Research Article
BibTex RIS Cite

Effects of high-pressure and high-shear homogenization pretreatments on the microbiological, psychochemical properties and powder properties of freeze-dried kefir powder

Year 2025, Volume: 6 Issue: 2, 53 - 62, 30.12.2025
https://doi.org/10.55147/efse.1825450

Abstract

Recently, the use of emerging processing technologies has gained importance to improve various properties of milk and milk products. In particular, studies on improving the quality properties of powders, such as powder flow properties, wettability, and solubility, have gained momentum. In this study, the effect of high-pressure homogenization (HPH) at different pressures (50 and 100 MPa) and high-shear homogenization (HSH) at different shears (2500 and 5000 rpm) on the microbiological, physicochemical properties, and powder flow behavior of kefir powder, before drying, was determined. The higher pressure and shear employed resulted in the highest loss of viability and the lowest average particle size of kefir. After drying, the highest number of viable cells (lactobacilli, lactococci, and total bacteria) was present at levels of 9.43, 9.37, and 9.81 log cfu/g, respectively, in the kefir powder sample subjected to 100 MPa pressure. The applied homogenization pretreatments resulted in a partial increase in the L* value and solubility of kefir powder, while also leading to a significant improvement in wettability. Depending on the applied homogenization process, the decrease in particle size increased both bulk and tapped densities. Additionally, the angle of repose (AOR) value of kefir powders decreased from 37.48° to 29.44°, depending on the applied homogenization pretreatment, indicating that homogenization pretreatment significantly improved the powder flow properties. It was concluded that homogenization pretreatment of kefir could improve the microbiological and powder properties of kefir powders.

Ethical Statement

This study did not involve human participants or animal experiments. All procedures related to the collection and handling of kefir samples and microbial analyses were conducted in accordance with institutional guidelines and standard laboratory safety practices. Therefore, ethical approval was not required for this research.

Supporting Institution

This research was carried out using the laboratory facilities of Kastamonu University. No external funding was received for this study.

Thanks

The authors would like to thank Kastamonu University for providing the laboratory facilities necessary to carry out this research. The authors also acknowledge the support and assistance of the laboratory staff during the experimental studies.

References

  • Almoselhy, R. I. M. (2022). High-speed and high-pressure homogenization techniques for optimization of food processing, quality, and safety. Open Access Journal of Microbiology & Biotechnology, 7(4), 1-4. doi:10.23880/oajmb-16000243
  • Amador-Espejo, G. G., Suarez-Berencia, A., Juan, B., Barcenas, M. E., & Trujillo, A. J. (2014). Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk. Journal of Dairy Science, 97(2), 659-671. doi:10.3168/jds.2013-7245
  • AOAC. (2000). In: Official methods of analysis. 17th ed. Gaithersburg, Md.: AOAC.
  • Atalar, I., & Dervisoglu, M. (2015). Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT - Food Science and Technology, 60(2), 751-757. doi:10.1016/j.lwt.2014.10.023
  • Balkir, P. (2022). Functional, rheological and microstructural properties of freeze-dried yoghurt powder. Gıda, 47(3), 457-467. doi:10.15237/gida.GD22020
  • Begliyev, H., Yavuz, N., & Ok, S. (2023). Effects of high‐pressure homogenization on the rheological properties of spray‐dried aquafaba powder. Journal of Food Process Engineering, 46(8), e14389. doi:10.1111/jfpe.14389
  • Chávez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technology, 25(7-8), 1193-1201. doi:10.1080/07373930701438576
  • Clavijo-Romero, A., Moyano-Molano, M., Bauer Estrada, K., Pachon-Rojas, L. V., & Quintanilla-Carvajal, M. X. (2023). Evaluation of the survival of Lactobacillus fermentum K73 during the production of high-oleic palm oil macroemulsion powders using rotor-stator homogenizer and spray-drying technique. Microorganisms, 11(6), 1490. doi:10.3390/microorganisms11061490
  • Coutinho Favilla, A. L., Rosa dos Santos Junior, E., Novo Leal Rodrigues, M. C., Baião, D. d. S., Flosi Paschoalin, V. M., Lemos Miguel, M. A., . . . Trindade Rocha Pierucci, A. P. (2022). Microbial and physicochemical properties of spray dried kefir microcapsules during storage. LWT - Food Science and Technology, 154, 112710. doi:10.1016/j.lwt.2021.112710
  • Cserhalmi, Z., Sass-Kiss, A., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1-2), 49-54. doi:10.1016/j.ifset.2005.07.001
  • Dertli, E., & Çon, A. H. (2017). Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT - Food Science and Technology, 85, 151-157. doi:10.1016/j.lwt.2017.07.017
  • Deshwal, G. K., Singh, A. K., Kumar, D., & Sharma, H. (2020). Effect of spray and freeze drying on physico-chemical, functional, moisture sorption and morphological characteristics of camel milk powder. LWT - Food Science and Technology, 134, 110117. doi:10.1016/j.lwt.2020.110117
  • Dhungana, P., Truong, T., Bansal, N., & Bhandari, B. (2020). Effect of fat globule size on the physicochemical properties of dairy cream powder produced by spray drying. Drying Technology, 39(15), 2160-2172. doi:10.1080/07373937.2020.1758129
  • Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2006). Spray‐drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder. Journal of Food Science, 71(5), 209-217 doi:10.1111/j.1750-3841.2006.00036.x
  • Gül, L. B., Bekbay, S., Akgün, A., & Gül, O. (2023). Effect of oleaster (Elaeagnus angustifolia L.) flour addition combined with high‐pressure homogenization on the acidification kinetics, physicochemical, functional, and rheological properties of kefir. Food Science & Nutrition, 11(9), 5325-5337. doi:10.1002/fsn3.3491
  • Gül, O., Atalar, I., Özgeçen, A. B., Gül, L. B., Törnük, F., Sert, D., & Yazıcı, F. (2025). Instant cereal-based fermented beverage (Boza) powder: characterization physical, rheological and structural properties. Journal of Food Measurement and Characterization, 19(10), 7237-7251. doi:10.1007/s11694-025-03463-8
  • Hussain, R., Gaiani, C., & Scher, J. (2012). From high milk protein powders to the rehydrated dispersions in variable ionic environments: A review. Journal of Food Engineering, 113(3), 486-503. doi:10.1016/j.jfoodeng.2012.06.011
  • Jafari, S. M., He, Y., & Bhandari, B. (2007). Encapsulation of nanoparticles of d-limonene by spray drying: Role of emulsifiers and emulsifying techniques. Drying Technology, 25(6), 1069-1079. doi:10.1080/07373930701396758
  • Janiszewska, E., Jedlińska, A., & Witrowa-Rajchert, D. (2015). Effect of homogenization parameters on selected physical properties of lemon aroma powder. Food and Bioproducts Processing, 94, 405-413. doi:10.1016/j.fbp.2014.05.006
  • Ji, J., Fitzpatrick, J., Cronin, K., Maguire, P., Zhang, H., & Miao, S. (2016). Rehydration behaviours of high protein dairy powders: The influence of agglomeration on wettability, dispersibility and solubility. Food Hydrocolloids, 58, 194-203. doi:10.1016/j.foodhyd.2016.02.030
  • Kesler, M. K., Gonzalez-Orozco, B. D., Barringer, S. A., & Alvarez, V. B. (2023). Mitigation of undesirable volatile aroma compounds in kefir by freeze drying and vacuum evaporation. Journal of Food Science, 88(8), 3216-3227. doi:10.1111/1750-3841.16678
  • Kumar, P., & Mishra, H. N. (2004). Storage stability of mango soy fortified yoghurt powder in two different packaging materials: HDPP and ALP. Journal of Food Engineering, 65(4), 569-576. doi:10.1016/j.jfoodeng.2004.02.022
  • Mercan, E., Sert, D., & Akın, N. (2018). Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT - Food Science and Technology, 97, 279-288. doi:10.1016/j.lwt.2018.07.002
  • Mis-Solval, K. E., Jiang, N., Yuan, M., Joo, K. H., & Cavender, G. A. (2019). The Effect of the ultra-high-pressure homogenization of protein encapsulants on the survivability of probiotic cultures after spray drying. Foods, 8(12). doi:10.3390/foods8120689
  • Nurwantoro, N., Susanti, S., & Rizqiati, H. (2020). The effect of different type drying methods on chemical characteristics and microbiology of goat milk powder kefir. Journal of Applied Food Technology, 7(1), 19-24. doi:10.17728/jaft.6699
  • Öztürk, H. İ. (2022). The effect of different lyophilisation pressures on the microbiological stability, physicochemical, microstructural, and sensorial properties of yoghurt powders. International Dairy Journal, 129. doi:10.1016/j.idairyj.2022.105347
  • Plazzotta, S., Moretton, M., Calligaris, S., & Manzocco, L. (2021). Physical, chemical, and techno-functional properties of soy okara powders obtained by high pressure homogenization and alkaline-acid recovery. Food and Bioproducts Processing, 128, 95-101. doi:10.1016/j.fbp.2021.04.017
  • Rambali, B., Baert, L., & Massart, D. L. (2001). Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale. International Journal of Pharmaceutics, 220(1-2), 149-160.
  • Ravichandran, C., Upadhyay, A., Meda, V., Rastogi, N. K., Khan, Z. A., & Emanuel, N. (2023). Effect of high shear homogenisation on physicochemical, microstructure, particle size and volatile composition of residual pineapple pulp. International Journal of Food Science & Technology, 58(4), 2092-2103. doi:10.1111/ijfs.15984
  • Rizqiati, H., Febrisiantosa, A., Setiyawan, A. I., Setiawan, J., Safira, H., Insyira, V. R., . . . Adrian, E. (2023). Influence of maltodextrin concentration on the proximate, chemical, and microbiological properties of powdered bovine colostrum kefir. Current Journal of Applied Science and Technology, 42(24), 1-11. doi:10.9734/cjast/2023/v42i244175
  • Rizqiati, H., Nurwantoro, N., Susanti, S., Febrisiantosa, A., Setyawardani, T., & Shauma, C. A. (2021). Physical and Chemical characteristics of goat milk powder with different drying methods after storage. Jurnal Ilmu dan Teknologi Hasil Ternak, 16(1), 65-74. doi:10.21776/ub.jitek.2021.016.01.7
  • Rocha-Guzman, N. E., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., Harte, F., Medina-Torres, L., Ochoa-Martinez, L. A., & Soto-Garcia, M. (2010). Effect of high-pressure homogenization on the physical and antioxidant properties of Quercus resinosa infusions encapsulated by spray-drying. Journal of Food Science, 75(5), N57-61. doi:10.1111/j.1750-3841.2010.01653.x
  • Santos, G. D., Nunes, T. P., Silva, M. A. A. P., Rosenthal, A., & Pagani, A. A. C. (2018). Development and acceptance of freeze-dried yogurt "powder yogurt". International Food Research Journal, 25(3), 1159-1165.
  • Santoso, A., Radiati, L. E., Damayanti, E., Armaini, A., Nabilah-Mujahidah, A., Sanjaya, E. H., . . . Asrori, M. R. (2023). Effect of aging time and vacuum drying on proximate analysis and amino acid levels of goat milk kefir. INMATEH Agricultural Engineering, 349-358. doi:10.35633/inmateh-69-32
  • Syamaladevi, R. M., Insan, S. K., Dhawan, S., Andrews, P., & Sablani, S. S. (2012). Physicochemical properties of encapsulated red raspberry (Rubus idaeus) powder: influence of high-pressure homogenization. Drying Technology, 30(5), 484-493. doi:10.1080/07373937.2011.647369
  • Tontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2021). The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Bioscience, 43. doi:10.1016/j.fbio.2021.101317
  • Tontul, İ., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169-176. doi:10.1016/j.idairyj.2018.06.002
  • Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. doi:10.1016/j.tifs.2017.03.009
  • Zhang, Q., Chen, Y., Geng, F., & Shen, X. (2023). Characterization of spray-dried microcapsules of paprika oleoresin induced by ultrasound and high-pressure homogenization: Physicochemical properties and storage stability. Molecules, 28(20), 70-75. doi:10.3390/molecules28207075
  • Zhou, L., Zhang, W., Wang, J., Zhang, R., & Zhang, J. (2022). Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrasonics Sonochemistry, 82, 105885. doi:10.1016/j.ultsonch.2021.105885
  • Zouari, A., Mtibaa, I., Triki, M., Jridi, M., Zidi, D., Attia, H., & Ayadi, M. A. (2020). Effect of spray‐drying parameters on the solubility and the bulk density of camel milk powder: A response surface methodology approach. International Journal of Dairy Technology, 73(3), 616-624. doi:10.1111/1471-0307.12690
There are 41 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Research Article
Authors

Latife Betül Gül 0000-0002-4732-7727

Osman Gül 0000-0003-1620-4246

Submission Date November 17, 2025
Acceptance Date December 25, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Gül, L. B., & Gül, O. (2025). Effects of high-pressure and high-shear homogenization pretreatments on the microbiological, psychochemical properties and powder properties of freeze-dried kefir powder. European Food Science and Engineering, 6(2), 53-62. https://doi.org/10.55147/efse.1825450