Research Article
BibTex RIS Cite

Liquid Sensor Based on Interaction between Decoupled Waveguides and a Cavity with Transverse Offset in a Phononic Crystal

Year 2022, , 393 - 399, 30.11.2022
https://doi.org/10.31590/ejosat.1183694

Abstract

A liquid sensor employing a cavity in the form of a point defect with a transverse offset along the normal bisector of a barrier at the center of a linear waveguide in a two-dimensional phononic crystal, which gives rise to two decoupled waveguides, is proposed. The phononic crystal consists of cylindrical steel rods with 2.0 mm radius in water, arranged with 4.2 mm lattice constant in the square lattice. Linear waveguides are formed by removing a single row from the phononic crystal, whereas the point defect is formed by substituting a single cylindrical steel rod by a polyethylene tubing comprising the analyte of interest. The cavity acts as a cross-bridge between the waveguides through the interaction of the linear defect mode in the input waveguide with the point defect mode, which in turn interacts with the output waveguide mode. Finite-element method simulations reveal that at frequencies around 200 kHz, a sharp peak with a quality factor of the order of 1000 occurs in the transmission spectrum of the system, where resonant transmission occurs. In case of determining the ratio of methanol in ethanol as an instance, it is found that the peak frequency exhibits a quadratic shift with the molar ratio of methanol. On the other hand, the transmission value decreases exponentially with increasing methanol ratio at the frequency of 196.19 kHz, which is the peak frequency for pure ethanol. The proposed sensing scheme can be utilized in many applications such as the identification of fake beverages and in high-throughput concentration measurements in the industry.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

116F085

Thanks

This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant number: 116F085. Ahmet Cicek acknowledges support from Turkish Academy of Sciences (TÜBA) Outstanding Young Researchers Awarding Programme (GEBİP-2018).

References

  • Aly, A. H., & Mehaney, A. (2017). Phononic crystals with one-dimensional defect as sensor materials. Indian Journal of Physics, 91(9), 1021-1028. https://doi.org/10.1007/s12648-017-0989-z
  • Bamberger, J. A., & Greenwood, M. S. (2004). Measuring fluid and slurry density and solids concentration non-invasively. Ultrasonics, 42(1-9), 563-567. https://doi.org/10.1016/j.ultras.2004.01.032
  • Biçer, A., Durmuslar, A. S., Korozlu, N., & Cicek, A. (2022). An Acoustic Add-Drop Filter in a Phononic Crystal for High-Sensitivity Detection of Methanol in Ethanol in the Liquid Phase. IEEE Sensors Journal, 22(15), 14799-14805. https://doi.org/10.1109/JSEN.2022.3185926
  • Brown, J., Slutsky, L., Nelson, K., & Cheng, L.-T. (1988). Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell. Science, 241(4861), 65-67. https://doi.org/10.1126/science.241.4861.65
  • COMSOL, Inc. (2022). COMSOL-Software for Multiphysics Simulation. Retrieved 30.09.2022 from https://www.comsol.com
  • Givoli, D., & Neta, B. (2003). High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 186(1), 24-46. https://doi.org/10. 1016/S0021-9991(03)00005-6
  • Iglesias, M., Orge, B., Domínguez, M., & Tojo, J. (1998). Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K. Physics and Chemistry of Liquids, 37(1), 9-29. https://doi.org/10.1080/00319109808032796
  • Ke, M., Zubtsov, M., & Lucklum, R. (2011). Sub-wavelength phononic crystal liquid sensor. Journal of Applied Physics, 110(2), 026101. https://doi.org/10.1063/1.3610391
  • Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., & Laude, V. (2004). Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22), 4400-4402. https://doi.org/10.1063/1.1757642
  • Kuo, I., Hete, B., & Shung, K. (1990). A novel method for the measurement of acoustic speed. The Journal of the Acoustical Society of America, 88(4), 1679-1682. https://doi.org/10.1063/1.400242
  • Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022. https://doi.org/10.1103/PhysRevLett.71.2022
  • Larrarte, F., Bardiaux, J. B., Battaglia, P., & Joannis, C. (2008). Acoustic Doppler flow-meters: a proposal to characterize their technical parameters. Flow Measurement and Instrumentation, 19(5), 261-267. https://doi.org/10.1016/j.flowmeasinst.2008.01.001
  • Lucklum, R., Ke, M., & Zubtsov, M. (2012). Two-dimensional phononic crystal sensor based on a cavity mode. Sensors and Actuators B: Chemical, 171, 271-277. https://doi.org/10.1016/j.snb.2012.03.063
  • Lucklum, R., & Li, J. (2009). Phononic crystals for liquid sensor applications. Measurement Science and Technology, 20(12), 124014. https://doi.org/10.1088/0957-0233/20/12/124014
  • Lucklum, R., Li, J., & Zubtsov, M. (2010). 1D and 2D phononic crystal sensors. Procedia Engineering, 5, 436-439. https://doi.org/10.1016/j.proeng.2010.09.140
  • Lucklum, R., & Mukhin, N. (2021). Enhanced sensitivity of resonant liquid sensors by phononic crystals. Journal of Applied Physics, 130(2), 024508. https://doi.org/10.1063/5.0046847
  • Mehaney, A. (2019). Biodiesel physical properties detection using one-dimensional phononic crystal sensor. Acoustical Physics, 65(4), 374-378. https://doi.org/10.1134/S1063771019040122
  • Mehaney, A., & Ahmed, A. M. (2020). Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114353. https://doi.org/10.1016/j.physe.2020.114353
  • Moradi, P., Gharibi, H., Fard, A. M., & Mehaney, A. (2021). Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Physica Scripta, 96(12), 125713. https://doi.org/10.1088/1402-4896/ac2c23
  • Mukhin, N., Kutia, M., Aman, A., Steinmann, U., & Lucklum, R. (2022). Two-Dimensional Phononic Crystal Based Sensor for Characterization of Mixtures and Heterogeneous Liquids. Sensors, 22(7), 2816. https://doi.org/10.3390/s22072816
  • Oseev, A., Zubtsov, M., & Lucklum, R. (2013). Gasoline properties determination with phononic crystal cavity sensor. Sensors and Actuators B: Chemical, 189, 208-212. https://doi.org/10.1016/j.snb.2013.03.072
  • Salman, A., Ates, E., Biçer, A., Deniz, S., Cicek, A., & Korozlu, N. (2021). Determination of Methanol Concentration in Ethanol in Liquid Phase by a Phononic Crystal Mach-Zehnder Interferometer. Physica Scripta, 96(12), 125032. https://doi.org/10.1088/1402-4896/ac3d4b
  • Salman, A., Kaya, O. A., & Cicek, A. (2014). Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab. Sensors and Actuators A: Physical, 208, 50-55. https://doi.org/10.1016/j.sna.2013.12.037
  • Salman, A., Kaya, O. A., Cicek, A., & Ulug, B. (2015). Low-concentration liquid sensing by an acoustic Mach–Zehnder interferometer in a two-dimensional phononic crystal. Journal of Physics D: Applied Physics, 48(25), 255301. https://doi.org/10.1088/0022-3727/48/25/255301
  • Vasseur, J. O., Deymier, P. A., Beaugeois, M., Pennec, Y., Djafari-Rouhani, B., & Prevost, D. (2005). Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide. Zeitschrift für Kristallographie-Crystalline Materials, 220(9-10), 829-835. https://doi.org/10.1524/zkri.2005.220.9-10.829
  • Villa-Arango, S., Torres, R., Kyriacou, P., & Lucklum, R. (2017). Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity. Measurement, 102, 20-25. https://doi.org/10.1016/j.measurement.2017.01.051
  • Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. https://doi.org/10.1016/S0375-9601(01)00800-3
  • Zaki, S. E., Mehaney, A., Hassanein, H. M., & Aly, A. H. (2021). High-performance liquid sensor based one-dimensional phononic crystal with demultiplexing capability. Materials Today Communications, 26, 102045. https://doi.org/10.1016/j.mtcomm.2021.102045
  • Zaremanesh, M., Carpentier, L., Gharibi, H., Bahrami, A., Mehaney, A., Gueddida, A., Lucklum, R., Djafari-Rouhani, B., & Pennec, Y. (2021). Temperature biosensor based on triangular lattice phononic crystals. APL Materials, 9(6), 061114. https://doi.org/10.1063/5.0054155
  • Zubtsov, M., Lucklum, R., Ke, M., Oseev, A., Grundmann, R., Henning, B., & Hempel, U. (2012). 2D phononic crystal sensor with normal incidence of sound. Sensors and Actuators A: Physical, 186, 118-124. https://doi.org/10.1016/j.sna.2012.03.017

Bir Fononik Kristalde Ayrışmış Dalga Kılavuzları ile Dikine Ofsetli Kavite Arasında Eşleşmeye Dayalı Sıvı Sensörü

Year 2022, , 393 - 399, 30.11.2022
https://doi.org/10.31590/ejosat.1183694

Abstract

İki boyutlu bir fononik kristaldeki doğrusal dalga kılavuzunun merkezinde iki adet ayrışmış dalga kılavuzu oluşumuna sebep olan bariyerin dik ortayı üzerinde konumlanmış nokta kusuru formundaki bir kovuk içeren sıvı sensörü önerilmiştir. Fononik kristal, su içerisinde örgü sabiti 4.2 mm olacak biçimde kare örgü düzeninde dizilmiş 2.0 mm yarıçaplı silindirik çelik çubuklardan oluşmaktadır. Doğrusal dalga kılavuzları fononik kristalden tek bir sıranın çıkarılmasıyla oluşturulurken nokta kusuru, tek bir silindirik çelik çubuğun ilgili analiti içeren bir polietilen hortum ile değiştirilmesiyle oluşturulmuştur. Giriş dalga kılavuzundaki doğrusal kusur modunun daha sonra çıkış dalga kılavuzu moduyla etkileşen nokta kusur moduyla etkileşimi vasıtasıyla kovuk, iki dalga kılavuzu arasında çapraz bir köprü görevi görmektedir. Sonlu elemanlar yöntemi simülasyonlarının sonuçları, 200 kHz civarındaki frekanslarda sistemin geçirim spektrumunda 1000 mertebesinde kalite faktörüne sahip keskin bir pikin gözlendiği rezonans iletiminin oluştuğunu göstermiştir. Örnek olarak etanol içinde metanol oranı belirlenmesinde, pik frekansının molar metanol oranının karesiyle değiştiği belirlenmiştir. Öte yandan, saf etanol için belirlenen 196.19 kHz pik frekansında, geçirim değeri artan metanol oranıyla üstel olarak azalmaktadır. Önerilen algılama yaklaşımı, sahte içeceklerin tanımlanması ve endüstride yüksek verimli konsantrasyon ölçümleri gibi pek çok uygulamada kullanılabilir.

Project Number

116F085

References

  • Aly, A. H., & Mehaney, A. (2017). Phononic crystals with one-dimensional defect as sensor materials. Indian Journal of Physics, 91(9), 1021-1028. https://doi.org/10.1007/s12648-017-0989-z
  • Bamberger, J. A., & Greenwood, M. S. (2004). Measuring fluid and slurry density and solids concentration non-invasively. Ultrasonics, 42(1-9), 563-567. https://doi.org/10.1016/j.ultras.2004.01.032
  • Biçer, A., Durmuslar, A. S., Korozlu, N., & Cicek, A. (2022). An Acoustic Add-Drop Filter in a Phononic Crystal for High-Sensitivity Detection of Methanol in Ethanol in the Liquid Phase. IEEE Sensors Journal, 22(15), 14799-14805. https://doi.org/10.1109/JSEN.2022.3185926
  • Brown, J., Slutsky, L., Nelson, K., & Cheng, L.-T. (1988). Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell. Science, 241(4861), 65-67. https://doi.org/10.1126/science.241.4861.65
  • COMSOL, Inc. (2022). COMSOL-Software for Multiphysics Simulation. Retrieved 30.09.2022 from https://www.comsol.com
  • Givoli, D., & Neta, B. (2003). High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 186(1), 24-46. https://doi.org/10. 1016/S0021-9991(03)00005-6
  • Iglesias, M., Orge, B., Domínguez, M., & Tojo, J. (1998). Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K. Physics and Chemistry of Liquids, 37(1), 9-29. https://doi.org/10.1080/00319109808032796
  • Ke, M., Zubtsov, M., & Lucklum, R. (2011). Sub-wavelength phononic crystal liquid sensor. Journal of Applied Physics, 110(2), 026101. https://doi.org/10.1063/1.3610391
  • Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., & Laude, V. (2004). Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22), 4400-4402. https://doi.org/10.1063/1.1757642
  • Kuo, I., Hete, B., & Shung, K. (1990). A novel method for the measurement of acoustic speed. The Journal of the Acoustical Society of America, 88(4), 1679-1682. https://doi.org/10.1063/1.400242
  • Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022. https://doi.org/10.1103/PhysRevLett.71.2022
  • Larrarte, F., Bardiaux, J. B., Battaglia, P., & Joannis, C. (2008). Acoustic Doppler flow-meters: a proposal to characterize their technical parameters. Flow Measurement and Instrumentation, 19(5), 261-267. https://doi.org/10.1016/j.flowmeasinst.2008.01.001
  • Lucklum, R., Ke, M., & Zubtsov, M. (2012). Two-dimensional phononic crystal sensor based on a cavity mode. Sensors and Actuators B: Chemical, 171, 271-277. https://doi.org/10.1016/j.snb.2012.03.063
  • Lucklum, R., & Li, J. (2009). Phononic crystals for liquid sensor applications. Measurement Science and Technology, 20(12), 124014. https://doi.org/10.1088/0957-0233/20/12/124014
  • Lucklum, R., Li, J., & Zubtsov, M. (2010). 1D and 2D phononic crystal sensors. Procedia Engineering, 5, 436-439. https://doi.org/10.1016/j.proeng.2010.09.140
  • Lucklum, R., & Mukhin, N. (2021). Enhanced sensitivity of resonant liquid sensors by phononic crystals. Journal of Applied Physics, 130(2), 024508. https://doi.org/10.1063/5.0046847
  • Mehaney, A. (2019). Biodiesel physical properties detection using one-dimensional phononic crystal sensor. Acoustical Physics, 65(4), 374-378. https://doi.org/10.1134/S1063771019040122
  • Mehaney, A., & Ahmed, A. M. (2020). Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114353. https://doi.org/10.1016/j.physe.2020.114353
  • Moradi, P., Gharibi, H., Fard, A. M., & Mehaney, A. (2021). Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Physica Scripta, 96(12), 125713. https://doi.org/10.1088/1402-4896/ac2c23
  • Mukhin, N., Kutia, M., Aman, A., Steinmann, U., & Lucklum, R. (2022). Two-Dimensional Phononic Crystal Based Sensor for Characterization of Mixtures and Heterogeneous Liquids. Sensors, 22(7), 2816. https://doi.org/10.3390/s22072816
  • Oseev, A., Zubtsov, M., & Lucklum, R. (2013). Gasoline properties determination with phononic crystal cavity sensor. Sensors and Actuators B: Chemical, 189, 208-212. https://doi.org/10.1016/j.snb.2013.03.072
  • Salman, A., Ates, E., Biçer, A., Deniz, S., Cicek, A., & Korozlu, N. (2021). Determination of Methanol Concentration in Ethanol in Liquid Phase by a Phononic Crystal Mach-Zehnder Interferometer. Physica Scripta, 96(12), 125032. https://doi.org/10.1088/1402-4896/ac3d4b
  • Salman, A., Kaya, O. A., & Cicek, A. (2014). Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab. Sensors and Actuators A: Physical, 208, 50-55. https://doi.org/10.1016/j.sna.2013.12.037
  • Salman, A., Kaya, O. A., Cicek, A., & Ulug, B. (2015). Low-concentration liquid sensing by an acoustic Mach–Zehnder interferometer in a two-dimensional phononic crystal. Journal of Physics D: Applied Physics, 48(25), 255301. https://doi.org/10.1088/0022-3727/48/25/255301
  • Vasseur, J. O., Deymier, P. A., Beaugeois, M., Pennec, Y., Djafari-Rouhani, B., & Prevost, D. (2005). Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide. Zeitschrift für Kristallographie-Crystalline Materials, 220(9-10), 829-835. https://doi.org/10.1524/zkri.2005.220.9-10.829
  • Villa-Arango, S., Torres, R., Kyriacou, P., & Lucklum, R. (2017). Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity. Measurement, 102, 20-25. https://doi.org/10.1016/j.measurement.2017.01.051
  • Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. https://doi.org/10.1016/S0375-9601(01)00800-3
  • Zaki, S. E., Mehaney, A., Hassanein, H. M., & Aly, A. H. (2021). High-performance liquid sensor based one-dimensional phononic crystal with demultiplexing capability. Materials Today Communications, 26, 102045. https://doi.org/10.1016/j.mtcomm.2021.102045
  • Zaremanesh, M., Carpentier, L., Gharibi, H., Bahrami, A., Mehaney, A., Gueddida, A., Lucklum, R., Djafari-Rouhani, B., & Pennec, Y. (2021). Temperature biosensor based on triangular lattice phononic crystals. APL Materials, 9(6), 061114. https://doi.org/10.1063/5.0054155
  • Zubtsov, M., Lucklum, R., Ke, M., Oseev, A., Grundmann, R., Henning, B., & Hempel, U. (2012). 2D phononic crystal sensor with normal incidence of sound. Sensors and Actuators A: Physical, 186, 118-124. https://doi.org/10.1016/j.sna.2012.03.017
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nurettin Körözlü 0000-0002-0899-0227

Mehmet Günay 0000-0001-8820-3520

Ahmet Biçer 0000-0002-7743-6078

Ahmet Çiçek 0000-0002-7686-0045

Project Number 116F085
Publication Date November 30, 2022
Published in Issue Year 2022

Cite

APA Körözlü, N., Günay, M., Biçer, A., Çiçek, A. (2022). Liquid Sensor Based on Interaction between Decoupled Waveguides and a Cavity with Transverse Offset in a Phononic Crystal. Avrupa Bilim Ve Teknoloji Dergisi(41), 393-399. https://doi.org/10.31590/ejosat.1183694