Speculations about the nature and development of metacognition. Metacognition, motivation and understanding/Lawrence Erlbaum.
  • Fox, J. L. (2006). A justification for mathematical modelling experiences in the preparatory classroom. Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia. 1, 221-228.
  • Goos, M. (1998). ‘I don’t know if I’m doing it right or I’m doing it wrong!’ Unresolved uncertainty in the collaborative learning of mathematics. In C. Kanes, M. Goos, & E. Warren (Eds.), Teaching mathematics in new times. (Proceedings of the twenty-first annual conference of the Mathematics Education Research Group of Australasia) (Vol. 1, pp. 225–232). Gold Coast: MERGA.
  • Hartman, H. (2002). Metacognition in learning and instruction. Kluwer Academic Publishers.
  • Hattie, J. A. C., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis. Review of Educational Research, 66(2), 99–136.
  • Hıdıroğlu, Ç., & Bukova-Güzel, E. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın University Journal of Faculty of Education, 2(1), 127-145.
  • Hidayat, R., Syed-Zamri, S. N. A., Zulnaidi, H., & Yuanita, P. (2020). Meta-cognitive behaviour and mathematical modelling competency: mediating effect of performance goals. Heliyon, 6(4), e03800. https://doi.org/10.1016/j.heliyon.2020.e03800
  • Hoffman, W. C. (1995). The dialectics of giftedness: Gifted intellect and creativity. Roeper Review, 17(3), 201–206.
  • Huda, N., & Marsal, J. (2021). Exploring student metacognitive failures based on red flag in mathematic problem solving: a case study in mathematic education program. Proceedings of the 3rd Green Development International Conference (GDIC 2020), 205. https://doi.org/10.2991/aer.k.21082 5.077
  • Huda, N., Nusantar, T., Sutawidjaja, A., & Rahardjo, S. (2016). University students' metacognitive failures in mathematical proving investigated based on the framework of assimilation and accommodation. Educational Research and Reviews, 11(12), 1119-1128.
  • Huda, N., Sutawidjaja, A., & Rahardjo, S. (2018). The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving. In Journal of Physics: Conference Series (Vol. 1008, No. 1, p. 012073). IOP Publishing.
  • Huda, N., Sutawidjaja, A., Subanji, S., & Rahardjo, S. (2019). Investigation of students’ metacognitive failures in mathematical problem solving based on metacognitive behavior. In Journal of Physics: Conference Series (Vol. 1157, No. 3, p. 032102). IOP Publishing.
  • Jacobs, J. E., & Paris, S. G. (1987). Children’s metacognition about reading: Issues in definition, measurement, and ınstruction. Educational Psychologist, 22, 225-278.
  • Kaplan, G. ve Aykut, Ç. (2022). Üstbilişi geliştirmek için düzenlenmiş olan öğretim etkinliklerinin öğretmen adaylarının üstbilişsel farkındalıklarına etkisinin incelenmesi. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Özel Eğitim Dergisi, 23(1), 23-51. ttps://doi.org/10.21565/ozelegitimdergisi.715775
  • Kuzle, A. (2013). Patterns of Metacognitive Behavior During Mathematics Problem-Solving in a Dynamic Geometry Environment. International Electronic Journal of Mathematics Education, 8(1), 20-40. https://doi.org/10.29333/iejme/272
  • Lesh, R., ve Doerr, H. (2003). Foundation of a models and modeling perspective on mathematics teaching and learning. Beyond constructivism: A models and modeling perspective on mathematics teaching, learning, and problem solving, 9-34.
  • Livingston, J. A. (2003). Metacognition: an overview. Psychology, 13, 259-266.
  • Maaß, K. (2006). What are modelling competencies?. ZDM, 38, 113-142.
  • Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13(6), 522-526.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed). Thousand Oaks, CA: Sage
  • Milli Eğitim Bakanlığı (MEB). (2018). Matematik dersi öğretim programı (İlkokul ve Ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara.
  • Muncer, G., Higham, P. A., Gosling, C. J., Cortese, S., Wood-Downie, H., & Hadwin, J. A. (2022). A meta-analysis investigating the association between metacognition and math performance in adolescence. Educational Psychology Review, 34(1), 301–334. https://doi.org/10.1007/s10648-021-09620-x
  • National Council of Teachers of Mathematics. (2000). Principles and standarts for school mathematics: an overview. Reston: NCTM.
  • Ng, K. E. D. (2010). Partial metacognitive blindness in collaborative problem solving. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education (pp. 446–453). St Lucia, Qld.: MERGA.
  • Paris, S. G., & Winograd, P. (2013). How metacognition can promote academic learning and instruction. In Dimensions of thinking and cognitive instruction (pp. 15-51). Routledge.
  • Pillow, B. H. (2008). Development of children’s understanding of cognitive activities. The Journal of Genetic Psychology, 169(4), 297–321.
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219–225. https://doi.org/10.1207/s15430421tip4104_3
  • Rozak, M. A., Nusantara, T., Subanji, M., & Sulandra, M. I. M. (2020). Identiciation metacognitive failure based on the statistical reasoning level. International Journal of Scientific & Technology Research, 9(3).
  • Rozak, M. A., Subanji, M., Nusantara, T., & Sulandra, M. I. M. (2018). Identification metacognitive failure on mathematics problem solving. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 108-113). Atlantis Press.
  • Sasongko, D. F. (2023). Teacher student's metacognitive failure when solving sphere equation question and their scaffolding. Aksioma Jurnal Pendidikan Matematika, 12(1), 778-788.
  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 42, 149–161.
  • Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational applications. New York, NY: Routledge.
  • Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307
  • Sevgi, S., & Çağlıköse, M. (2020). Altıncı sınıf öğrencilerinin kesir problemleri çözme sürecinde kullandıkları üstbiliş becerilerinin incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(3), 662-687.
  • Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for information, 22(2), 63-75.
  • Stillman, G. A. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In: Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (eds) Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_18
  • Stillman, G. A. (2015). Applications and modelling research in secondary classrooms: What have we learnt? In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 791–805). Springer International Publishing.
  • Ünsever, Ö. ve Kutluca, A. (2024). Okul öncesi öğretmenlerinin düşünme becerileri eğitimine ilişkin görüşlerinin öğretmeye yönelik üstbilişsel farkındalık düzeyleri açısından incelemesi. Trakya Eğitim Dergisi, 14(2), 609-627. https://doi.org/10.24315/tred.1360976
  • Veenman, M. V. J., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14. https://doi.org/10.1007/s11409-006-6893-0
  • Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197–218). New York: Routledge.
  • Vorhölter, K., (2023). Metacognition in mathematical modeling: the connection between metacognitive individual strategies, metacognitive group strategies and modeling competencies, Mathematical Thinking and Learning, 25:3, 317-334, DOI: 10.1080/10986065.2021.2012740
  • Vorhölter, K., Krüger, A., Wendt, L. (2019). Metacognition in mathematical modeling: an overview. In: Chamberlin, S.A., Sriraman, B. (eds) Affect in Mathematical Modeling. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-04432-9_3
  • Wendt, L., Vorhölter, K., & Kaiser, G. (2020). Teachers’ perspectives on students’ metacognitive strategies during mathematical modelling processes – A case study. In G. Stillman, G. Kaiser, & C. Lampen (Eds.), Mathematical modelling education and sense-making: International perspectives on the teaching and learning of mathematical modelling (pp. 335–346). Springer
  • Wulan, E. R., Subanji, S., & Muksar, M. (2021). Metacognitive failure in constructing proof and how to scaffold it. Al-Jabar: Jurnal Pendidikan Matematika, 12(2), 295-314.
  • Yıldırım, T.P. (2010). Understanding the modelling skill shift in engineering: the ımpact of self-efficacy, epistemology, and metacognition. Ph.D. dissertation. University of Pittsburgh, Pennsylvania.
  • Yıldız, A. ve Güven, B. (2016). Matematik öğretmenlerinin sorunu çözme ortamlarında öğrencilerinin üstbilişlerini harekete geçirmeye yönelik davranışları. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(1), 575-598.
  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169. https://doi.org/10.1080/03057267.2013.850140
  • Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? The Journal of the Learning Sciences, 12(2), 145–181. https://doi.org/10.1207/S15327809JLS1202_1

Yedinci Sınıf Öğrencilerinin Matematiksel Modelleme Sürecindeki Üstbilişsel Başarısızlıklarının İncelenmesi

Year 2025, Issue: 64, 2230 - 2254, 30.06.2025
https://doi.org/10.53444/deubefd.1620514

Abstract

Bu çalışmanın amacı yedinci sınıf öğrencilerinin matematiksel modelleme sürecindeki üstbilişsel başarısızlıklarının ortaya çıkarılmasıdır. Bu amaç doğrultusunda Goos (1998) tarafından tanımlanan kırmızı bayrak durumları ve üç tür üstbilişsel başarısızlık türleri incelenmiştir. Çalışmada açıklayıcı/tanımlayıcı durum çalışması kullanılmıştır. Araştırmanın katılımcılarını Karadeniz Bölgesi’ndeki bir devlet okulunun yedinci sınıfında öğrenim gören ve amaçlı örnekleme yöntemlerinden ölçüt örnekleme ile seçilen iki öğrenci oluşturmaktadır. Kırmızı bayrak durumları ve üstbilişsel başarısızlık türlerinin ortaya çıkarılması amacıyla Futbol Sahası Problemi kullanılmıştır. Veriler, sesli düşünme (think aloud) tekniği kullanılarak toplanmıştır. Verilerin analizi sesli düşünme ve görüşmelerden elde edilen verilerin yazıya dökülmesi, öğrencilerin ifade edebildikleri düşüncelerinin kodlanması, matematiksel modelleme sürecindeki kırmızı bayraklar ve üstbilişsel başarısızlıkların tanımlanması aşamalarında gerçekleştirilmiştir. Çalışmanın sonuçları öğrencilerin ölçme, ölçü birimi dönüşümleri, çember, çap ve yarıçap, oran ve orantı gibi kavramlarla ilişkili olarak birtakım üstbilişsel başarısızlık yaşadıklarını göstermiştir. Çalışma sonunda öğrencilerin 11 defa üstbilişsel körlük, dört defa üstbilişsel serap ve beş defa üstbilişsel vandalizm yaşadıkları belirlenmiştir. Çalışmada ortaya çıkan “körlük”, “serap”, “vandalizm” gibi üstbilişsel başarısızlık türleri özellikle izleme ve değerlendirmenin birlikte yapılamadığı durumlarda daha da pekişmektedir.

References

  • Alifiani, A., & Faradiba, S. S. (2021). Mathematics pre-service teacher’s metacognitive failure in mathematics online learning. Jurnal Riset Pendidikan Matematika, 8(2), 179-190. https://dx.doi.org/10.21831/jrpm.v8i2.43366
  • Arsuk, S., & Sezgin-Memnun, D. (2020). Yedinci sınıf öğrencilerinde üstbiliş destekli problem çözme stratejileri öğretiminin öğrenci başarısına ve üstbiliş becerilere etkisi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(2), 559-573.
  • Aşık, G., & Erktin, E. (2019). Üstbilişsel deneyimlerin üstbiliş bilgisi ile problem çözme ilişkisindeki aracılık etkisi. Eğitim ve Bilim, 44(197).
  • Aydın, E., & Ünsever, Ö. (2024). Erken çocuklukta üstbilişin doğası, desteklenmesi ve değerlendirilmesi. Yaşadıkça Eğitim Dergisi.
  • Baltacı, S., Yıldız, A. ve Güven, B. (2014). Knowledge types used by eighth grade gifted students while solving problems. Bolema, 28 (50), 1032-1055.
  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. Trends in teaching and learning of mathematical modelling: ICTMA14, 15-30.
  • Blum, W. (2015). Quality teaching of mathematical modeling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–96). Cham: Springer.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications and links to other subjects-state, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37-68.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
  • Bukova-Güzel, E., Tekin-Dede, A., Hıdıroğlu, Ç. N., Kula-Ünver, S., & Özaltun-Çelik, A., (2016). Matematik eğitiminde matematiksel modelleme:araştırmacılar eğitimciler ve öğrenciler için. Bukova Güzel Esra (Ed.). Ankara: Pegem Akademi.
  • Cantimer, G., & Şengül, S. (2017). Ortaokul 7. ve 8. sınıf öğrencilerinin çember konusundaki kavram yanılgıları ve hataları. Gazi Eğitim Bilimleri Dergisi, 3(1).
  • Cengiz, C., & Karataş, F. Ö. (2016). Yansıtıcı düşünme ve öğretimi. Milli Eğitim Dergisi, 45(211), 5-27.
  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Lawrence Erlbaum Associates, Inc.
  • Creswell, J. W. (2003). Research design: qualitative, quantitative and mixed methods approaches. California: Sage Publications.
  • Çiftci, O., & Tatar, E. (2015). Güncellenen ortaöğretim matematik öğretim programı hakkında öğretmen görüşleri. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 6(2), 285-298. https://doi.org/10.16949/turcomat.15375
  • Dağlı, H. (2010). İlköğretim beşinci sınıf öğrencilerinin çevre, alan ve hacim konularına ilişkin kavram yanılgıları. [Yayınlanmamış yüksek lisans tezi]. Afyon Kocatepe Üniversitesi.
  • Demir, Ö., & Doğanay, A. (2008). Bilişsel koçluk yoluyla öğretilen bilişsel farkındalık stratejilerinin akademik başarıya etkisi. Journal Of Educational Sciences & Practices, 7(14).
  • Demircioğlu, H., Argün, Z., & Bulut, S. (2010). A case study: assessment of preservice secondary mathematics teachers’ metacognitive behaviour in the problem-solving process. ZDM, 42, 493-502.
  • Desoete, A. (2001). Off-line metacognition in children with mathematics learning disabilities. Ghent, Faculty of Psychology and Educational Sciences, Ghent, Belgium.
  • Doğan, A., & Çetin, İ. (2009). Doğru ve ters orantı konusundaki 7. ve 9. sınıf öğrencilerinin kavram yanılgıları. Uşak Üniversitesi Sosyal Bilimler Dergisi, 2(2), 118-128. https://doi.org/10.12780/UUSBD47
  • English, L. D. (2003). Reconciling theory, research, and practice: A models and modelling perspective. Educational Studies in Mathematics, 54(2-3), 225-248.
  • Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols with descriptions and explanations of thinking. Mind, Culture, and Activity, 5(3), 178–186.
  • Faradiba, S., Sa'dijah, C., Parta, N., & Rahardjo, S. (2019). Looking without seeing: the role of metacognitive blindness of student with high math anxiety, International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 7(2), 53-65
  • Flavell, J. H. (1971). First discussant’s comments: What is memory development the development of?. Human development, 14(4), 272-278.
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Hillsdale: Erlbaum.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive- developmental inquiry. The American Psychologist, 34(10), 906–911.
  • Flavell, J. H. (1987). Speculations about the nature and development of metacognition. Metacognition, motivation and understanding/Lawrence Erlbaum.
  • Fox, J. L. (2006). A justification for mathematical modelling experiences in the preparatory classroom. Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia. 1, 221-228.
  • Goos, M. (1998). ‘I don’t know if I’m doing it right or I’m doing it wrong!’ Unresolved uncertainty in the collaborative learning of mathematics. In C. Kanes, M. Goos, & E. Warren (Eds.), Teaching mathematics in new times. (Proceedings of the twenty-first annual conference of the Mathematics Education Research Group of Australasia) (Vol. 1, pp. 225–232). Gold Coast: MERGA.
  • Hartman, H. (2002). Metacognition in learning and instruction. Kluwer Academic Publishers.
  • Hattie, J. A. C., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis. Review of Educational Research, 66(2), 99–136.
  • Hıdıroğlu, Ç., & Bukova-Güzel, E. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın University Journal of Faculty of Education, 2(1), 127-145.
  • Hidayat, R., Syed-Zamri, S. N. A., Zulnaidi, H., & Yuanita, P. (2020). Meta-cognitive behaviour and mathematical modelling competency: mediating effect of performance goals. Heliyon, 6(4), e03800. https://doi.org/10.1016/j.heliyon.2020.e03800
  • Hoffman, W. C. (1995). The dialectics of giftedness: Gifted intellect and creativity. Roeper Review, 17(3), 201–206.
  • Huda, N., & Marsal, J. (2021). Exploring student metacognitive failures based on red flag in mathematic problem solving: a case study in mathematic education program. Proceedings of the 3rd Green Development International Conference (GDIC 2020), 205. https://doi.org/10.2991/aer.k.21082 5.077
  • Huda, N., Nusantar, T., Sutawidjaja, A., & Rahardjo, S. (2016). University students' metacognitive failures in mathematical proving investigated based on the framework of assimilation and accommodation. Educational Research and Reviews, 11(12), 1119-1128.
  • Huda, N., Sutawidjaja, A., & Rahardjo, S. (2018). The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving. In Journal of Physics: Conference Series (Vol. 1008, No. 1, p. 012073). IOP Publishing.
  • Huda, N., Sutawidjaja, A., Subanji, S., & Rahardjo, S. (2019). Investigation of students’ metacognitive failures in mathematical problem solving based on metacognitive behavior. In Journal of Physics: Conference Series (Vol. 1157, No. 3, p. 032102). IOP Publishing.
  • Jacobs, J. E., & Paris, S. G. (1987). Children’s metacognition about reading: Issues in definition, measurement, and ınstruction. Educational Psychologist, 22, 225-278.
  • Kaplan, G. ve Aykut, Ç. (2022). Üstbilişi geliştirmek için düzenlenmiş olan öğretim etkinliklerinin öğretmen adaylarının üstbilişsel farkındalıklarına etkisinin incelenmesi. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Özel Eğitim Dergisi, 23(1), 23-51. ttps://doi.org/10.21565/ozelegitimdergisi.715775
  • Kuzle, A. (2013). Patterns of Metacognitive Behavior During Mathematics Problem-Solving in a Dynamic Geometry Environment. International Electronic Journal of Mathematics Education, 8(1), 20-40. https://doi.org/10.29333/iejme/272
  • Lesh, R., ve Doerr, H. (2003). Foundation of a models and modeling perspective on mathematics teaching and learning. Beyond constructivism: A models and modeling perspective on mathematics teaching, learning, and problem solving, 9-34.
  • Livingston, J. A. (2003). Metacognition: an overview. Psychology, 13, 259-266.
  • Maaß, K. (2006). What are modelling competencies?. ZDM, 38, 113-142.
  • Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13(6), 522-526.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed). Thousand Oaks, CA: Sage
  • Milli Eğitim Bakanlığı (MEB). (2018). Matematik dersi öğretim programı (İlkokul ve Ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara.
  • Muncer, G., Higham, P. A., Gosling, C. J., Cortese, S., Wood-Downie, H., & Hadwin, J. A. (2022). A meta-analysis investigating the association between metacognition and math performance in adolescence. Educational Psychology Review, 34(1), 301–334. https://doi.org/10.1007/s10648-021-09620-x
  • National Council of Teachers of Mathematics. (2000). Principles and standarts for school mathematics: an overview. Reston: NCTM.
  • Ng, K. E. D. (2010). Partial metacognitive blindness in collaborative problem solving. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education (pp. 446–453). St Lucia, Qld.: MERGA.
  • Paris, S. G., & Winograd, P. (2013). How metacognition can promote academic learning and instruction. In Dimensions of thinking and cognitive instruction (pp. 15-51). Routledge.
  • Pillow, B. H. (2008). Development of children’s understanding of cognitive activities. The Journal of Genetic Psychology, 169(4), 297–321.
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219–225. https://doi.org/10.1207/s15430421tip4104_3
  • Rozak, M. A., Nusantara, T., Subanji, M., & Sulandra, M. I. M. (2020). Identiciation metacognitive failure based on the statistical reasoning level. International Journal of Scientific & Technology Research, 9(3).
  • Rozak, M. A., Subanji, M., Nusantara, T., & Sulandra, M. I. M. (2018). Identification metacognitive failure on mathematics problem solving. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 108-113). Atlantis Press.
  • Sasongko, D. F. (2023). Teacher student's metacognitive failure when solving sphere equation question and their scaffolding. Aksioma Jurnal Pendidikan Matematika, 12(1), 778-788.
  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 42, 149–161.
  • Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational applications. New York, NY: Routledge.
  • Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307
  • Sevgi, S., & Çağlıköse, M. (2020). Altıncı sınıf öğrencilerinin kesir problemleri çözme sürecinde kullandıkları üstbiliş becerilerinin incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(3), 662-687.
  • Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for information, 22(2), 63-75.
  • Stillman, G. A. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In: Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (eds) Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_18
  • Stillman, G. A. (2015). Applications and modelling research in secondary classrooms: What have we learnt? In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 791–805). Springer International Publishing.
  • Ünsever, Ö. ve Kutluca, A. (2024). Okul öncesi öğretmenlerinin düşünme becerileri eğitimine ilişkin görüşlerinin öğretmeye yönelik üstbilişsel farkındalık düzeyleri açısından incelemesi. Trakya Eğitim Dergisi, 14(2), 609-627. https://doi.org/10.24315/tred.1360976
  • Veenman, M. V. J., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14. https://doi.org/10.1007/s11409-006-6893-0
  • Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197–218). New York: Routledge.
  • Vorhölter, K., (2023). Metacognition in mathematical modeling: the connection between metacognitive individual strategies, metacognitive group strategies and modeling competencies, Mathematical Thinking and Learning, 25:3, 317-334, DOI: 10.1080/10986065.2021.2012740
  • Vorhölter, K., Krüger, A., Wendt, L. (2019). Metacognition in mathematical modeling: an overview. In: Chamberlin, S.A., Sriraman, B. (eds) Affect in Mathematical Modeling. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-04432-9_3
  • Wendt, L., Vorhölter, K., & Kaiser, G. (2020). Teachers’ perspectives on students’ metacognitive strategies during mathematical modelling processes – A case study. In G. Stillman, G. Kaiser, & C. Lampen (Eds.), Mathematical modelling education and sense-making: International perspectives on the teaching and learning of mathematical modelling (pp. 335–346). Springer
  • Wulan, E. R., Subanji, S., & Muksar, M. (2021). Metacognitive failure in constructing proof and how to scaffold it. Al-Jabar: Jurnal Pendidikan Matematika, 12(2), 295-314.
  • Yıldırım, T.P. (2010). Understanding the modelling skill shift in engineering: the ımpact of self-efficacy, epistemology, and metacognition. Ph.D. dissertation. University of Pittsburgh, Pennsylvania.
  • Yıldız, A. ve Güven, B. (2016). Matematik öğretmenlerinin sorunu çözme ortamlarında öğrencilerinin üstbilişlerini harekete geçirmeye yönelik davranışları. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(1), 575-598.
  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169. https://doi.org/10.1080/03057267.2013.850140
  • Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? The Journal of the Learning Sciences, 12(2), 145–181. https://doi.org/10.1207/S15327809JLS1202_1
There are 75 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Articles
Authors

Muhammed Özsoy 0000-0003-4522-8124

Handan Demircioğlu 0000-0001-7037-6140

Publication Date June 30, 2025
Submission Date January 15, 2025
Acceptance Date May 15, 2025
Published in Issue Year 2025 Issue: 64

Cite

APA Özsoy, M., & Demircioğlu, H. (2025). Yedinci Sınıf Öğrencilerinin Matematiksel Modelleme Sürecindeki Üstbilişsel Başarısızlıklarının İncelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(64), 2230-2254. https://doi.org/10.53444/deubefd.1620514