Research Article
BibTex RIS Cite

Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu

Year 2023, , 263 - 274, 15.05.2023
https://doi.org/10.21205/deufmd.2023257401

Abstract

Bakteriyel selüloz (BS), biyouyumlu, üretimi kolay, yüksek çekme dayanımı gösteren, nanofibril ağ yapısı ile yüksek su tutma özelliğinde olan ve bazı mikroorganizmalar tarafından üretilebilen doğal bir polimerdir. Medikal uygulamalar için iyi bir aday olan BS, membran yapısı nedeniyle deri ikamesi çalışmalarında geliştirilebilir bir potansiyel taşımaktadır. Ancak, sıkı yapıdaki selüloz nanofibrilleri hücre tutunması ve göçüne imkân vermemektedir. Bu çalışma kapsamında deri ikamesi olarak kullanılabilecek yeterli gözenek çapına sahip BS’nin in situ üretimi, keratin ile modifikasyonu ve karakterizasyonu amaçlanmıştır.
Gluconacetobacter xylinus ATCC 700178 suşu kullanılarak iki farklı yöntemle (agar parçalama ve agar damlatma) selüloz nanofibrilleri arasındaki gözenek çapı arttırılarak üretilen BS daha sonra derinin önemli bir bileşeni olan keratin ile modifiye edilmiştir. Keratin kaynağı olarak insan saçları kullanılmış ve Shindai özütlemesi ile keratin elde edilmiştir. Keratin çözeltisi BS membranlara emdirilerek malzemenin karakterizasyonu FTIR (Fourier dönüşümlü kızıl ötesi spektrometresi), SEM (Taramalı elektron mikroskobu) ve mekanik çekme dayanımı testleri ile gerçekleştirilmiştir. Sonuç olarak, arttırılmış gözenek çapına sahip (>100μm) yapısında keratin bulunduran ve 0,1- 0,15 MPa aralığında maksimum çekme dayanımı gösteren, deri ikame adayı olabilecek BS üretimi gerçekleştirilmiştir.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2018-20231

Thanks

Bu çalışma Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından FYL-2018-20231nolu proje ile desteklenmiştir.

References

  • [1] WHO, Burns- Key facts, https://www.who.int/news-room/fact-sheets/detail/burns (Erişim Tarihi: 19/08/2021)
  • [2] Schulz III, J. T., Tompkins, R. G., Burke, J. F. 2000. Artificial skin, Annual Review of Medicine, Cilt. 51(1), s. 231-244. DOI: 10.1146/annurev.med.51.1.231
  • [3] Beele, H. 2002. Artificial skin: past, present and future, The International Journal of Artificial Organs, Cilt. 5(3), s. 163-173. DOI: 10.1177/039139880202500302
  • [4] Nyame, T.T., Chiang, H.A., Leavitt, T., Ozambela, M., Orgill, D.P. 2015. Tissue-Engineered Skin Substitutes, Plastic and Reconstructive Surgery, Cilt. 136(6), s. 1379–1388. DOI: 10.1097/PRS.0000000000001748
  • [5] Jozala, A.F., de Lencastre-Novaes, L.C., Lopes, A.M., de Carvalho Santos-Ebinuma, V., Mazzola, P.G., Pessoa-Jr, A., Frotto, D., Gerenutti M., Chaud M.V. 2016. Bacterial nanocellulose production and application: a 10-year overview, Applied Microbiology and Biotechnology, Cilt. 100, s. 2063–2072. DOI: 10.1007/s00253-015-7243-4
  • [6] Emre Oz, Y., Keskin-Erdogan, Z., Safa, N., Hames Tuna, E.E. 2021. A review of functionalised bacterial cellulose for targeted biomedical fields, Journal of Biomaterials Applications. DOI: 10.1177/0885328221998033
  • [7] Cheng, K.C., Catchmark, J.M., Demirci, A. 2011. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis, Biomacromolecules, Cilt. 12(3), s. 730–736. DOI: 10.1021/bm101363t
  • [8] Wei, B., Yang, G., Hong, F. 2011. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties, Carbohydrate Polymers, Cilt. 84(1), s. 533–538. DOI: 10.1016/j.carbpol.2010.12.017
  • [9] Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H. P., Marsch, S. 2006. Nanocelluloses as innovative polymers in research and application. Polysaccharides II, s.49-96. DOI: 10.1007/12_097
  • [10] Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. 1998. Structural features and properties of bacterial cellulose produced in agitated culture, Cellulose, Cilt. 5(3), s. 187-200.
  • [11] Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., Uryu, M. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose, Journal of Materials Science, Cilt. 24(9), s. 3141–3145. DOI: 10.1007/BF01139032
  • [12] Cannon, R.E., Anderson, S.M. 1991. Biogenesis of bacterial cellulose, Critical Reviews in Microbiology, Cilt. 17(6), s. 435–447. DOI: 10.3109/10408419109115207
  • [13] Jonas, R., Farah, L.F. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability, Cilt. 59(1–3), s. 101–106. DOI: 10.1016/S0141-3910(97)00197-3
  • [14] Iguchi, M., Yamanaka, S., Budhiono, A. 2000. Bacterial cellulose- a masterpiece of nature’s arts, Journal of Materials Science, Cilt. 35(2), s. 261–270. DOI: 10.1023/A:1004775229149
  • [15] Bilgi, E., Bayir, E., Sendemir-Urkmez, A., Hames, E.E. 2016. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean, International Journal of Biological Macromolecules, Cilt. 90, s. 2–10. DOI: 10.1016/j.ijbiomac.2016.02.052
  • [16] Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., Payne, W.G., Smith, D.J., Robson M.C. 2007. Comparative evaluation of silver‐containing antimicrobial dressings and drugs, International Wound Journal, Cilt. 4(2), s. 114-122. DOI: 10.1111/j.1742-481X.2007.00316.x
  • [17] Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., Ribeiro, S.J.L., 2011. Antimicrobial bacterial cellulose-silver nanoparticles composite membranes, Journal of Nanomaterials. Article ID 721631DOI: 10.1155/2011/721631
  • [18] Culebras, M., Grande, C.J., Torres, F.G., Troncoso, O.P., Gomez, C.M., Bañó, M.C. 2015. Optimization of cell growth on bacterial cellulose by adsorption of collagen and poly-l-lysine, International Journal of Polymeric Materials and Polymeric Biomaterials, Cilt. 64(8), s. 411–415. DOI: 10.1080/00914037.2014.958829
  • [19] Ghalia, M.A., Dahman, Y. 2017. Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications, Polymer Testing, Cilt. 61, s. 114-131. DOI: 10.1016/j.polymertesting.2017.05.016
  • [20] Li, Y., Jiang, H., Zheng, W., Gong, N., Chen, L., Jiang, X., Yang, G. 2015. Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair, Journal of Materials Chemistry B, Cilt. 3(17), s. 3498-3507. DOI: 10.1039/C4TB01819B
  • [21] Moraes, P.R.F.D.S., Saska, S., Barud, H., Lima, L. R.D., Martins, V.D.C.A., Plepis, A.M.D.G., Ribeiro, S.J.L., Gaspar, A.M.M. 2016. Bacterial cellulose/collagen hydrogel for wound healing, Materials Research, Cilt. 19, s. 106-116. DOI: 10.1590/1980-5373-MR-2015-0249
  • [22] Huang, L., Chen, X., Nguyen, T.X., Tang, H., Zhang, L., Yang, G. 2013. Nano-cellulose 3D-networks as controlled-release drug carriers. Journal of Materials Chemistry B, Cilt. 1(23), s. 2976-2984. DOI: 10.1039/C3TB20149J
  • [23] Amin, M.C.I.M., Ahmad, N., Halib, N., & Ahmad, I. 2012. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery, Carbohydrate Polymers, Cilt. 88(2), s. 465-473. DOI: 10.1016/j.carbpol.2011.12.022
  • [24] Potivara, K., & Phisalaphong, M. (2019). Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber. Materials (Basel, Switzerland),12(14), 2323. https://doi.org/10.3390/ma12142323.
  • [25] Si-Qian Chen, Patricia Lopez-Sanchez, Dongjie Wang, Deirdre Mikkelsen, Michael J. Gidley, Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter, Food Hydrocolloids, Volume 81, 2018, 87-95, https://doi.org/10.1016/j.foodhyd.2018.02.031
  • [26] Czaja, W., Krystynowicz, A., Bielecki, S., Brown Jr, R.M. 2006. Microbial cellulose—the natural power to heal wounds, Biomaterials, Cilt. 27(2), s. 145-151. DOI: 10.1016/j.biomaterials.2005.07.035
  • [27] Portal, O., Clark, W.A., Levinson, D.J. 2009. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers, Wounds : A Compendium of Clinical Research and Practice, Cilt. 21(1), s. 1–3. PMID: 25904579
  • [28] Hestrin, S., Schramm, M.J.B.J. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochemical Journal, Cilt. 58(2), s. 345. DOI: 10.1042/bj0580345
  • [29] Bayir, E., Bilgi, E., Hames, E. E., Sendemir, A. 2019. Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications, Cellulose, Cilt. 26(18), s. 9803-9817. DOI: 10.1007/s10570-019-02763-9
  • [30] Keskin, Z., Sendemir Urkmez, A., Hames, E. E. 2017. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering, Materials Science and Engineering C, Cilt. 75, s. 1144-1153. DOI: 10.1016/j.msec.2017.03.035
  • [31] Nakamura, A., Arimoto, M., Takeuchi, K., Fujii, T., Fuhii, T., Fujii, T. 2002. A Rapid Extraction Procedure of Human Hair Proteins and Identification of Phosphorylated Species, Biological and Pharmaceutical Bulletin, Cilt. 25(5), s. 569–572. DOI: 10.1248/bpb.25.569
  • [32] Keskin Z. 2015 Keratin içeren bakteriyel selüloz tabanlı kompozit biyomalze üretimi, karaterizasyon ve biyoyapay deri geliştirilmesinde kullanım potansiyelinin araştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 81 s, İzmir.
  • [33] Yoshinaga, F., Tonouchi, N., & Watanabe, K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bioscience, biotechnology, and biochemistry, 61(2), 219-224.
  • [34] Haddad, A.G., Giatsidis, G., Orgill, D.P., Halvorson, E.G. 2017. Skin Substitutes and Bioscaffolds, Clinics in Plastic Surgery, Cilt. 44(3), s. 627-634. DOI: 10.1016/j.cps.2017.02.019
  • [35] Stoica-Guzun, A., Stroescu, M., Tache, F., Zaharescu, T., Grosu, E. 2007. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Cilt. 265(1), s. 434-438. DOI: 10.1016/j.nimb.2007.09.036
  • [36] Backdahl, H., Esguerra, M., Delbro, D., Risberg, B., Gatenholm, P. 2008. Engineering microporosity in bacterial cellulose scaffolds, Journal of Tissue Engineering and Regenerative Medicine, Cilt. 2(6), s. 320–330. DOI: 10.1002/term.97
  • [37] Xiong, G., Luo, H., Zhang, C., Zhu, Y., Wan, Y. 2015. Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen, Macromolecular Research, Cilt. 23(8), s. 734–740. DOI: 10.1007/s13233-015-3099-9
  • [38] Rouwkema, J., Koopman, B.F., Blitterswijk, C. A.V., Dhert, W.J., Malda, J. 2009. Supply of nutrients to cells in engineered tissues, Biotechnology and Genetic Engineering Reviews, Cilt. 26(1), s. 163-178. DOI: 10.5661/bger-26-163
  • [39] Loh, Q.L., Choong, C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Engineering. Part B, Reviews, Cilt. 19(6), s. 485–502. DOI: 10.1089/ten.TEB.2012.0437
  • [40] Hollister, S.J. 2005. Porous scaffold design for tissue engineering. Nature Materials, Cilt. 4(7), s. 518-524.
  • [41] Brown, R.M. 2004. Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science, Part A: Polymer Chemistry, Cilt. 42, s. 487–495. DOI: 10.1002/pola.10877
  • [42] Yin N, Stilwell MD, Santos TM, Wang, H., Weibel, D.B. 2015. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro, Acta Biomaterialia, Cilt. 12, s. 129–138. DOI: 10.1016/j.actbio.2014.10.019
  • [43] Huang J.W., Lv X.G., Li Z., Song, L.J., Feng, C., Xie, M.K., Li, C., Li, H.B., Wang, J.H., Zhu, W.D., Chen S.Y., Wang H.P., Xu, Y.M. 2015. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomedical Materials, Cilt. 10(5), s. 055005.
  • [44] Maria F. Leyva-Mendivil, Anton Page, Neil W. Bressloff, Georges Limbert. 2015. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin, Journal of the Mechanical Behavior of Biomedical Materials, Cilt 49, s. 197-219DOI:10.1016/j.jmbbm.2015.05.010.
  • [45] Griffin, M.F., Leung, B.C., Premakumar, Y. et al. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. 2017.J of Otolaryngol - Head & Neck Surg 46, 33 DOI: 10.1186/s40463-017-0210-6
  • [46] Joodaki H, Panzer MB. Skin mechanical properties and modeling: A review.2018. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.;232(4):323-343. doi:10.1177/0954411918759801
  • [47] Johnson, K.E., Wilgus, T.A. 2012. Multiple roles for VEGF in non-melanoma skin cancer: angiogenesis and beyond, Journal of Skin Cancer, Article ID 483439. DOI: 10.1155/2012/483439

Production and characterization of porous bacterial cellulose for skin substitution

Year 2023, , 263 - 274, 15.05.2023
https://doi.org/10.21205/deufmd.2023257401

Abstract

Bacterial cellulose (BC), is a natural polymer produced by certain microorganisms, which is biocompatible, easy to manufacture, has high tensile strength, and has high water retention with its nanofibril network structure. BC is a good candidate for medical applications, and also has potential in skin substitution studies thanks to its membrane structure. However, its tight cellulose nanofibers do not allow cell attachment and migration. In this study, in situ keratin modified production, and characterization of BC with sufficient pore diameters that can be potential skin substitute was aimed.
BC has been produced by Gluconacetobacter xylinus ATCC 700178 strain using two different methods (agar shredding and agar dropping) to increase the pore diameter between cellulose nanofibrils using and modified with keratin as an important component of the skin. Human hair was used as the source of keratin and keratin was obtained according to the Shindai extraction method. Keratin solution was impregnated with BC membranes and the characterization of the material was carried out by FTIR (Fourier Transform Infrared Spectrometry), SEM (Scanning Electron Microscope) and physical strength tests. As a result, the production of skin replacement candidate BC, containing keratin in its structure with sufficient pore diameter (>100μm) with a tensile strength of the range between 0.1- 0.15 MPa, was produced successfully.

Project Number

FYL-2018-20231

References

  • [1] WHO, Burns- Key facts, https://www.who.int/news-room/fact-sheets/detail/burns (Erişim Tarihi: 19/08/2021)
  • [2] Schulz III, J. T., Tompkins, R. G., Burke, J. F. 2000. Artificial skin, Annual Review of Medicine, Cilt. 51(1), s. 231-244. DOI: 10.1146/annurev.med.51.1.231
  • [3] Beele, H. 2002. Artificial skin: past, present and future, The International Journal of Artificial Organs, Cilt. 5(3), s. 163-173. DOI: 10.1177/039139880202500302
  • [4] Nyame, T.T., Chiang, H.A., Leavitt, T., Ozambela, M., Orgill, D.P. 2015. Tissue-Engineered Skin Substitutes, Plastic and Reconstructive Surgery, Cilt. 136(6), s. 1379–1388. DOI: 10.1097/PRS.0000000000001748
  • [5] Jozala, A.F., de Lencastre-Novaes, L.C., Lopes, A.M., de Carvalho Santos-Ebinuma, V., Mazzola, P.G., Pessoa-Jr, A., Frotto, D., Gerenutti M., Chaud M.V. 2016. Bacterial nanocellulose production and application: a 10-year overview, Applied Microbiology and Biotechnology, Cilt. 100, s. 2063–2072. DOI: 10.1007/s00253-015-7243-4
  • [6] Emre Oz, Y., Keskin-Erdogan, Z., Safa, N., Hames Tuna, E.E. 2021. A review of functionalised bacterial cellulose for targeted biomedical fields, Journal of Biomaterials Applications. DOI: 10.1177/0885328221998033
  • [7] Cheng, K.C., Catchmark, J.M., Demirci, A. 2011. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis, Biomacromolecules, Cilt. 12(3), s. 730–736. DOI: 10.1021/bm101363t
  • [8] Wei, B., Yang, G., Hong, F. 2011. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties, Carbohydrate Polymers, Cilt. 84(1), s. 533–538. DOI: 10.1016/j.carbpol.2010.12.017
  • [9] Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H. P., Marsch, S. 2006. Nanocelluloses as innovative polymers in research and application. Polysaccharides II, s.49-96. DOI: 10.1007/12_097
  • [10] Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. 1998. Structural features and properties of bacterial cellulose produced in agitated culture, Cellulose, Cilt. 5(3), s. 187-200.
  • [11] Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., Uryu, M. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose, Journal of Materials Science, Cilt. 24(9), s. 3141–3145. DOI: 10.1007/BF01139032
  • [12] Cannon, R.E., Anderson, S.M. 1991. Biogenesis of bacterial cellulose, Critical Reviews in Microbiology, Cilt. 17(6), s. 435–447. DOI: 10.3109/10408419109115207
  • [13] Jonas, R., Farah, L.F. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability, Cilt. 59(1–3), s. 101–106. DOI: 10.1016/S0141-3910(97)00197-3
  • [14] Iguchi, M., Yamanaka, S., Budhiono, A. 2000. Bacterial cellulose- a masterpiece of nature’s arts, Journal of Materials Science, Cilt. 35(2), s. 261–270. DOI: 10.1023/A:1004775229149
  • [15] Bilgi, E., Bayir, E., Sendemir-Urkmez, A., Hames, E.E. 2016. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean, International Journal of Biological Macromolecules, Cilt. 90, s. 2–10. DOI: 10.1016/j.ijbiomac.2016.02.052
  • [16] Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., Payne, W.G., Smith, D.J., Robson M.C. 2007. Comparative evaluation of silver‐containing antimicrobial dressings and drugs, International Wound Journal, Cilt. 4(2), s. 114-122. DOI: 10.1111/j.1742-481X.2007.00316.x
  • [17] Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., Ribeiro, S.J.L., 2011. Antimicrobial bacterial cellulose-silver nanoparticles composite membranes, Journal of Nanomaterials. Article ID 721631DOI: 10.1155/2011/721631
  • [18] Culebras, M., Grande, C.J., Torres, F.G., Troncoso, O.P., Gomez, C.M., Bañó, M.C. 2015. Optimization of cell growth on bacterial cellulose by adsorption of collagen and poly-l-lysine, International Journal of Polymeric Materials and Polymeric Biomaterials, Cilt. 64(8), s. 411–415. DOI: 10.1080/00914037.2014.958829
  • [19] Ghalia, M.A., Dahman, Y. 2017. Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications, Polymer Testing, Cilt. 61, s. 114-131. DOI: 10.1016/j.polymertesting.2017.05.016
  • [20] Li, Y., Jiang, H., Zheng, W., Gong, N., Chen, L., Jiang, X., Yang, G. 2015. Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair, Journal of Materials Chemistry B, Cilt. 3(17), s. 3498-3507. DOI: 10.1039/C4TB01819B
  • [21] Moraes, P.R.F.D.S., Saska, S., Barud, H., Lima, L. R.D., Martins, V.D.C.A., Plepis, A.M.D.G., Ribeiro, S.J.L., Gaspar, A.M.M. 2016. Bacterial cellulose/collagen hydrogel for wound healing, Materials Research, Cilt. 19, s. 106-116. DOI: 10.1590/1980-5373-MR-2015-0249
  • [22] Huang, L., Chen, X., Nguyen, T.X., Tang, H., Zhang, L., Yang, G. 2013. Nano-cellulose 3D-networks as controlled-release drug carriers. Journal of Materials Chemistry B, Cilt. 1(23), s. 2976-2984. DOI: 10.1039/C3TB20149J
  • [23] Amin, M.C.I.M., Ahmad, N., Halib, N., & Ahmad, I. 2012. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery, Carbohydrate Polymers, Cilt. 88(2), s. 465-473. DOI: 10.1016/j.carbpol.2011.12.022
  • [24] Potivara, K., & Phisalaphong, M. (2019). Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber. Materials (Basel, Switzerland),12(14), 2323. https://doi.org/10.3390/ma12142323.
  • [25] Si-Qian Chen, Patricia Lopez-Sanchez, Dongjie Wang, Deirdre Mikkelsen, Michael J. Gidley, Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter, Food Hydrocolloids, Volume 81, 2018, 87-95, https://doi.org/10.1016/j.foodhyd.2018.02.031
  • [26] Czaja, W., Krystynowicz, A., Bielecki, S., Brown Jr, R.M. 2006. Microbial cellulose—the natural power to heal wounds, Biomaterials, Cilt. 27(2), s. 145-151. DOI: 10.1016/j.biomaterials.2005.07.035
  • [27] Portal, O., Clark, W.A., Levinson, D.J. 2009. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers, Wounds : A Compendium of Clinical Research and Practice, Cilt. 21(1), s. 1–3. PMID: 25904579
  • [28] Hestrin, S., Schramm, M.J.B.J. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochemical Journal, Cilt. 58(2), s. 345. DOI: 10.1042/bj0580345
  • [29] Bayir, E., Bilgi, E., Hames, E. E., Sendemir, A. 2019. Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications, Cellulose, Cilt. 26(18), s. 9803-9817. DOI: 10.1007/s10570-019-02763-9
  • [30] Keskin, Z., Sendemir Urkmez, A., Hames, E. E. 2017. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering, Materials Science and Engineering C, Cilt. 75, s. 1144-1153. DOI: 10.1016/j.msec.2017.03.035
  • [31] Nakamura, A., Arimoto, M., Takeuchi, K., Fujii, T., Fuhii, T., Fujii, T. 2002. A Rapid Extraction Procedure of Human Hair Proteins and Identification of Phosphorylated Species, Biological and Pharmaceutical Bulletin, Cilt. 25(5), s. 569–572. DOI: 10.1248/bpb.25.569
  • [32] Keskin Z. 2015 Keratin içeren bakteriyel selüloz tabanlı kompozit biyomalze üretimi, karaterizasyon ve biyoyapay deri geliştirilmesinde kullanım potansiyelinin araştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 81 s, İzmir.
  • [33] Yoshinaga, F., Tonouchi, N., & Watanabe, K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bioscience, biotechnology, and biochemistry, 61(2), 219-224.
  • [34] Haddad, A.G., Giatsidis, G., Orgill, D.P., Halvorson, E.G. 2017. Skin Substitutes and Bioscaffolds, Clinics in Plastic Surgery, Cilt. 44(3), s. 627-634. DOI: 10.1016/j.cps.2017.02.019
  • [35] Stoica-Guzun, A., Stroescu, M., Tache, F., Zaharescu, T., Grosu, E. 2007. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Cilt. 265(1), s. 434-438. DOI: 10.1016/j.nimb.2007.09.036
  • [36] Backdahl, H., Esguerra, M., Delbro, D., Risberg, B., Gatenholm, P. 2008. Engineering microporosity in bacterial cellulose scaffolds, Journal of Tissue Engineering and Regenerative Medicine, Cilt. 2(6), s. 320–330. DOI: 10.1002/term.97
  • [37] Xiong, G., Luo, H., Zhang, C., Zhu, Y., Wan, Y. 2015. Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen, Macromolecular Research, Cilt. 23(8), s. 734–740. DOI: 10.1007/s13233-015-3099-9
  • [38] Rouwkema, J., Koopman, B.F., Blitterswijk, C. A.V., Dhert, W.J., Malda, J. 2009. Supply of nutrients to cells in engineered tissues, Biotechnology and Genetic Engineering Reviews, Cilt. 26(1), s. 163-178. DOI: 10.5661/bger-26-163
  • [39] Loh, Q.L., Choong, C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Engineering. Part B, Reviews, Cilt. 19(6), s. 485–502. DOI: 10.1089/ten.TEB.2012.0437
  • [40] Hollister, S.J. 2005. Porous scaffold design for tissue engineering. Nature Materials, Cilt. 4(7), s. 518-524.
  • [41] Brown, R.M. 2004. Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science, Part A: Polymer Chemistry, Cilt. 42, s. 487–495. DOI: 10.1002/pola.10877
  • [42] Yin N, Stilwell MD, Santos TM, Wang, H., Weibel, D.B. 2015. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro, Acta Biomaterialia, Cilt. 12, s. 129–138. DOI: 10.1016/j.actbio.2014.10.019
  • [43] Huang J.W., Lv X.G., Li Z., Song, L.J., Feng, C., Xie, M.K., Li, C., Li, H.B., Wang, J.H., Zhu, W.D., Chen S.Y., Wang H.P., Xu, Y.M. 2015. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomedical Materials, Cilt. 10(5), s. 055005.
  • [44] Maria F. Leyva-Mendivil, Anton Page, Neil W. Bressloff, Georges Limbert. 2015. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin, Journal of the Mechanical Behavior of Biomedical Materials, Cilt 49, s. 197-219DOI:10.1016/j.jmbbm.2015.05.010.
  • [45] Griffin, M.F., Leung, B.C., Premakumar, Y. et al. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. 2017.J of Otolaryngol - Head & Neck Surg 46, 33 DOI: 10.1186/s40463-017-0210-6
  • [46] Joodaki H, Panzer MB. Skin mechanical properties and modeling: A review.2018. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.;232(4):323-343. doi:10.1177/0954411918759801
  • [47] Johnson, K.E., Wilgus, T.A. 2012. Multiple roles for VEGF in non-melanoma skin cancer: angiogenesis and beyond, Journal of Skin Cancer, Article ID 483439. DOI: 10.1155/2012/483439
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Doruk İlmenöz This is me 0000-0002-6850-2934

Zalike Keskin 0000-0001-6789-6954

Elif Esin Hameş Tuna 0000-0001-7302-4781

Project Number FYL-2018-20231
Early Pub Date May 12, 2023
Publication Date May 15, 2023
Published in Issue Year 2023

Cite

APA İlmenöz, D., Keskin, Z., & Hameş Tuna, E. E. (2023). Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(74), 263-274. https://doi.org/10.21205/deufmd.2023257401
AMA İlmenöz D, Keskin Z, Hameş Tuna EE. Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu. DEUFMD. May 2023;25(74):263-274. doi:10.21205/deufmd.2023257401
Chicago İlmenöz, Doruk, Zalike Keskin, and Elif Esin Hameş Tuna. “Deri Ikamesi için gözenekli Bakteriyel selüloz üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 74 (May 2023): 263-74. https://doi.org/10.21205/deufmd.2023257401.
EndNote İlmenöz D, Keskin Z, Hameş Tuna EE (May 1, 2023) Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 74 263–274.
IEEE D. İlmenöz, Z. Keskin, and E. E. Hameş Tuna, “Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu”, DEUFMD, vol. 25, no. 74, pp. 263–274, 2023, doi: 10.21205/deufmd.2023257401.
ISNAD İlmenöz, Doruk et al. “Deri Ikamesi için gözenekli Bakteriyel selüloz üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/74 (May 2023), 263-274. https://doi.org/10.21205/deufmd.2023257401.
JAMA İlmenöz D, Keskin Z, Hameş Tuna EE. Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu. DEUFMD. 2023;25:263–274.
MLA İlmenöz, Doruk et al. “Deri Ikamesi için gözenekli Bakteriyel selüloz üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 74, 2023, pp. 263-74, doi:10.21205/deufmd.2023257401.
Vancouver İlmenöz D, Keskin Z, Hameş Tuna EE. Deri ikamesi için gözenekli bakteriyel selüloz üretimi ve karakterizasyonu. DEUFMD. 2023;25(74):263-74.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.