Review
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 2, 34 - 39, 06.12.2021

Abstract

References

  • Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional and functional properties. Advances in Food and Nutrition Research, 58(1), 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1
  • Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa and amaranth. Food Chemistry and Toxicology, 68, 1254-1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
  • Ando, H., Chen, Y., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Science and Technology Research, 8, 80-84. https://doi.org/10.3136/fstr.8.80
  • Astier, C., Moneret-Vautrin, D. A., Puillandre, E., & Bihain, B. E. (2009). First case report of anaphylaxis to quinoa, a novel food in France. Allergy, 64(5), 819-820. https://doi.org/10.1111/j.1398-9995.2009.01980.x
  • Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa-an Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
  • Brady, K., Ho, C. T., Rosen, R. T., Sang, S. M., & Karwe, M. V. (2007). Effects of processing on the nutraceutical profile of quinoa. Food Chemistry, 100, 1209-1216. https://doi.org/10.1016/j.foodchem.2005.12.001
  • Chauhan, S., Eskin, N. A. M., & Tkachuk, R. (1992). Nutrients and antinutrients in quinoa seeds. Cereal Chemistry, 69(1), 85-88.
  • Comai, S., Bertazzo, A., Bailoni, L., Zancato, M., Costa, C. V. L., & Allegri, G. (2007). The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chemistry, 100, 1350-1355. https://doi.org/10.1016/j.foodchem.2005.10.072
  • De Carvalho, F. G., Ovidio, P. P., Padovan, G. J., Jordao Junior, A. A., Marchini, J. S., & Navarro, A. M. (2014). Metabolic parameters of postmenopausal women after quinoa or corn flakes intake-a prospective and double-blind study. International Journal of Food Sciences and Nutrition, 65(3), 380-385. https://doi.org/10.3109/09637486.2013.866637
  • Dinan, L. (2009). The Karlson Lecture. Phytoecdysteroids: what use are they? Archives of Insect Biochemistry and Physiology, 72(3), 126-141. https://doi.org/10.1002/arch.20334
  • Dinan, L., & Lanfort, L. R. (2006). Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. Journal of Endocrinology, 191, 1-8. https://doi.org/10.1677/joe.1.06900
  • Dini, I., Schettino, O., Simioli, T., & Dini, A. (2001a). Studies on the constituents of Chenopodium quinoa seeds: isolation and characterization of new triterpene saponins. Journal of Agricultural and Food Chemistry, 49, 741-746. https://doi.org/10.1021/jf000971y
  • Dini, I., Tenore, G. C., & Dini, A. (2010). Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT- Food Science and Technology, 43(3), 447-451. https://doi.org/10.1016/j.lwt.2009.09.010
  • Dini, I., Tenore, G. C., Schettino, O., & Dini, A. (2001b). New oleanane saponins in Chenopodium quinoa. Journal of Agricultural and Food Chemistry, 49, 3976-3981. https://doi.org/10.1021/jf010361d
  • Eberhardt, M. V., Lee, C. Y., & Liu, R. H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903-904. https://doi.org/10.1038/35016151
  • Ehrhardt, C., Wessels, J. T., Wuttke, W., & Seidlova-Wuttke, D. (2011). The effects of 20-hydroxyecdysone and 17ß-estradiol on the skin of ovariectomized rats. Menopause, 18 (3), 323-327. https://doi.org/10.1097/gme.0b013e3181f322e3
  • Estrada, A., Li, B., & Laarveld, B. (1998). Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comparative Immunology, Microbiology and Infectious Diseases, 21, 225-236. https://doi.org/10.1016/S0147-9571(97)00030-1
  • Farinazzi-Machado, F. M. V., Barbalho, S. M., Oshiiwa, M., Goulart, R., & Pessan Junior, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Cienc. Technol. Aliment. Campinas, 32(2), 239-244. https://doi.org/10.1590/S0101-20612012005000040
  • Foucault, A. S., Even, P., Lafont, R., Dioh, W., Veillet, S., Tome, D., Huneau, J. F., & Herman, W. H. (2014). Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiology & Behavior, 128, 226-231. https://doi.org/10.1016/j.physbeh.2014.02.002
  • Foucault, A. S., Mathe, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Tome, D., Huneau, J. F., Hermier, D., & Quignard-Boulangé, A. (2011). Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Silver Spring Obesity, 20(2), 270-277. https://doi.org/10.1038/oby.2011.257
  • Gee, J. M., Price, K. R., Ridout, C. L., Wortley, G. M., Hurrel, R. F., & Johnson, I. T. (1993). Saponins of quinoa (Chenopodium quinoa): Effects of processing on their abundance in quinoa products and their biological effects on intestinal mucosal tissue. Journal of the Science of Food and Agriculture, 63, 201-209. https://doi.org/10.1002/jsfa.2740630206
  • Gorelick-Feldman, J., MacLean, D., Ilic, N., Poulev, A., Lila, M.A., Cheng, D., & Raskin, I. (2008). Phytoecdysteroids increase protein synthesis in skeletal muscle cells. Journal of Agricultural and Food Chemistry, 56(10), 3532-3537. https://doi.org/10.1021/jf073059z
  • Graf, B. L., Cheng, D. M., Esposito, D., Shertel, T., Poulev, A., Plundrich, N., Itenberg, D., Dayan, N., Lila, M. A., & Raskin, I. (2015c). Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygen species. International Journal of Cosmetic Science, 37(2), 212-221. https://doi.org/10.1111/ics.12185
  • Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera, J., Baldeon, M.E., & Raskin, I. (2015a). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14 (4), 431-445. https://doi.org/10.1111/1541-4337.12135
  • Graf, B. L., Rojo, L. E., Delatorre-Herrera, J., Poulev, A., Calfio, C., & Raskin, I. (2015b). Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physicochemical Journal of the Science of Food and Agriculture, 96(2), 633-643. https://doi.org/10.1002/jsfa.7134
  • Ho, S. S., & Pal, S. (2005). Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells. Atherosclerosis, 182(1), 29-36. https://doi.org/10.1016/j.atherosclerosis.2005.01.031
  • Hong, J., Convers, K., Reeves, N., & Temprano, J. (2013). Anaphylaxis to quinoa. Annals of Allergy, Asthma & Immunology, 110 (1), 60-61. https://doi.org/10.1016/j.anai.2012.10.016
  • Hu, J., Luo, C. X., Chu, W. H., Shan, Y. A., Qian, Z., Zhu, G., Yu, Y. B., & Feng, H. (2012). 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-kB and JNK pathways. Plos One, 7(12), e50764. https://doi.org/10.1371/journal.pone.0050764
  • Hu, J., Zhao, T. Z., Chu, W. H., Luo, C. X., Tang, W. H., Yi, L., & Feng, H. (2010). Protective effects of 20-hydroxyecdysone on CoCl2-induced cell injury in PC12 cells. Journal of Cellular Biochemistry, 111, 1512-1521. https://doi.org/10.1002/jcb.22877
  • Kizelsztein, P., Govorko, D., Komarnytsky, S., Evans, A., Wang, Z., Cefalu, W. T., & Raskin, I. (2009). 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. American Journal of Physiology-Endocrinology and Metabolism, 296(3), E433-E439. https://doi.org/10.1152/ajpendo.90772.2008
  • Konishi, Y., Hirano, S., Tsuboi, H., & Wada, M. (2004). Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 68, 231-234. https://doi.org/10.1271/bbb.68.231
  • Koziol, M. J. (1991). Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of the Science of Food and Agriculture, 54, 211-219. https://doi.org/10.1002/jsfa.2740540206
  • Koziol, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68. https://doi.org/10.1016/0889-1575(92)90006-6
  • Lindeboon, N. (2005). Studies on the characterization, biosynthesis and isolation of starch and protein from quinoa (Chenopodium quinoa Willd.). Ph.D Thesis, University of Saskatchewan, Canada, 1–135.
  • Liyana-Pathirana, C., Dexter, J., & Shahidi, F. (2006). Antioxidant properties of wheat as affected by pearling. Journal of Agriculture and Food Chemistry, 54, 6177-6184. https://doi.org/10.1021/jf060664d
  • Lopez, D. E. Q., Zavala, B. B., & Ortiz, I. (2014). Cross-reactivity between buckwheat and quinoa in a patient with eosinophilic esophagitis caused by wheat. Journal of Investigational Allergology & Clinical Immunology, 24 (1), 56-57.
  • Mad, T., Sterk, H., Mittelbach, M., & Rechberger, G. N. (2006). Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. Journal of the American Society for Mass Spectrometry, 17, 795-806. https://doi.org/10.1016/j.jasms.2006.02.013
  • Maradini Filho, A. M., Pirozi, M. R., Da Silva Borges, J. T., Pinheiro Sant'Ana, H. M., Paes Chaves, J. B., & Dos Reis Coimbra, J. S. (2015). Quinoa: nutritional, functional and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. https://doi.org/10.1080/10408398.2014.1001811
  • Marangoni, F., & Poli, A. (2010). Phytosterols and cardiovascular health. Pharmacological Research, 61, 193-199. https://doi.org/10.1016/j.phrs.2010.01.001
  • Meyer, B. N., Heinstein, P. F., Burnouf-Radosevich, M., Delfel, N. E., & McLaughlin, J. L. (1990). Bioactivity-directed isolation and characterization of quinoside A: one of the toxic/bitter principles of quinoa seeds (Chenopodium quinoa Willd.). Journal of Agricultural and Food Chemistry, 38, 205-208. https://doi.org/10.1021/jf00091a045
  • Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Scala K.D. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32(3), 258-263. https://doi.org/10.1016/j.indcrop.2010.04.019
  • Mujica, A., Izquierdo, J., & Marathee, J. P. (2001). Origen y descripcion de La quinua. In Quinua (Chenopodium quinoa Willd.); Ancestral cultivo andino, alimento del presente y futuro. Santiago de Chile: FAO, 9-29.
  • Nongonierma, A. B., Le Maux, S., Dubrulle, C., Barre, C., & FitzGerald, R.J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112-118. https://doi.org/10.1016/j.jcs.2015.07.004
  • Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111
  • Pasko, P., Barton, H., Zagrodzki, P., Izewska, A., Krosniak, M., Gawlik, M., Gawlik, M., & Gorinstein, S. (2010b). Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods for Human Nutrition, 65(2), 146-151. https://doi.org/10.1007/s11130-010-0164-6
  • Pasko, P., Zagrodzki, P., Barton, H., Chlopicka, J., & Gorinstein, S. (2010a). Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65 (4), 333-338. https://doi.org/10.1007/s11130-010-0197-x
  • Ranhotra, G. S., Gelroth, J. A., Glaser, B. K., Lorenz, K.J., & Johnson, D. L. (1993). Composition and protein nutritional quality of quinoa. Cereal Chemistry, 70, 303-305.
  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179-189. https://doi.org/10.1081/FRI-120018884
  • Repo-Carrasco-Valencia, R., Hellstrom, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amar-anthus caudatus). Food Chemistry, 120(1), 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087
  • Ruales, J. (1998). Increasing the utilisation of sorghum, buckwheat, grain amaranth and quinoa for improve nutrition. Norwich, UK, Institute of Food Research, 49-64.
  • Ruales, J., De Grijalva, Y., Lopez-Jaramillo, P., & Nair, B. M. (2002). The nutritional quality of infant food from quinoa and its effect on the plasma level of insulin-like growth factor-1 (IGF-1) in undernourished children. International Journal of Food Sciences and Nutrition, 53,143-154. https://doi.org/10.1080/09637480220132157
  • Ruales, J., & Nair, B. M. (1992). Quinoa (Chenopodium quinoa Willd) an important Andean food crop. Archivos Latinoamericanos de Nutricion, 42(3), 232-241.
  • Ruales, J., & Nair, B. M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa Willd.) seeds. Food Chemistry, 48, 131-136. https://doi.org/10.1016/0308-8146(93)90047-J
  • Ryan, E., Galvin, K., O'Connor, T. P., Maguire, A. R., & O'Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85-91. https://doi.org/10.1007/s11130-007-0046-8
  • Sanchez, K. A. (2012). Observations regarding consumption of peruvian native grains (Quinoa, Amaranth and Kaniwa), weight status, and perceptions of potential risk factors, warning signs and symptoms of type 2 diabetes among peruvian adults: a case study. Master Thesis, University of Maryland, US, 1-163.
  • Seidlova-Wuttke, D., Christel, D., Kapur, P., Nguyen, B. T., Jarry, H., & Wuttke, W. (2010). Beta-ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine, 17(11), 884-889. https://doi.org/10.1016/j.phymed.2010.03.021
  • Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S. E., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138. https://doi.org/10.1016/j.jcs.2011.10.010
  • Takao, T., Watanabe, N., Yuhara, K., Itoh, S., Suda, S., Tsuruoka, Y., Nakatsugawa, K., & Konishi, Y. (2005). Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Science and Technology Research, 11, 161-167. https://doi.org/10.3136/fstr.11.161
  • Tan, M., & Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: Kinoa (Chenopodium quinoaWilld.). Alınteri Zirai Bilimler Dergisi, 25(2), 62-66.
  • Tang, H., Watanabe, K., & Mitsunaga, T. (2002). Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers, 49 (1), 13-22. https://doi.org/10.1016/S0144-8617(01)00292-2
  • Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388. https://doi.org/10.1016/j.foodchem.2014.06.018
  • Taylor, J. R. N., & Parker, M. L. (2002). Quinoa. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and less common cereals, 93-122, Heidelberg: Springer.
  • USDA (2015). United States Department of Agriculture. National Nutrient Database for Standard Reference Release, 28 (Basic Reports).
  • Valenzuela, C., Abugoch, L., Tapia, C., & Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science & Technology, 48, 843-849. https://doi.org/10.1111/ijfs.12035
  • Vega-Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martinez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90 (15), 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Vilehe, C., Gely M., & Santalla E. (2003). Physical properties of quinoa seeds. Biosystems Engineering, 86(1), 59-65. https://doi.org/10.1016/s1537-5110(03)00114-4
  • Villacr'es, E., P'astor, G., Quelal, M. B., Zambrano, I., & Morales, S. H. (2013). Effect of processing on the content of fatty acids, tocopherols and sterols in the oils of quinoa (Chenopodium quinoa Willd), lupine (Lupinus mutablis Sweet), amaranth (Amaranthus caudatus L.) and sangorache (Amaranthus quitensis L.). Global Journal of Food Science and Technology, 2(4), 44-53.
  • Wang, Z. Q., Yu, Y., Zhang, X. H., Ribnicky, D., & Cefalu, W. T. (2011). Ecdysterone enhances muscle insulin signaling by modulating acylcarnitine profile and mitochondrial oxidative phosphorylation complexes in mice fed a high-fat diet. Diabetes, 1-10. https://doi.org/10.2337/db10-1605
  • Wilborn, C. D., Taylor, L. W., Campbell, B. I., Kerksick, C., Rasmussen, C. J., Greenwood, M., & Kreider, R. B. (2006). Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in Journal of the International Society of Sports Nutrition, 3(2), 19-27. https://doi.org/10.1186/1550-2783-3-2-19
  • Woldemichael, G., & Wink, M. (2001). Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. Journal of Agricultural and Food Chemistry, 49, 2327-2332. https://doi.org/10.1021/jf0013499
  • Yao, Y., Shi, Z., & Ren, G. (2014a). Antioxidant and immunoregulatory activity of poly-saccharides from quinoa (Chenopodium quinoa Willd.). International Journal of Molecular Sciences, 15(10), 19307-19318. https://doi.org/10.3390/ijms151019307
  • Yao, Y., Yang, X., Shi, Z., & Ren, G. (2014b). Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Journal of Food Science, 79(5), H1018-H1023. https://doi.org/10.1111/1750-3841.12425
  • Yıldız, M., Tansı, S., & Sezen S. M. (2014). New plants with commercial potent. Turkish Journal of Agricultural and Natural Sciences, 1, 1036-1042.
  • Zevallos, V. F., Herencia, L. I., Chang, F., Donnelly, S., Ellis, H. J., & Ciclitira, P. J. (2014). Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology, 109 (2), 270-278. https://doi.org/10.1038/ajg.2013.431
  • Zhu, N. Q., Sheng, S. Q., Sang, S. M., Jhoo, J. W., Bai, N. S., Karwe, M. V., Rosen, R. T., & Ho, C. T. (2002). Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds. Journal of Agricultural and Food Chemistry, 50, 865-867. https://doi.org/10.1021/jf011002l

Chemical composition and health effects of quinoa: Areview

Year 2021, Volume: 2 Issue: 2, 34 - 39, 06.12.2021

Abstract

Many herbs in traditional and modern medicine contain saponins, which are generally responsible for the therapeutic properties they possess. Many saponins are known to exhibit biological activities such as antiviral, antidiabetic and cytotoxic activities, and these substances and plants containing them are becoming more and more attractive for pharmacological research purposes. Quinoa seed, which is one of the foodstuffs that shows the activities indicated by the various phenolic and antioxidant substances it contains and the phytochemicals in its composition, is one of the grain groups on which research has been conducted and the mechanisms of its effects are intended for clarification. This study aims to explain the effects of its consumption on health, by giving information about the chemical composition of quinoa seeds and by showing scientific data as an example.

References

  • Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional and functional properties. Advances in Food and Nutrition Research, 58(1), 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1
  • Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa and amaranth. Food Chemistry and Toxicology, 68, 1254-1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
  • Ando, H., Chen, Y., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Science and Technology Research, 8, 80-84. https://doi.org/10.3136/fstr.8.80
  • Astier, C., Moneret-Vautrin, D. A., Puillandre, E., & Bihain, B. E. (2009). First case report of anaphylaxis to quinoa, a novel food in France. Allergy, 64(5), 819-820. https://doi.org/10.1111/j.1398-9995.2009.01980.x
  • Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa-an Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
  • Brady, K., Ho, C. T., Rosen, R. T., Sang, S. M., & Karwe, M. V. (2007). Effects of processing on the nutraceutical profile of quinoa. Food Chemistry, 100, 1209-1216. https://doi.org/10.1016/j.foodchem.2005.12.001
  • Chauhan, S., Eskin, N. A. M., & Tkachuk, R. (1992). Nutrients and antinutrients in quinoa seeds. Cereal Chemistry, 69(1), 85-88.
  • Comai, S., Bertazzo, A., Bailoni, L., Zancato, M., Costa, C. V. L., & Allegri, G. (2007). The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chemistry, 100, 1350-1355. https://doi.org/10.1016/j.foodchem.2005.10.072
  • De Carvalho, F. G., Ovidio, P. P., Padovan, G. J., Jordao Junior, A. A., Marchini, J. S., & Navarro, A. M. (2014). Metabolic parameters of postmenopausal women after quinoa or corn flakes intake-a prospective and double-blind study. International Journal of Food Sciences and Nutrition, 65(3), 380-385. https://doi.org/10.3109/09637486.2013.866637
  • Dinan, L. (2009). The Karlson Lecture. Phytoecdysteroids: what use are they? Archives of Insect Biochemistry and Physiology, 72(3), 126-141. https://doi.org/10.1002/arch.20334
  • Dinan, L., & Lanfort, L. R. (2006). Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. Journal of Endocrinology, 191, 1-8. https://doi.org/10.1677/joe.1.06900
  • Dini, I., Schettino, O., Simioli, T., & Dini, A. (2001a). Studies on the constituents of Chenopodium quinoa seeds: isolation and characterization of new triterpene saponins. Journal of Agricultural and Food Chemistry, 49, 741-746. https://doi.org/10.1021/jf000971y
  • Dini, I., Tenore, G. C., & Dini, A. (2010). Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT- Food Science and Technology, 43(3), 447-451. https://doi.org/10.1016/j.lwt.2009.09.010
  • Dini, I., Tenore, G. C., Schettino, O., & Dini, A. (2001b). New oleanane saponins in Chenopodium quinoa. Journal of Agricultural and Food Chemistry, 49, 3976-3981. https://doi.org/10.1021/jf010361d
  • Eberhardt, M. V., Lee, C. Y., & Liu, R. H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903-904. https://doi.org/10.1038/35016151
  • Ehrhardt, C., Wessels, J. T., Wuttke, W., & Seidlova-Wuttke, D. (2011). The effects of 20-hydroxyecdysone and 17ß-estradiol on the skin of ovariectomized rats. Menopause, 18 (3), 323-327. https://doi.org/10.1097/gme.0b013e3181f322e3
  • Estrada, A., Li, B., & Laarveld, B. (1998). Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comparative Immunology, Microbiology and Infectious Diseases, 21, 225-236. https://doi.org/10.1016/S0147-9571(97)00030-1
  • Farinazzi-Machado, F. M. V., Barbalho, S. M., Oshiiwa, M., Goulart, R., & Pessan Junior, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Cienc. Technol. Aliment. Campinas, 32(2), 239-244. https://doi.org/10.1590/S0101-20612012005000040
  • Foucault, A. S., Even, P., Lafont, R., Dioh, W., Veillet, S., Tome, D., Huneau, J. F., & Herman, W. H. (2014). Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiology & Behavior, 128, 226-231. https://doi.org/10.1016/j.physbeh.2014.02.002
  • Foucault, A. S., Mathe, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Tome, D., Huneau, J. F., Hermier, D., & Quignard-Boulangé, A. (2011). Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Silver Spring Obesity, 20(2), 270-277. https://doi.org/10.1038/oby.2011.257
  • Gee, J. M., Price, K. R., Ridout, C. L., Wortley, G. M., Hurrel, R. F., & Johnson, I. T. (1993). Saponins of quinoa (Chenopodium quinoa): Effects of processing on their abundance in quinoa products and their biological effects on intestinal mucosal tissue. Journal of the Science of Food and Agriculture, 63, 201-209. https://doi.org/10.1002/jsfa.2740630206
  • Gorelick-Feldman, J., MacLean, D., Ilic, N., Poulev, A., Lila, M.A., Cheng, D., & Raskin, I. (2008). Phytoecdysteroids increase protein synthesis in skeletal muscle cells. Journal of Agricultural and Food Chemistry, 56(10), 3532-3537. https://doi.org/10.1021/jf073059z
  • Graf, B. L., Cheng, D. M., Esposito, D., Shertel, T., Poulev, A., Plundrich, N., Itenberg, D., Dayan, N., Lila, M. A., & Raskin, I. (2015c). Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygen species. International Journal of Cosmetic Science, 37(2), 212-221. https://doi.org/10.1111/ics.12185
  • Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera, J., Baldeon, M.E., & Raskin, I. (2015a). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14 (4), 431-445. https://doi.org/10.1111/1541-4337.12135
  • Graf, B. L., Rojo, L. E., Delatorre-Herrera, J., Poulev, A., Calfio, C., & Raskin, I. (2015b). Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physicochemical Journal of the Science of Food and Agriculture, 96(2), 633-643. https://doi.org/10.1002/jsfa.7134
  • Ho, S. S., & Pal, S. (2005). Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells. Atherosclerosis, 182(1), 29-36. https://doi.org/10.1016/j.atherosclerosis.2005.01.031
  • Hong, J., Convers, K., Reeves, N., & Temprano, J. (2013). Anaphylaxis to quinoa. Annals of Allergy, Asthma & Immunology, 110 (1), 60-61. https://doi.org/10.1016/j.anai.2012.10.016
  • Hu, J., Luo, C. X., Chu, W. H., Shan, Y. A., Qian, Z., Zhu, G., Yu, Y. B., & Feng, H. (2012). 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-kB and JNK pathways. Plos One, 7(12), e50764. https://doi.org/10.1371/journal.pone.0050764
  • Hu, J., Zhao, T. Z., Chu, W. H., Luo, C. X., Tang, W. H., Yi, L., & Feng, H. (2010). Protective effects of 20-hydroxyecdysone on CoCl2-induced cell injury in PC12 cells. Journal of Cellular Biochemistry, 111, 1512-1521. https://doi.org/10.1002/jcb.22877
  • Kizelsztein, P., Govorko, D., Komarnytsky, S., Evans, A., Wang, Z., Cefalu, W. T., & Raskin, I. (2009). 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. American Journal of Physiology-Endocrinology and Metabolism, 296(3), E433-E439. https://doi.org/10.1152/ajpendo.90772.2008
  • Konishi, Y., Hirano, S., Tsuboi, H., & Wada, M. (2004). Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 68, 231-234. https://doi.org/10.1271/bbb.68.231
  • Koziol, M. J. (1991). Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of the Science of Food and Agriculture, 54, 211-219. https://doi.org/10.1002/jsfa.2740540206
  • Koziol, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68. https://doi.org/10.1016/0889-1575(92)90006-6
  • Lindeboon, N. (2005). Studies on the characterization, biosynthesis and isolation of starch and protein from quinoa (Chenopodium quinoa Willd.). Ph.D Thesis, University of Saskatchewan, Canada, 1–135.
  • Liyana-Pathirana, C., Dexter, J., & Shahidi, F. (2006). Antioxidant properties of wheat as affected by pearling. Journal of Agriculture and Food Chemistry, 54, 6177-6184. https://doi.org/10.1021/jf060664d
  • Lopez, D. E. Q., Zavala, B. B., & Ortiz, I. (2014). Cross-reactivity between buckwheat and quinoa in a patient with eosinophilic esophagitis caused by wheat. Journal of Investigational Allergology & Clinical Immunology, 24 (1), 56-57.
  • Mad, T., Sterk, H., Mittelbach, M., & Rechberger, G. N. (2006). Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. Journal of the American Society for Mass Spectrometry, 17, 795-806. https://doi.org/10.1016/j.jasms.2006.02.013
  • Maradini Filho, A. M., Pirozi, M. R., Da Silva Borges, J. T., Pinheiro Sant'Ana, H. M., Paes Chaves, J. B., & Dos Reis Coimbra, J. S. (2015). Quinoa: nutritional, functional and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. https://doi.org/10.1080/10408398.2014.1001811
  • Marangoni, F., & Poli, A. (2010). Phytosterols and cardiovascular health. Pharmacological Research, 61, 193-199. https://doi.org/10.1016/j.phrs.2010.01.001
  • Meyer, B. N., Heinstein, P. F., Burnouf-Radosevich, M., Delfel, N. E., & McLaughlin, J. L. (1990). Bioactivity-directed isolation and characterization of quinoside A: one of the toxic/bitter principles of quinoa seeds (Chenopodium quinoa Willd.). Journal of Agricultural and Food Chemistry, 38, 205-208. https://doi.org/10.1021/jf00091a045
  • Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Scala K.D. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32(3), 258-263. https://doi.org/10.1016/j.indcrop.2010.04.019
  • Mujica, A., Izquierdo, J., & Marathee, J. P. (2001). Origen y descripcion de La quinua. In Quinua (Chenopodium quinoa Willd.); Ancestral cultivo andino, alimento del presente y futuro. Santiago de Chile: FAO, 9-29.
  • Nongonierma, A. B., Le Maux, S., Dubrulle, C., Barre, C., & FitzGerald, R.J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112-118. https://doi.org/10.1016/j.jcs.2015.07.004
  • Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111
  • Pasko, P., Barton, H., Zagrodzki, P., Izewska, A., Krosniak, M., Gawlik, M., Gawlik, M., & Gorinstein, S. (2010b). Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods for Human Nutrition, 65(2), 146-151. https://doi.org/10.1007/s11130-010-0164-6
  • Pasko, P., Zagrodzki, P., Barton, H., Chlopicka, J., & Gorinstein, S. (2010a). Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65 (4), 333-338. https://doi.org/10.1007/s11130-010-0197-x
  • Ranhotra, G. S., Gelroth, J. A., Glaser, B. K., Lorenz, K.J., & Johnson, D. L. (1993). Composition and protein nutritional quality of quinoa. Cereal Chemistry, 70, 303-305.
  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179-189. https://doi.org/10.1081/FRI-120018884
  • Repo-Carrasco-Valencia, R., Hellstrom, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amar-anthus caudatus). Food Chemistry, 120(1), 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087
  • Ruales, J. (1998). Increasing the utilisation of sorghum, buckwheat, grain amaranth and quinoa for improve nutrition. Norwich, UK, Institute of Food Research, 49-64.
  • Ruales, J., De Grijalva, Y., Lopez-Jaramillo, P., & Nair, B. M. (2002). The nutritional quality of infant food from quinoa and its effect on the plasma level of insulin-like growth factor-1 (IGF-1) in undernourished children. International Journal of Food Sciences and Nutrition, 53,143-154. https://doi.org/10.1080/09637480220132157
  • Ruales, J., & Nair, B. M. (1992). Quinoa (Chenopodium quinoa Willd) an important Andean food crop. Archivos Latinoamericanos de Nutricion, 42(3), 232-241.
  • Ruales, J., & Nair, B. M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa Willd.) seeds. Food Chemistry, 48, 131-136. https://doi.org/10.1016/0308-8146(93)90047-J
  • Ryan, E., Galvin, K., O'Connor, T. P., Maguire, A. R., & O'Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85-91. https://doi.org/10.1007/s11130-007-0046-8
  • Sanchez, K. A. (2012). Observations regarding consumption of peruvian native grains (Quinoa, Amaranth and Kaniwa), weight status, and perceptions of potential risk factors, warning signs and symptoms of type 2 diabetes among peruvian adults: a case study. Master Thesis, University of Maryland, US, 1-163.
  • Seidlova-Wuttke, D., Christel, D., Kapur, P., Nguyen, B. T., Jarry, H., & Wuttke, W. (2010). Beta-ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine, 17(11), 884-889. https://doi.org/10.1016/j.phymed.2010.03.021
  • Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S. E., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138. https://doi.org/10.1016/j.jcs.2011.10.010
  • Takao, T., Watanabe, N., Yuhara, K., Itoh, S., Suda, S., Tsuruoka, Y., Nakatsugawa, K., & Konishi, Y. (2005). Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Science and Technology Research, 11, 161-167. https://doi.org/10.3136/fstr.11.161
  • Tan, M., & Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: Kinoa (Chenopodium quinoaWilld.). Alınteri Zirai Bilimler Dergisi, 25(2), 62-66.
  • Tang, H., Watanabe, K., & Mitsunaga, T. (2002). Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers, 49 (1), 13-22. https://doi.org/10.1016/S0144-8617(01)00292-2
  • Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388. https://doi.org/10.1016/j.foodchem.2014.06.018
  • Taylor, J. R. N., & Parker, M. L. (2002). Quinoa. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and less common cereals, 93-122, Heidelberg: Springer.
  • USDA (2015). United States Department of Agriculture. National Nutrient Database for Standard Reference Release, 28 (Basic Reports).
  • Valenzuela, C., Abugoch, L., Tapia, C., & Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science & Technology, 48, 843-849. https://doi.org/10.1111/ijfs.12035
  • Vega-Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martinez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90 (15), 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Vilehe, C., Gely M., & Santalla E. (2003). Physical properties of quinoa seeds. Biosystems Engineering, 86(1), 59-65. https://doi.org/10.1016/s1537-5110(03)00114-4
  • Villacr'es, E., P'astor, G., Quelal, M. B., Zambrano, I., & Morales, S. H. (2013). Effect of processing on the content of fatty acids, tocopherols and sterols in the oils of quinoa (Chenopodium quinoa Willd), lupine (Lupinus mutablis Sweet), amaranth (Amaranthus caudatus L.) and sangorache (Amaranthus quitensis L.). Global Journal of Food Science and Technology, 2(4), 44-53.
  • Wang, Z. Q., Yu, Y., Zhang, X. H., Ribnicky, D., & Cefalu, W. T. (2011). Ecdysterone enhances muscle insulin signaling by modulating acylcarnitine profile and mitochondrial oxidative phosphorylation complexes in mice fed a high-fat diet. Diabetes, 1-10. https://doi.org/10.2337/db10-1605
  • Wilborn, C. D., Taylor, L. W., Campbell, B. I., Kerksick, C., Rasmussen, C. J., Greenwood, M., & Kreider, R. B. (2006). Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in Journal of the International Society of Sports Nutrition, 3(2), 19-27. https://doi.org/10.1186/1550-2783-3-2-19
  • Woldemichael, G., & Wink, M. (2001). Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. Journal of Agricultural and Food Chemistry, 49, 2327-2332. https://doi.org/10.1021/jf0013499
  • Yao, Y., Shi, Z., & Ren, G. (2014a). Antioxidant and immunoregulatory activity of poly-saccharides from quinoa (Chenopodium quinoa Willd.). International Journal of Molecular Sciences, 15(10), 19307-19318. https://doi.org/10.3390/ijms151019307
  • Yao, Y., Yang, X., Shi, Z., & Ren, G. (2014b). Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Journal of Food Science, 79(5), H1018-H1023. https://doi.org/10.1111/1750-3841.12425
  • Yıldız, M., Tansı, S., & Sezen S. M. (2014). New plants with commercial potent. Turkish Journal of Agricultural and Natural Sciences, 1, 1036-1042.
  • Zevallos, V. F., Herencia, L. I., Chang, F., Donnelly, S., Ellis, H. J., & Ciclitira, P. J. (2014). Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology, 109 (2), 270-278. https://doi.org/10.1038/ajg.2013.431
  • Zhu, N. Q., Sheng, S. Q., Sang, S. M., Jhoo, J. W., Bai, N. S., Karwe, M. V., Rosen, R. T., & Ho, C. T. (2002). Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds. Journal of Agricultural and Food Chemistry, 50, 865-867. https://doi.org/10.1021/jf011002l
There are 76 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review
Authors

Emine Okumuş 0000-0001-5266-8633

Mehmet Ali Temiz 0000-0002-4680-3023

Publication Date December 6, 2021
Submission Date June 28, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Okumuş, E., & Temiz, M. A. (2021). Chemical composition and health effects of quinoa: Areview. European Food Science and Engineering, 2(2), 34-39.