Research Article
BibTex RIS Cite

3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi

Year 2019, , 1793 - 1805, 31.07.2019
https://doi.org/10.29130/dubited.555185

Abstract

Son yıllarda, eklemeli imalat sektörü
ve teknolojisinin ilgisine ve önemine paralel olarak, üç boyutlu (3B) parça
üretimi için kullanılan fotokürlenebilir polimer reçineler üzerine yapılan
çalışmalar büyük ilgi görmektedir. Eklemeli imalat yöntemlerinden biri olan
Streolitografi (SLA) yöntemi, yüksek hızlı işleme ve parça üretimi hassasiyeti
açısından diğer yöntemlerden ayrılmasının yanı sıra mekanik ve diğer
karakteristik özelliklerinin değiştirilmesine izin vermektedir. Özellikle
polimer kompozit malzemelerin mekanik dayanımını arttırmak için birçok çalışma
günümüze kadar yapılmaktadır. Kil, Al2O3, SiO2,
BaTiO3, ZrO2 gibi seramik malzemeler mekanik dayanımı
artırmak için takviye malzemesi olarak örnek verilebilir.  Bu çalışmada, dört farklı (katkısız, %0,25,
%0,5, %1) konsantrasyona sahip füme silika katkılı polyester esaslı akrilat
fotokürlenebilir reçinenin mekanik özelliklerine etkisi araştırılmıştır. 167m2/gr
yüzey alanına sahip füme silika %0,25, %0,5 ve %1 konsantrasyonlarında
fotokürlenebilir reçineye eklenmiştir. Çekme testi, dinamik mekanik analiz
(DMA) ve taramalı elektron mikroskobu (SEM) sonuçlarına göre, SLA
kompozitlerinin artan füme silika konsantrasyonu ile birlikte mekanik
dayanımının artmasına rağmen termal kararlılığında azalma  (depolama ve kayıp modülü) görülmüştür. Füme
silikanın yüksek yüzey alanı nedeniyle, fotokürlenebilir reçine içerisinde %1
konsantrasyonuna kadar nispeten daha iyi homojen dağıldığı olduğu
gözlemlenmiştir.

References

  • [1] X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Composites Part B: Engineering, vol. 110, pp. 442–458, 2018.
  • [2] M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kübler and R. Mülhaupt, “Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies,” Advanced Functional Materials, vol. 18, no. 16, pp. 2390–2397, 2008.
  • [3] T. A. Campbell and O.S. Ivanova, “3D printing of multifunctional nanocomposites,” Nano Today, vol. 8, no. 2, pp. 119–120, 2013.
  • [4] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites Part B: Engineering, vol. 143, pp. 172–196, 2018.
  • [5] T. Serra, J. A. Planell and M. Navarro, “High-resolution PLA-based composite scaffolds via 3-D printing technology,” Acta Biomaterialia, vol. 9, no. 3, pp. 5521–5530, 2013.
  • [6] M. Saari, B. Cox, E. Richer, P. S. Krueger and A. L. Cohen, “Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components,” 3D Printing and Additive Manufacturing, vol. 2, no. 1, pp. 32–39, 2015.
  • [7] M. Invernizzi, G. Natale, M. Levi, S. Turri and G. Griffini, “UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites,” Materials, vol. 9, no. 7, 2016.
  • [8] F. P. W. Melchels, J. Feijen and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, 2010.
  • [9] C. Credi, A. Fiorese, M. Tironi, R. Bernasconi, L. Magagnin, M. Levi and S. Turri, “3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers,” ACS Applied Materials & Interfaces, vol. 8, no. 39, pp. 26332–26342, 2016.
  • [10] J. Maas, B. Liu, S. Hajela, Y. Huang, X. Gong and W. J. Chappell, “Laser-Based Layer-by-Layer Polymer Stereolithography for High-Frequency Applications,” Proceedings of the IEEE, vol. 105, no. 4, pp. 645–654, 2017.
  • [11] G. Taormina, C. Sciancalepore, F. Bondioli and M. Messori, “Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles,” Polymers, vol. 10, no. 2, pp. 212, 2018.
  • [12] S. Thomas, J. Kuruvilla, K. Goda, and M. S. Sreekala, “Introduction to Polymer Composites,” Polymer Composites, 1st ed., USA, Wiley-VCH Verlag GmbH & Co. KGaA, 2012, pp. 1-16.
  • [13] M. Kam, H. Saruhan ve A. İpekci, “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 2, ss. 147-157, 2019.
  • [14] M. Kam, A. İpekci ve H. Saruhan, “Investigation of 3D Printing Filling Structures Effect on Mechanical Properties and Surface Roughness of PET-G Material Products,” Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 6, ss. 114-121, 2017.
  • [15] M. Sadej-Bajerlain, H. Gojzewski and E. Andrzejewska, “Monomer/modified nanosilica systems: Photopolymerization kinetics and composite characterization,” Polymer, vol. 52, no. 7, pp. 1495–1503, 2011.
  • [16] P. Palmero, “Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods,” Nanomaterials, vol. 5, no. 2, pp. 656–696, 2015.
  • [17] J. R. C. Dizon, Q. Chen, A. D. Valino, and R. C. Advincula, “Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites,’’ MRS Communications, pp. 1–9, 2018.
  • [18] M-J. Wang, M. D. Morris, Y. Kutsovsky. “Effect of Fumed Silica Surface Area on Silicone Rubber Reinforcement,” KGK rubberpoint, vol. 61, no. 3, pp. 107-117, 2008.
  • [19] M. Wozniak, Y. de Hazan, T. Graule and D. Kata, “Rheology of UV curable colloidal silica dispersions for rapid prototyping applications,” Journal of the European Ceramic Society, vol. 31, no. 13, pp. 2221–2229, 2011.
  • [20] H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song and Y. Chen, “Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography,” Ceramics International, vol. 42, no. 15, pp. 17290–17294, 2016.
  • [21] D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou and G. J. Cheng, “3D stereolithography printing of graphene oxide reinforced complex architectures,” Nanotechnology, vol. 26, no. 43, 434003, 2015.
  • [22] X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang and Y. Xie, “Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization,” Carbohydrate Polymers, vol. 169, pp. 272–281, 2017.
  • [23] D. Yugang, Z. Yuan, T. Yiping and L. Dichen, “Nano‐TiO2‐modified photosensitive resin for RP,” Rapid Prototyping Journal, vol. 17, no. 4, pp. 247–252, 2011.
  • [24] S. Kumar, M. Hofmann, B. Steinmann, E.J. Foster and C. Weder, “Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals,” ACS Applied Materials & Interfaces, vol. 4, no. 10, pp. 5399–5407, 2012.
  • [25] J. Boyle, I. Manas-Zloczower, D.L. Feke, “Influence of Particle Morphology and Flow Conditions on the Dispersion Behavior of Fumed Silica in Silicone Polymers,” Part. Part. Sysy. Charact., vol. 21, pp. 205-212, 2004.
  • [26] C. Sciancalepore, F. Moroni, M. Messori and F. Bondioli, “Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography,” Composites Communications, vol. 6, pp. 11–16, 2017.

Investigation of Mechanical Properties 3D Printable Fumed Silica Added Photo-Curable Polymers

Year 2019, , 1793 - 1805, 31.07.2019
https://doi.org/10.29130/dubited.555185

Abstract

In recent years, parallel to the interest and
importance of additive manufacturing sector and technology, the studies on
photo-curable polymer resins which will be used fort
he production of 3-D parts have attracted great interest in recent years.
Streolithography (SLA) method, which is one of the additive manufacturing
methods, is distinguished from other methods in terms of
high
speed machining and part production precision. Moreover, it allows for the
production of functional polymeric structures by enhancing their mechanical,
thermal, electrical properties, etc… In particular, it has been known that
studies to increase the mechanical strength of polymer composite materials are
very common. Ceramic materials such as clay, Al2O3, SiO2,
BaTiO3, ZrO2, etc are used as reinforcing materials 
for mechanical
strength. In this study, the improvement of mechanical properties of polyester
based acrylate photo-curable resin by reinforcement with fumed silica fillers
were investigated. Fumed silica with 167m
2/gr surface was added into
photo-curable resin at three different (%0,25, %0,5 and %1) concentration.
According to the tensile test, dynamic mechanical analyzer (DMA) and scanning
electron microscope (SEM) observation, even though mechanical properties
enhances, thermal stability (storage and loss modulus) values of SLA composites
are decreased as increasing amount of fumed silica. Due to its high surface
area of reinforcement agent, it is clearly seen that fumed silica completely
dispersed in the photo-curable resin up to %1 fumed silica concenration.

References

  • [1] X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Composites Part B: Engineering, vol. 110, pp. 442–458, 2018.
  • [2] M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kübler and R. Mülhaupt, “Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies,” Advanced Functional Materials, vol. 18, no. 16, pp. 2390–2397, 2008.
  • [3] T. A. Campbell and O.S. Ivanova, “3D printing of multifunctional nanocomposites,” Nano Today, vol. 8, no. 2, pp. 119–120, 2013.
  • [4] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites Part B: Engineering, vol. 143, pp. 172–196, 2018.
  • [5] T. Serra, J. A. Planell and M. Navarro, “High-resolution PLA-based composite scaffolds via 3-D printing technology,” Acta Biomaterialia, vol. 9, no. 3, pp. 5521–5530, 2013.
  • [6] M. Saari, B. Cox, E. Richer, P. S. Krueger and A. L. Cohen, “Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components,” 3D Printing and Additive Manufacturing, vol. 2, no. 1, pp. 32–39, 2015.
  • [7] M. Invernizzi, G. Natale, M. Levi, S. Turri and G. Griffini, “UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites,” Materials, vol. 9, no. 7, 2016.
  • [8] F. P. W. Melchels, J. Feijen and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, 2010.
  • [9] C. Credi, A. Fiorese, M. Tironi, R. Bernasconi, L. Magagnin, M. Levi and S. Turri, “3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers,” ACS Applied Materials & Interfaces, vol. 8, no. 39, pp. 26332–26342, 2016.
  • [10] J. Maas, B. Liu, S. Hajela, Y. Huang, X. Gong and W. J. Chappell, “Laser-Based Layer-by-Layer Polymer Stereolithography for High-Frequency Applications,” Proceedings of the IEEE, vol. 105, no. 4, pp. 645–654, 2017.
  • [11] G. Taormina, C. Sciancalepore, F. Bondioli and M. Messori, “Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles,” Polymers, vol. 10, no. 2, pp. 212, 2018.
  • [12] S. Thomas, J. Kuruvilla, K. Goda, and M. S. Sreekala, “Introduction to Polymer Composites,” Polymer Composites, 1st ed., USA, Wiley-VCH Verlag GmbH & Co. KGaA, 2012, pp. 1-16.
  • [13] M. Kam, H. Saruhan ve A. İpekci, “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 2, ss. 147-157, 2019.
  • [14] M. Kam, A. İpekci ve H. Saruhan, “Investigation of 3D Printing Filling Structures Effect on Mechanical Properties and Surface Roughness of PET-G Material Products,” Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 6, ss. 114-121, 2017.
  • [15] M. Sadej-Bajerlain, H. Gojzewski and E. Andrzejewska, “Monomer/modified nanosilica systems: Photopolymerization kinetics and composite characterization,” Polymer, vol. 52, no. 7, pp. 1495–1503, 2011.
  • [16] P. Palmero, “Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods,” Nanomaterials, vol. 5, no. 2, pp. 656–696, 2015.
  • [17] J. R. C. Dizon, Q. Chen, A. D. Valino, and R. C. Advincula, “Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites,’’ MRS Communications, pp. 1–9, 2018.
  • [18] M-J. Wang, M. D. Morris, Y. Kutsovsky. “Effect of Fumed Silica Surface Area on Silicone Rubber Reinforcement,” KGK rubberpoint, vol. 61, no. 3, pp. 107-117, 2008.
  • [19] M. Wozniak, Y. de Hazan, T. Graule and D. Kata, “Rheology of UV curable colloidal silica dispersions for rapid prototyping applications,” Journal of the European Ceramic Society, vol. 31, no. 13, pp. 2221–2229, 2011.
  • [20] H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song and Y. Chen, “Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography,” Ceramics International, vol. 42, no. 15, pp. 17290–17294, 2016.
  • [21] D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou and G. J. Cheng, “3D stereolithography printing of graphene oxide reinforced complex architectures,” Nanotechnology, vol. 26, no. 43, 434003, 2015.
  • [22] X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang and Y. Xie, “Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization,” Carbohydrate Polymers, vol. 169, pp. 272–281, 2017.
  • [23] D. Yugang, Z. Yuan, T. Yiping and L. Dichen, “Nano‐TiO2‐modified photosensitive resin for RP,” Rapid Prototyping Journal, vol. 17, no. 4, pp. 247–252, 2011.
  • [24] S. Kumar, M. Hofmann, B. Steinmann, E.J. Foster and C. Weder, “Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals,” ACS Applied Materials & Interfaces, vol. 4, no. 10, pp. 5399–5407, 2012.
  • [25] J. Boyle, I. Manas-Zloczower, D.L. Feke, “Influence of Particle Morphology and Flow Conditions on the Dispersion Behavior of Fumed Silica in Silicone Polymers,” Part. Part. Sysy. Charact., vol. 21, pp. 205-212, 2004.
  • [26] C. Sciancalepore, F. Moroni, M. Messori and F. Bondioli, “Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography,” Composites Communications, vol. 6, pp. 11–16, 2017.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Saraç 0000-0002-0760-5569

Aslı Oranlı This is me 0000-0002-2710-4948

İsmail Aktitiz This is me 0000-0002-3551-7611

Berrin Saygı Yalçın This is me 0000-0001-6579-3345

Remzi Varol 0000-0003-2427-0710

Publication Date July 31, 2019
Published in Issue Year 2019

Cite

APA Saraç, M., Oranlı, A., Aktitiz, İ., Saygı Yalçın, B., et al. (2019). 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology, 7(3), 1793-1805. https://doi.org/10.29130/dubited.555185
AMA Saraç M, Oranlı A, Aktitiz İ, Saygı Yalçın B, Varol R. 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. DÜBİTED. July 2019;7(3):1793-1805. doi:10.29130/dubited.555185
Chicago Saraç, Mehmet, Aslı Oranlı, İsmail Aktitiz, Berrin Saygı Yalçın, and Remzi Varol. “3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1793-1805. https://doi.org/10.29130/dubited.555185.
EndNote Saraç M, Oranlı A, Aktitiz İ, Saygı Yalçın B, Varol R (July 1, 2019) 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology 7 3 1793–1805.
IEEE M. Saraç, A. Oranlı, İ. Aktitiz, B. Saygı Yalçın, and R. Varol, “3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi”, DÜBİTED, vol. 7, no. 3, pp. 1793–1805, 2019, doi: 10.29130/dubited.555185.
ISNAD Saraç, Mehmet et al. “3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1793-1805. https://doi.org/10.29130/dubited.555185.
JAMA Saraç M, Oranlı A, Aktitiz İ, Saygı Yalçın B, Varol R. 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. DÜBİTED. 2019;7:1793–1805.
MLA Saraç, Mehmet et al. “3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1793-05, doi:10.29130/dubited.555185.
Vancouver Saraç M, Oranlı A, Aktitiz İ, Saygı Yalçın B, Varol R. 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. DÜBİTED. 2019;7(3):1793-805.