Research Article
BibTex RIS Cite

Bulanık Mantık Kontrolü kullanarak hedeflere atış yapan dört bacaklı bir robotun dinamik simülasyonu

Year 2024, , 564 - 585, 26.01.2024
https://doi.org/10.29130/dubited.1114836

Abstract

Bu çalışma, savunmada caydırıcılığı artırmak için engebeli arazi ve farklı çevre koşullarında dört bacaklı bir robot üzerine monte edilmiş silah ile hedefleri takip etmeyi ve vurmayı amaçlamaktadır. Sistemin dinamik hareketleri düzlemsel olarak modellenmiş ve yürüme hareketinde kullanılmıştır. Yürürken robot bacak eklemlerini kontrol etmek için PID kontrolü kullanılmıştır. Yürüme hareketi nedeniyle, bozucu etkiler altında hedef takip ve atış simülasyonlarının başarısı incelenmiştir. Koordinatları rastgele belirlenen hedeflerin takibi için namlu yükseklik açısı hesaplanmıştır. Robotun hedefleri maksimum 0,6° hata ile 3°, 6° ve 9°'de takip ettiği gözlemlenmiştir. Ayrıca 10 farklı koordinatta bulunan sabit hedeflere atışlar yapılmıştır. Maksimum atış hatası değerinin 16 cm olduğu görülmüştür. Dolayısıyla bu çalışma savunma sanayisine önemli katkılar sağlayacaktır.

References

  • M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and The BigDog Team, “BigDog, the rough-terrain quadruped robot”, Proceedings of the 17th World Congress, The International Federation of Automatic Control 17, 10822-10825, 2008 doi:10.3182/20080706-5-KR-1001.01833
  • M. Hanlon, “Raytheon XOS 2: Second-Generation Exoskeleton Robotic Suit”, USA, Website: www.gizmag.com/Raytheon-significantly-progresses-exoskeletondesign/16479.
  • J.T. Machado, M.F. Silva, “An overview of legged robots”, International symposium on mathematical methods in Engineering. Çankaya, Ankara, Turkey, 1-39 (2015).
  • J. Liu, M. Tan, X. Zhao, “Legged robots-an overview”, Trans Inst. Meas. Control. 29(2), 185-202, 2007 doi: 10.1177/0142331207075610
  • X. Ding, H. Chen, “Dynamic modelling and locomotion control for quadruped robots based on center of Inertia on SE(3)”, Journal of Dynamic Systems, Measurement, and Control, 138, 011004/1-8, 2016 doi: 10.1115/1.4031728
  • M. Li, Z. Jiang, P. Wang, L. Sun, S.S. Ge, “Control of a quadruped robot with bionic springy legs in trotting gait”, Journal of Bionic Engineering 11, 188-198, 2014 doi: 10.1016/S1672-6529(14)60043-3
  • J.A. Smith, J. Jivraj, “Effect of hind leg morphology on performance of a canine-inspired quadrupedal robot”, Journal of bionic Engineering 12, 339-351, 2015 doi: 10.1016/S1672-6529(14)60126-8
  • H. Nie, R. Sun, L. Hu, Z. Su, W. Hu, “Control of a cheetah robot in passive bounding gait”, Journal of bionic Engineering 13, 283-291, 2016 doi: 10.1016/S1672-6529(16)60301-3
  • M.U. Atique, R.I. Sarker, A.R. Ahad, “Development of an 8DOF quadruped robot and implementation of inverse kinematics using Denavit-Hartenberg convention”, Heliyon 01053, 1-19, 2018 doi: 10.1016/j.heliyon.2018.e01053
  • N. Weizmann, “Autonomous weapon system under international law”, Academy Briefing. 8, pp. 3, 2014.
  • M.A. Şahin, K. Leblebicioğlu, “Approximating the optimal mapping for weapon target assignment by fuzzy reasoning”, Information Sciences 255, 30-44, 2014 doi: 10.1016/j.ins.2013.08.004
  • A.P. White, “Control design for an inertially stabilized rifle”, Master Thesis, Faculty of the Virginia Polytechnic Institute and State University, Department of Electrical Engineering, Blacksburg, Virginia, pp. 1, 2007
  • W. Rone, P.B. Tzvi, “Dynamic modeling and simulation of a yaw-angle quadruped maneuvering with a planar robotic tail”, Journal of Dynamic Systems Measurement and Control 138, 084502/1-7, 2016 doi: 10.1115/1.4033103
  • Ö. Özuğur, M.K. Leblebicioğlu, “Shooter localization using sensor networks and optimization based fusion process”, The Journal of Defense Sciences 15, 207-235, 2016
  • U. Durak, K. Dayanç, F. Elaldı, Ö. Anlağan, “Next generation ballistic solver for fire control systems of rockets”, USMOS 2005, ODTÜ, Ankara, Turkey, 41-47, 2005
  • F. Geridönmez, T. Adıgüzel, “A simulation based fast fire control computation method for new generation artillery shells”, ELECO 2014, Bursa, Turkey, 376-380, 2014
  • M.F. Hocaoğlu, “Weapon target assignment optimization for land based multi-air defense systems: A goal programming approach”, Computers & Industrial Engineering 128, 681-689, 2019 doi: 10.1016/j.cie.2019.01.015
  • V. Gazi, B. Fidan, R. Ordonez, M.İ. Köksal, “A target tracking approach for nonholonomic agents based on artificial potentials and sliding mode control”, Journal of Dynamic Systems, Measurement, and Control 134, 061004/1-13, 2012 doi: 10.1115/1.4006622
  • O. Castillo, H. Neyoy, J. Soria, P. Melin, F. Valdez, “A new approach fordynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot”, Applied Soft Computing 28, 150–159, 2015 doi: 10.1016/j.asoc.2014.12.002
  • F. Abdessemed, M. Faisal, M. Emmadeddine, R. Hedjar, K. Al-Mutib, M. Alsulaiman, H. Mathkour, “A Hierarchical Fuzzy Control Design for Indoor Mobile Robot”, International Journal of Advanced Robotic Systems 11(33), 2014 doi: 10.5772/57434
  • E. Kayacan, H. Ramon, W. Saeys, “Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm”, IEEE Transactions On Cybernetics 43(1), 2013 doi: 10.1109/TSMCB.2012.2202900
  • I. Siradjuddin, L. Behera, T. M. McGinnity, “Image-Based Visual Servoing of a 7-DOF Robot Manipulator Using an Adaptive Distributed Fuzzy PD Controller”, IEEE/ASME Transactions On Mechatronics 19(2), 2014 doi: 10.1109/TMECH.2013.2245337
  • Q. Zhou, H. Li, P. Shi, “Decentralized Adaptive Fuzzy Tracking Control for Robot Finger Dynamics”, IEEE Transactions On Fuzzy Systems 23(3), 2015 doi: 10.1109/TFUZZ.2014.2315661
  • C.F. Juang, Y.H. Chen, Y.H. Jhan, “Wall-Following Control of a Hexapod Robot Using a Data-Driven Fuzzy Controller Learned Through Differential Evolution”, IEEE Transactions On Industrial Electronics 62(1), 2015 doi: 10.1109/TIE.2014.2319213
  • Z. Li, S. Xiao, S.S. Ge, H. Su, “Constrained Multilegged Robot System Modeling and Fuzzy Control With Uncertain Kinematics and Dynamics Incorporating Foot Force Optimization”, IEEE Transactions On Systems, Man, And Cybernetics: Systems 46(1), 2016 doi: 10.1109/TSMC.2015.2422267
  • H. Li, C. Wu, S. Yin, H.K. Lam, “Observer-Based Fuzzy Control for Nonlinear Networked Systems Under Unmeasurable Premise Variables”, IEEE Transactions On Fuzzy Systems 24(5), 2016 doi: 10.1109/TFUZZ.2015.2505331
  • Y. Takahashi, T. Ishii, C. Todoroki, Y.I. Maeda, T. Nakamura, “Fuzzy Control for a Kite-Based Tethered Flying Robot”, Journal of Advanced Computational Intelligence and Intelligent Informatics 19(3), 2015 doi: 10.1109/FUZZ-IEEE.2014.6891839
  • M.A. Sancheza, O. Castillo, J. R. Castro, “Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems”, Expert Systems with Applications 42, 5904–5914, 2015 doi: 10.1016/j.eswa.2015.03.024
  • P. Melin, L. Astudillo, O. Castillo, F. Valdez, M. Garcia, “Optimal design of type2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm”, Expert Systems with Applications 40, 3185–3195, 2013 doi: 10.1016/j.eswa.2012.12.032
  • L. A. Zadeh, “Fuzzy Sets”, Information and Control 8, 338-353, 1965
  • E.H. Mamdani, S. Assilian, “An Experiment in Linguistic Synthesis With a Fuzzy Logic Controller”, International Journal of Man-Machine Studies 7, 1-13, 1974 doi: doi.org/10.1006/ijhc.1973.0303
  • I. Harmati, K. Skrzypczyk, “Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework”, Robotics and Autonomous System 57, 75-86, 2009 doi: 10.1016/j.robot.2008.02.004
  • R.C. Luo, T.M. Chen, “Target tracking by grey prediction theory and look-ahead fuzzy logic control”, Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, 1176-1181, 1999 doi: 10.1109/ROBOT.1999.772521
  • S. McGinnity, G.W. Irwin, “Fuzzy logic approach to manoeuvring target tracking”, IEEE Proceedings- Radar, Sonar and Navigation 145(6), 337-341, 1998 doi: 10.1049/ip-rsn:19982427
  • A. Latif, K. Shankar, P.T. Nguyen, “Legged fire fighter robot movement using PID”, Journal of Robotics and Control 1(1), 15-18, 2020 doi: 10.18196/jrc.1104
  • C. Semini, N.G. Tsagarakis, B. Vanderborght, Y. Yang, D.G. Caldwell, “HyQ- Hydraulically Actuated Quadruped Robot: Hopping Leg Prototype”, Proceedings of the 2nd Biennal IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottdale, USA, 19-22, 2008 doi: 10.1109/BIOROB.2008.4762913
  • A. Patwardhan, A. Prakash, R.G. Chittawadigi, “Kinematic analysis and development of simulation software for nex dexter robotic manipulator”, Procedia Computer Science 133, 660-667, 2018 doi: 10.1016/j.procs.2018.07.101
  • J. Denavit, R.S. Hartenberg, “A kinematic notation for Lower-pair mechanisms based on matrices”, ASME Jappl. Mechan., 215-221, 1955
  • J.R. Schilling, “Fundamentals of Robotics and analysis and control”, Prentice Hall of India, New Delhi, 2003
  • Ibrahim, K., Sharkawy, A.B: “A hybrid PID control scheme for flexible joint manipulators and a comparison with sliding mode control”, Ain Shams Engineering Journal 9, 3451-3457, 2018 doi: 10.1016/j.asej.2018.01.004
  • Aström JK, Hägglund T., “PID Controllers: Theory, Design”, and Tuning, Instrument Society of America, USA, 70, 1995
  • Kim, H.K., Won, D., Kwon, O., Kim, T.J., Kim, S.S., Park, S: “Foot trajectory generation of hydraulic quadruped robots on uneven terrain”, Proceedings of the 17th World Congress the International Federation of Automatic Control Seoul, Korea, 3021-3026, 2008 doi: 10.3182/20080706-5-KR-1001.1846
  • Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K., Tsuchiya, K: “A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion”, Journal of The Royal Society, 10, 1-12, 2013. doi: 10.1098/rsif.2012.0908
  • Liu, Q., Chen, X., Han, B., Luo, Z., Luo, X: “Virtual constraint based control of bounding gait of quadruped robots”, Journal of Bionic Engineering, 14, 218-231, 2017 doi: 10.1016/S1672-6529(16)60393-1
  • M. Hacımurtazaoğlu, “Locking application with fuzzy logic”, Conference of Academic Information, Akdeniz University 15, 642-647, 2013
  • Y.J. Wang, “Constant force feedback controller design using PID-like fuzzy technique for tapping mode atomic force microscopes”, Intelligent Control and Automation 4, 263-279, 2013 doi: 10.1109/CCDC.2009.5192264
  • F. Yıldırım, “The effect of geometric changes of propellants which used in large caliber weapons on barrel pressure and muzzle velocity”, Master Thesis – Ankara University, Ankara, Turkey, 5-6, 2013
  • http://www.millisavunma.com/mkek-hafif-ve-agir-muhimmat-ailesi/, (last update) 21.01.2017, 18:48 (2017)
  • J.R. Rice, “Numerical methods, software and analysis”, Mc-Graw Hill, New York, 1983

Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control

Year 2024, , 564 - 585, 26.01.2024
https://doi.org/10.29130/dubited.1114836

Abstract

This study aims to track and shoot targets with a gun mounted on a quadruped robot in rough terrain and different environmental conditions for increase deterrence in defense. The dynamic movements of the system were modelled as planarly and it was used in walking movement. PID control was used for control the robot leg joints while walking. Because of the walking motion, the success of the target tracking and shooting simulations was examined under the disruptive effects. In order to track the targets whose coordinates were randomly determined and the elevation angle was calculated. It was observed that the robot tracked the targets at 3°, 6° and 9° with a maximum error of 0.6°. In addition, shootings were made to fixed targets located at 10 different coordinates. It was seen that the maximum shooting error value was 16 cm. So, this study will make important contributions to the defense industry.

References

  • M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and The BigDog Team, “BigDog, the rough-terrain quadruped robot”, Proceedings of the 17th World Congress, The International Federation of Automatic Control 17, 10822-10825, 2008 doi:10.3182/20080706-5-KR-1001.01833
  • M. Hanlon, “Raytheon XOS 2: Second-Generation Exoskeleton Robotic Suit”, USA, Website: www.gizmag.com/Raytheon-significantly-progresses-exoskeletondesign/16479.
  • J.T. Machado, M.F. Silva, “An overview of legged robots”, International symposium on mathematical methods in Engineering. Çankaya, Ankara, Turkey, 1-39 (2015).
  • J. Liu, M. Tan, X. Zhao, “Legged robots-an overview”, Trans Inst. Meas. Control. 29(2), 185-202, 2007 doi: 10.1177/0142331207075610
  • X. Ding, H. Chen, “Dynamic modelling and locomotion control for quadruped robots based on center of Inertia on SE(3)”, Journal of Dynamic Systems, Measurement, and Control, 138, 011004/1-8, 2016 doi: 10.1115/1.4031728
  • M. Li, Z. Jiang, P. Wang, L. Sun, S.S. Ge, “Control of a quadruped robot with bionic springy legs in trotting gait”, Journal of Bionic Engineering 11, 188-198, 2014 doi: 10.1016/S1672-6529(14)60043-3
  • J.A. Smith, J. Jivraj, “Effect of hind leg morphology on performance of a canine-inspired quadrupedal robot”, Journal of bionic Engineering 12, 339-351, 2015 doi: 10.1016/S1672-6529(14)60126-8
  • H. Nie, R. Sun, L. Hu, Z. Su, W. Hu, “Control of a cheetah robot in passive bounding gait”, Journal of bionic Engineering 13, 283-291, 2016 doi: 10.1016/S1672-6529(16)60301-3
  • M.U. Atique, R.I. Sarker, A.R. Ahad, “Development of an 8DOF quadruped robot and implementation of inverse kinematics using Denavit-Hartenberg convention”, Heliyon 01053, 1-19, 2018 doi: 10.1016/j.heliyon.2018.e01053
  • N. Weizmann, “Autonomous weapon system under international law”, Academy Briefing. 8, pp. 3, 2014.
  • M.A. Şahin, K. Leblebicioğlu, “Approximating the optimal mapping for weapon target assignment by fuzzy reasoning”, Information Sciences 255, 30-44, 2014 doi: 10.1016/j.ins.2013.08.004
  • A.P. White, “Control design for an inertially stabilized rifle”, Master Thesis, Faculty of the Virginia Polytechnic Institute and State University, Department of Electrical Engineering, Blacksburg, Virginia, pp. 1, 2007
  • W. Rone, P.B. Tzvi, “Dynamic modeling and simulation of a yaw-angle quadruped maneuvering with a planar robotic tail”, Journal of Dynamic Systems Measurement and Control 138, 084502/1-7, 2016 doi: 10.1115/1.4033103
  • Ö. Özuğur, M.K. Leblebicioğlu, “Shooter localization using sensor networks and optimization based fusion process”, The Journal of Defense Sciences 15, 207-235, 2016
  • U. Durak, K. Dayanç, F. Elaldı, Ö. Anlağan, “Next generation ballistic solver for fire control systems of rockets”, USMOS 2005, ODTÜ, Ankara, Turkey, 41-47, 2005
  • F. Geridönmez, T. Adıgüzel, “A simulation based fast fire control computation method for new generation artillery shells”, ELECO 2014, Bursa, Turkey, 376-380, 2014
  • M.F. Hocaoğlu, “Weapon target assignment optimization for land based multi-air defense systems: A goal programming approach”, Computers & Industrial Engineering 128, 681-689, 2019 doi: 10.1016/j.cie.2019.01.015
  • V. Gazi, B. Fidan, R. Ordonez, M.İ. Köksal, “A target tracking approach for nonholonomic agents based on artificial potentials and sliding mode control”, Journal of Dynamic Systems, Measurement, and Control 134, 061004/1-13, 2012 doi: 10.1115/1.4006622
  • O. Castillo, H. Neyoy, J. Soria, P. Melin, F. Valdez, “A new approach fordynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot”, Applied Soft Computing 28, 150–159, 2015 doi: 10.1016/j.asoc.2014.12.002
  • F. Abdessemed, M. Faisal, M. Emmadeddine, R. Hedjar, K. Al-Mutib, M. Alsulaiman, H. Mathkour, “A Hierarchical Fuzzy Control Design for Indoor Mobile Robot”, International Journal of Advanced Robotic Systems 11(33), 2014 doi: 10.5772/57434
  • E. Kayacan, H. Ramon, W. Saeys, “Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm”, IEEE Transactions On Cybernetics 43(1), 2013 doi: 10.1109/TSMCB.2012.2202900
  • I. Siradjuddin, L. Behera, T. M. McGinnity, “Image-Based Visual Servoing of a 7-DOF Robot Manipulator Using an Adaptive Distributed Fuzzy PD Controller”, IEEE/ASME Transactions On Mechatronics 19(2), 2014 doi: 10.1109/TMECH.2013.2245337
  • Q. Zhou, H. Li, P. Shi, “Decentralized Adaptive Fuzzy Tracking Control for Robot Finger Dynamics”, IEEE Transactions On Fuzzy Systems 23(3), 2015 doi: 10.1109/TFUZZ.2014.2315661
  • C.F. Juang, Y.H. Chen, Y.H. Jhan, “Wall-Following Control of a Hexapod Robot Using a Data-Driven Fuzzy Controller Learned Through Differential Evolution”, IEEE Transactions On Industrial Electronics 62(1), 2015 doi: 10.1109/TIE.2014.2319213
  • Z. Li, S. Xiao, S.S. Ge, H. Su, “Constrained Multilegged Robot System Modeling and Fuzzy Control With Uncertain Kinematics and Dynamics Incorporating Foot Force Optimization”, IEEE Transactions On Systems, Man, And Cybernetics: Systems 46(1), 2016 doi: 10.1109/TSMC.2015.2422267
  • H. Li, C. Wu, S. Yin, H.K. Lam, “Observer-Based Fuzzy Control for Nonlinear Networked Systems Under Unmeasurable Premise Variables”, IEEE Transactions On Fuzzy Systems 24(5), 2016 doi: 10.1109/TFUZZ.2015.2505331
  • Y. Takahashi, T. Ishii, C. Todoroki, Y.I. Maeda, T. Nakamura, “Fuzzy Control for a Kite-Based Tethered Flying Robot”, Journal of Advanced Computational Intelligence and Intelligent Informatics 19(3), 2015 doi: 10.1109/FUZZ-IEEE.2014.6891839
  • M.A. Sancheza, O. Castillo, J. R. Castro, “Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems”, Expert Systems with Applications 42, 5904–5914, 2015 doi: 10.1016/j.eswa.2015.03.024
  • P. Melin, L. Astudillo, O. Castillo, F. Valdez, M. Garcia, “Optimal design of type2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm”, Expert Systems with Applications 40, 3185–3195, 2013 doi: 10.1016/j.eswa.2012.12.032
  • L. A. Zadeh, “Fuzzy Sets”, Information and Control 8, 338-353, 1965
  • E.H. Mamdani, S. Assilian, “An Experiment in Linguistic Synthesis With a Fuzzy Logic Controller”, International Journal of Man-Machine Studies 7, 1-13, 1974 doi: doi.org/10.1006/ijhc.1973.0303
  • I. Harmati, K. Skrzypczyk, “Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework”, Robotics and Autonomous System 57, 75-86, 2009 doi: 10.1016/j.robot.2008.02.004
  • R.C. Luo, T.M. Chen, “Target tracking by grey prediction theory and look-ahead fuzzy logic control”, Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, 1176-1181, 1999 doi: 10.1109/ROBOT.1999.772521
  • S. McGinnity, G.W. Irwin, “Fuzzy logic approach to manoeuvring target tracking”, IEEE Proceedings- Radar, Sonar and Navigation 145(6), 337-341, 1998 doi: 10.1049/ip-rsn:19982427
  • A. Latif, K. Shankar, P.T. Nguyen, “Legged fire fighter robot movement using PID”, Journal of Robotics and Control 1(1), 15-18, 2020 doi: 10.18196/jrc.1104
  • C. Semini, N.G. Tsagarakis, B. Vanderborght, Y. Yang, D.G. Caldwell, “HyQ- Hydraulically Actuated Quadruped Robot: Hopping Leg Prototype”, Proceedings of the 2nd Biennal IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottdale, USA, 19-22, 2008 doi: 10.1109/BIOROB.2008.4762913
  • A. Patwardhan, A. Prakash, R.G. Chittawadigi, “Kinematic analysis and development of simulation software for nex dexter robotic manipulator”, Procedia Computer Science 133, 660-667, 2018 doi: 10.1016/j.procs.2018.07.101
  • J. Denavit, R.S. Hartenberg, “A kinematic notation for Lower-pair mechanisms based on matrices”, ASME Jappl. Mechan., 215-221, 1955
  • J.R. Schilling, “Fundamentals of Robotics and analysis and control”, Prentice Hall of India, New Delhi, 2003
  • Ibrahim, K., Sharkawy, A.B: “A hybrid PID control scheme for flexible joint manipulators and a comparison with sliding mode control”, Ain Shams Engineering Journal 9, 3451-3457, 2018 doi: 10.1016/j.asej.2018.01.004
  • Aström JK, Hägglund T., “PID Controllers: Theory, Design”, and Tuning, Instrument Society of America, USA, 70, 1995
  • Kim, H.K., Won, D., Kwon, O., Kim, T.J., Kim, S.S., Park, S: “Foot trajectory generation of hydraulic quadruped robots on uneven terrain”, Proceedings of the 17th World Congress the International Federation of Automatic Control Seoul, Korea, 3021-3026, 2008 doi: 10.3182/20080706-5-KR-1001.1846
  • Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K., Tsuchiya, K: “A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion”, Journal of The Royal Society, 10, 1-12, 2013. doi: 10.1098/rsif.2012.0908
  • Liu, Q., Chen, X., Han, B., Luo, Z., Luo, X: “Virtual constraint based control of bounding gait of quadruped robots”, Journal of Bionic Engineering, 14, 218-231, 2017 doi: 10.1016/S1672-6529(16)60393-1
  • M. Hacımurtazaoğlu, “Locking application with fuzzy logic”, Conference of Academic Information, Akdeniz University 15, 642-647, 2013
  • Y.J. Wang, “Constant force feedback controller design using PID-like fuzzy technique for tapping mode atomic force microscopes”, Intelligent Control and Automation 4, 263-279, 2013 doi: 10.1109/CCDC.2009.5192264
  • F. Yıldırım, “The effect of geometric changes of propellants which used in large caliber weapons on barrel pressure and muzzle velocity”, Master Thesis – Ankara University, Ankara, Turkey, 5-6, 2013
  • http://www.millisavunma.com/mkek-hafif-ve-agir-muhimmat-ailesi/, (last update) 21.01.2017, 18:48 (2017)
  • J.R. Rice, “Numerical methods, software and analysis”, Mc-Graw Hill, New York, 1983
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Burak Tatar 0000-0001-5848-443X

Alper Kadir Tanyıldızı 0000-0003-3324-5445

Beyda Taşar 0000-0002-2771-3524

Oğuz Yakut 0000-0002-0986-1435

Publication Date January 26, 2024
Published in Issue Year 2024

Cite

APA Tatar, A. B., Tanyıldızı, A. K., Taşar, B., Yakut, O. (2024). Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control. Duzce University Journal of Science and Technology, 12(1), 564-585. https://doi.org/10.29130/dubited.1114836
AMA Tatar AB, Tanyıldızı AK, Taşar B, Yakut O. Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control. DÜBİTED. January 2024;12(1):564-585. doi:10.29130/dubited.1114836
Chicago Tatar, Ahmet Burak, Alper Kadir Tanyıldızı, Beyda Taşar, and Oğuz Yakut. “Dynamical Simulation of a Four Legged Robot With Shooting at Targets Using Fuzzy Logic Control”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 564-85. https://doi.org/10.29130/dubited.1114836.
EndNote Tatar AB, Tanyıldızı AK, Taşar B, Yakut O (January 1, 2024) Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control. Duzce University Journal of Science and Technology 12 1 564–585.
IEEE A. B. Tatar, A. K. Tanyıldızı, B. Taşar, and O. Yakut, “Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control”, DÜBİTED, vol. 12, no. 1, pp. 564–585, 2024, doi: 10.29130/dubited.1114836.
ISNAD Tatar, Ahmet Burak et al. “Dynamical Simulation of a Four Legged Robot With Shooting at Targets Using Fuzzy Logic Control”. Duzce University Journal of Science and Technology 12/1 (January 2024), 564-585. https://doi.org/10.29130/dubited.1114836.
JAMA Tatar AB, Tanyıldızı AK, Taşar B, Yakut O. Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control. DÜBİTED. 2024;12:564–585.
MLA Tatar, Ahmet Burak et al. “Dynamical Simulation of a Four Legged Robot With Shooting at Targets Using Fuzzy Logic Control”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 564-85, doi:10.29130/dubited.1114836.
Vancouver Tatar AB, Tanyıldızı AK, Taşar B, Yakut O. Dynamical simulation of a four legged robot with shooting at targets using Fuzzy Logic Control. DÜBİTED. 2024;12(1):564-85.