Review
BibTex RIS Cite

Ultrasound-Assisted Extraction Method and Its Advantages in Oil Seeds

Year 2021, , 313 - 322, 31.01.2021
https://doi.org/10.31590/ejosat.759702

Abstract

Seed oils are extracted industrially using mechanical pressing or organic solvents. In solvent extraction method, solvents are used to extract oil from oil seeds. In addition to the environmental concerns associated with the industrial use of such solvents, the need for high temperature and long extraction time is considered to be the disadvantage of solvent extraction. In recent years, alternative methods to solvent extraction have been examined. The results of these studies reveal that ultrasonic-assisted extraction (UAE) is one of the promising methods. Ultrasound application increases the mass transfer in liquid with acoustic cavitation force. The high degree of shear produced by explosive bubbles increases the penetration of the intracellular components into the solvent by damaging the cell walls. UAE method; is an effective method for preserving the structural and molecular properties of bioactive compounds by preventing thermal damage of extracts since it is applied with high efficiency and at low temperatures. Due to the listed advantages, it is an ideal choice in the oil industry. Ultrasonic applications stand out as a key technology in achieving the goal of sustainable green chemistry” and extraction. In the present study, the application areas of the UAE and its advantages over other methods have been compiled.

References

  • Abdelkebira, R., Alcántarac, C., Falcód, I.,Sáncheze, G., Garcia-Perezf, J.V., Neffatia, M., Lorenzog, J.M., Francisco J. Barbab, F.J., & Colladoc, M.C., (2019). Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts. Innovative Food Science and Emerging Technologies, 52, 189–196. https://doi.org/10.1016/j.ifset.2018.12.009.
  • Akdeniz, V., & Akalın, A.S., (2019). New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology, 86, 392-398. https://doi.org/10.1016/j.tifs.2019.02.046.
  • Alarcon-Rojo, A.D., Carrillo-Lopez, L.M., Reyes-Villagrana,R., Huerta-Jimenez, M., & Garcia Galicia, I.A., (2019).Ultrasound and meat quality: A review. Ultrasonics - Sonochemistry, 55,369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016
  • Arroyo, C., Cebrián, G., Pagán, R., & Condón, S., (2011). Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. International Journal of Food Microbiology, 144 (3), 446–454. https://doi.org/10.1016/j.ijfoodmicro.2010.10.033.
  • Arslan Tontul, S., Mutlu, C., Koç, A., & Erbaş, M. (2018). Çiya tohumundan ultrason destekli yağ ekstraksiyonunun optimizasyonu. GIDA, 43 (3), 393-402. doi: 10.15237
  • Ashokkumar, M., (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25, 17–23. https://doi.org/10.1016/j.ultsonch.2014.08.012.
  • Assami, K., Pingret, D., Chemat, S., Meklatia, B.Y., & Chemat, F., (2012). Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chemical Engineering and Processing: Process Intensification, 62, 99-105. https://doi.org/10.1016/j.cep.2012.09.003
  • Ayyildiz, O., Sanik¸S., & Ileri, B., (2011). Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrasonics Sonochemistry, 18(2), 683-688. https://doi.org/10.1016/j.ultsonch.2010.08.008.
  • Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., & Youssef, M.M., (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48, 410-427. https://doi.org/10.1016/j.foodres.2012.05.004.
  • Barizao, E.O., Boeing, J.S., Martins, A.C., Visentainer, J.V., & Almeida, V.C. (2015). Application of Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil. Food Anal Method, 8(9), 2392-2400. doi: 10.1007/s12161-015-0135-5.
  • Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G.V., (2011) Ultrasound Applications in Food Processing, in Ultrasound Technologies for Food and Bioprocessing, H. Feng, G. Barbosa-Canovas, and J. Weiss, Editors., Springer New York: New York, NY. p. 65-105.
  • Bimakr, M., Rahman, R.A., Taip, F.S., Adzahan, N.M., Sarker, M.Z.I., & Ganjloo, A. (2012). Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida) Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition. Molecule, 17(10), 11748-11762. doi: 10.3390/molecules171011748.
  • Boateng, E.F., & Nasiru, M.M., (2019). Applications of Ultrasound in Meat Processing Technology: A Review. Food Science and Technology, 7(2), 11-15. doi: 10.13189/fst.2019.070201
  • Boistier-Marquis, E., Lagsir-Oulahal, N., & Callard,M., (1999). Applications des ultrasons de puissances en industries alimentaires. Industries Agricoles et Alimentaires, 116, 23– 31.
  • Brilhante de São José , J.F., José de Andrade ,N., Ramos,A.M., Dantas Vanetti , M.C., Stringheta, P.C., & Paes Chaves, J.B., (2014). Decontamination by ultrasound application in fresh fruits and vegetables. Food Control, 45,36-50. doi: 10.1016/j.foodcont.2014.04.015.
  • Capelo-Martínez, J.-L., (2009). Ultrasound in chemistry: analytical applications.John Wiley & Sons, (171 pages).
  • Caraveo, O., Alarcon-Rojo, A.D., Renteria, A., Santellano, E., & Paniwnyk,L., (2015). Physicochemical and microbiological characteristics of beef treated with highintensity ultrasound and stored at 4 °C, Journal Science. Food and Agriculture, 95, 2487–2493, https://doi.org/10.1002/jsfa.6979.
  • Carrín, M.E. & Crapiste G.H. (2008). Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor. Journal of Food Engineering, 85(3), 418-425. https://doi.org/10.1016/j.jfoodeng.2007.08.003
  • Chang, H-J., Wang, Q., Tang, C-H., & Zhou, G-H., (2015). Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle, Journal Food Quality, 38 , 256–267. https://doi.org/10.1111/jfq.12141
  • Chemat, F., Huma, Z., & Khan, M. K., (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  • Chemat, F., Rombaut, N., Sicaire, A-G.,Meullemiestre, A., Fabiano- Tixier, A-S., & Abert-Vian, M., (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications.A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
  • Chen, Z., & Zhu, C., (2011). Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biology and Technology, 61(2-3), 117-123. https://doi.org/10.1016/j.postharvbio.2011.03.006.
  • de Lima Alves, L., Stefanello da Silva, M., Martins Flores, D.R., Rodrigues Athayde,D., Roggia Ruviaro, A., da Silva Brum, D., Fagundes Batista,V.S., de Oliveira Mello, R., Ragagnin de Menezes, C., Bastianello Campagnol, P.C.,Wagner, R., Smanioto Barin, J., & Cichoski A.J., (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. doi: 10.1016/j.foodres.2017.12.074.
  • Eikani, M.H., Golmohammad, F., & Homami, S.S., (2012). Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food and Bioproducts Processing, 90(1), 32-36. https://doi.org/10.1016/j.fbp.2011.01.002
  • Ercan, S.S., & Soysal, C., (2011). Effect of ultrasound and temperature on tomato peroxidase. Ultrasonics Sonochemistry, 18(2), 686-695. https://doi.org/10.1016/j.ultsonch.2010.09.014.
  • Ercan, S. & Soysal, Ç., (2013). Use of ultrasound in food preservation. Natural Science, 5,5-13. doi: 10.4236/ns.2013.58A2002
  • Fan, D., Huang, L., Li, B., Huang, J., Zhao, J., Yan, B., Zhou, W., Zhang, W., & Zhang, H., (2017). Acoustic intensity in ultrasound field and ultrasound-assisted gelling of surimi, LWT – Food Science Technology, 75, 497–504. https://doi.org/10.1016/j.lwt.2016.08.002.
  • Feng, H., & Yang, W., (2005). Power ultrasound. In Y. H. Hui (Eds). Handbook of food science, technology and engineering. New York: CRC Press; 1st Edition..
  • Flannigan, D.J., & Suslick, K.S., (2010). Inertially confined plasma in an imploding bubble. Nature Physics, 6(8), 598. doi: 10.1038/NPHYS1701
  • Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., & García-Pérez, J.V., (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 2014, 128 (5): 132–139. doi: 10.1016/j.jfoodeng.2013.12.021.
  • Gonzalez-Gonzalez, L., Luna-Rodriguez, L., Carrillo-Lopez, L.M., Alarcon-Rojo, A.D., Garcia-Galicia, I., & Reyes-Villagrana, R., (2017). Ultrasound as an alternative to conventional marination: acceptability and mass transfer. Journal of Food Quality, 2, 1-8. https://doi.org/10.1155/2017/8675720.
  • Gharibzahedi, S.M.T., & Smith, B., (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107–116. https://doi.org/10.1016/j.tifs.2020.02.002.
  • Gulzar, S., & Benjakul, S., (2018). Ultrasound waves increase the yield and carotenoid content of lipid extracted from cephalothorax of Pacific white shrimp (Litopenaeus vannamei). European Journal of Lipid Science and Technology, 120(5), 1–11. https://doi.org/10.1002/ejlt.201700495.
  • Gulzar, S., Rajua, N., Nagarajaraob, R.C., & Benjakul, S., (2020). Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application- A review. Trends in Food Science & Technology, 100, 307–319. https://doi.org/10.1016/j.tifs.2020.04.005.
  • Hashemi, S.M.B., Michiels, J., Yousefabad, S.H.A., & Hosseini, M., (2015). Kolkhoung (Pistacia khinjuk) kernel oil quality is affected by different parameters in pulsed ultrasound-assisted solvent extraction. Industrial Crops and Products, 70, 28-33. https://doi.org/10.1016/j.indcrop.2015.03.023
  • Hongyu, W., Hulbert, G.J., & Mount, J.R., (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter, Innovative Food Sci. Emerg. Technology, 1, 211–218. doi: 10.1016/S1466-8564(00)00020-5.
  • Hu, H., Cheung, I. W., Pan, S., & Li-Chan, E. C. (2015). Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 45, 102–110. https://doi.org/10.1016/j.foodhyd.2014.11.004.
  • Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., & Ma, H., (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018.
  • Kentish, S. & Ashokkumar, M., (2011). The Physical and Chemical Effects of Ultrasound, in Ultrasound Technologies for Food and Bioprocessing, H. Feng, G. Barbosa-Canovas, and J. Weiss, Editors. , Springer New York: New York, NY. p. 1-12.
  • Koubaa, M., Roselló-Soto, E., Šic Žlabur, J., Režek Jambrak, A., Brnčić, M., Grimi, N., Boussetta, N., & Barba, F. J. (2015). Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry, 63, 6835–6846. https://doi.org/10.1021/acs.jafc.5b01994
  • Koubaa, M., Mhemdi, H., Barba, F.J., Roohinejad, S., Greiner, R., & Vorobiev, E., (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International, 85, 59–66. https://doi.org/10.1016/j.foodres.2016.04.007
  • Lebovka, N., Vorobiev, E., & Chemat, F., (2016). Enhancing extraction processes in the food industry, 1st Edition, (570 pages). CRC Press.
  • Leong, T., Ashokkumar, M., & Kentish, S., (2011).The fundamentals of power ultrasound-A review. Acoustics Australia, 39 (2), 54-63. August (2011) No. 2 - 4329.
  • Li, H., Pordesimo, L., & Weiss, J., (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738 https://doi.org/10.1016/j.foodres.2004.02.016.
  • Liu, W., Fu, Y-J., Zu, Y-G., Tong, M-H., Wu, N., Liu, X-L., & Zang, S., (2009a). Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chemistry, 114(1),334-339. https://doi.org/10.1016/j.foodchem.2008.09.049.
  • Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C., (2009b). Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. The Journal of Supercritical Fluids, 48(1) 9-14. https://doi.org/10.1016/j.supflu.2008.09.013
  • Liu, G., Xu, X., Hao, Q., & Gao, Y., (2009c). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT - Food Science and Technology, 42(9), 1491-1495. https://doi.org/10.1016/j.lwt.2009.04.011
  • Liu, Z., Juliano, P., Williams, R., Niere, J., & Augustin, M., (2014). Ultrasound effects on the assembly of casein micelles in reconstituted skim milk. Journal of Dairy Research, 81(2), 146-155. doi: 10.1017/S0022029913000721
  • Lopez, P., Sala, F. J., De La Fuente, J. L., Condon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42, 252-256. https://doi.org/10.1021/jf00038a005.
  • Luengo, E., Condón-Abanto, S., Condón-, S., Álvarez, I., & Raso, J., (2014). Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation and Purification Technology, 136,130-136. https://doi.org/10.1016/j.seppur.2014.09.008.
  • Luque-Garcia, J.L., & Luque de Castro, M.D., (2004). Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment. Application to the extraction of total fat from oleaginous seeds. Journal Chromatography A, 1034 (1-2),237-42. https://doi.org/10.1016/j.chroma.2004.02.020
  • Madhu, B., Sai Srinivas, M., Srinivas, G., & Jain, S.K., (2019).Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. Current Journal of Applied Science and Technology, 32(5),1-11.doi: 10.9734/CJAST/2019/46909.
  • Mason, T. & Lorimer, J., (2002).Applied Sonochemistry: Uses of Power Ultrasound in. Chemistry.
  • Mason TJ, Paniwnyk,L., & Lorimer,J. P., (1996).The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3,253- 260. https://doi.org/10.1016/S1350-4177(96)00034-X.
  • Mawson, R., Gamage, M., Terefe, N. S., & Knoerzer, K. (2011). Ultrasound in enzyme activation and inactivation. In H. Feng, G. V. Barbosa-Cánovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing (pp. 369-404). New York: Springer.
  • Meireles, M.A.A., Extracting bioactive compounds for food products: theory and applications. 2008: CRC press.
  • Mitra, P., Ramaswamy, H.S., & Chang, K.S. (2009). Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95(1), 208-213. https://doi.org/10.1016/j.jfoodeng.2009.04.033
  • Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., & Abbasvali, M., (2014). Ultrasonic techniques for the milk production industry. Measurement, 58, 93-102. https://doi.org/10.1016/j.measurement.2014.08.022
  • Nithila, S.D, Anandkumar, B., Vanithakumari, S.C., George, R.P., Mudali, U.K., & Dayal, R.K., (2014). Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrasonics Sonochemistry, 21, 189–199. doi: 10.1016/j.ultsonch.2013.06.010.
  • Nguyen, T.M.P., Lee, Y.K., & Zhou, W., (2009). Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound, International Dairy Journal 19 (6-7), 410–416. https://doi.org/10.1016/j.idairyj.2009.02.004
  • Palma, M., Barbero, G.F., Pineiro, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado J.M., & Meireles, M.A.A., (2013). Extraction of natural products: Principles and fundamental aspects. Natural product extraction: principles and applications, RSC Publising, Mauricio A Rostagno, Juliana M Prado, Editors(s.58)
  • Ojha, K. S., Mason, T. J., O'Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/j.ultsonch.2016.06.001.
  • Pétrier, C., Gondrexon, N., & Boldo, P., (2008). Ultrasons et sonochimie. techniques de l’ingénieur. AF, 6,310.
  • Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnel, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrots discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi: 10.1016/j.ultsonch.2011.03.009.
  • Rui, H., Zhang, L., Li, Z., & Pan, Y., (2009). Extraction and characteristics of seed kernel oil from white pitaya. Journal of Food Engineering, 93(4),482-486. https://doi.org/10.1016/j.jfoodeng.2009.02.016
  • Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R. P., Saraiva, J. A., Boussetta, N., Girimi, N., & Barba, F. J. (2015a). Emerging opportunities for the effective valorization of wastes and byproducts generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends in Food Science &Technology, 45(2), 296–310. https://doi.org/10.1016/j.tifs.2015.07.003.
  • Roselló-Soto, E., Galanakis, C. M., Brnčić, M., Orlien, V., Trujillo, F. J., Mawson, R., Knoerzer, K., Tiwari, B.K., & Barba, F.J., (2015b). Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends in Food Science & Technology, 42(2), 134–149. https://doi.org/10.1016/j.tifs.2015.01.002.
  • Sagong, H. G., Lee, S.-Y., Chang, P. S., Heu, S., Ryu, S., Choi, Y. J., & Kang, D-H., (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145(1), 287-292.https://doi.org/10.1016/j.ijfoodmicro.2011.01.010.
  • Sagong, H. G., Cheon, H.-L., Lee, S. Y., Park, K. H., Chung, M.S., Choi, Y. J., & Kang, D-H., (2013). Combined effects of ultrasound and surfactants to reduce Bacillus cereus spores on lettuce and carrots. International Journal of Food Microbiology, 160(3), 367- 372. https://doi.org/10.1016/j.ijfoodmicro.2012.10.014.
  • Samaram, S., Mirhosseini, H., Tan, C.P., & Ghazali, H.M. (2013). Ultrasound-Assisted Extraction (UAE) and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile. Molecule, 18(10), 12474-12487.doi: 10.3390/molecules181012474
  • Samaram, S., Mirhosseini, H., Tan, C,P., & Ghazali, H.M., (2014). Ultrasound-assisted extraction and solvent extraction of papaya seed oil: Crystallization and thermal behavior, saturation degree, color and oxidative stability. Industrial Crops and Products, 52, 702-708. https://doi.org/10.1016/j.indcrop.2013.11.047.
  • Samaram, S., Mirhosseini, H., Tan, C.-P., Ghazalib, H.-M., Bordbar, S., & Serjouiea, A., (2015).Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability.FoodChemistry,172,7-17. https://doi.org/10.1016/j.foodchem.2014.08.068.
  • Senrayan, J., & Venkatachalam, S., (2020). Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science and Emerging Technologies, 62,102347. https://doi.org/10.1016/j.ifset.2020.102347.
  • Seymour, I.J., Burfoot, D., Smith, R.L., Cox, L.A., & Lockwood, A., (2002). Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology,37(5),547– 557.doi: 10.1046/j.1365-2621.2002.00613.x
  • Sevindik, O., & Selli, S., (2017). Üzüm çekirdek yağı eldesinde kullanılan ekstraksiyon yöntemleri. Gıda,42(1),95-103.doi: 10.15237/gida.GD16052.
  • Stanisavljević, I.T., Lazić, M.L., & Veljković, V.B., (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry,14(5), 646-652. https://doi.org/10.1016/j.ultsonch.2006.10.003
  • Serrato, A.G., (1981). Extraction of oil from soybeans. Journal of the American Oil Chemists’ Society, 58(3), 157-159.
  • Tao, Y., Zhang, J., Jiang, S., Xu, Y., & Ye, M., (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering, 2018, 235(10),79-88. https://doi.org/10.1016/j.jfoodeng.2018.04.028
  • Téllez-Morales, J.A., Hernández-Santo, B., & Rodríguez-Miranda, J., (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics – Sonochemistry, 61, 104787. https://doi.org/10.1016/j.ultsonch.2019.104787
  • Tervo, J.T., Mettin, R., & Lauterborn, W., (2006). Bubble cluster dynamics in acoustic cavitation. Acustica united with Acustica, 92,178–180. https://doi.org/10.1121/1.4802906.
  • Wang, C.Y., & Chen, B.H., (2006). Tomato pulp as source for the production of lycopene powder containing high proportion of cis-isomers. European Food Research and Technology, 222(3),347-353. doi: 10.1007/s00217-005-0058-2.
  • Wang, A., Kang, D., Zhang, W., Zhang, C., Zou,Y., & Zhou, G., (2018). Changes in calpain activity,protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 245 , 724–730. https://doi.org/10.1016/j.foodchem.2017.12.003.
  • Wei, F., Gao, G. -Z., Wang, X. -F., Dong, X. -Y., Li, P. -P., Hua, W., & Chen, H. (2008). Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assistedextraction combined with gas chromatography. Ultrasonics Sonochemistry, 15(6), 938–942. doi: 10.1016/j.ultsonch.2008.04.003
  • Wu, J., Gamage, T.V., Vilkhu, K.S., Simons, L.K., & Mawson, R., (2008). Effect of thermosonication on quality improvement of tomato juice. Inno Food Sci Emerg Tec, 9, 186–195. https://doi.org/10.1016/j.ifset.2007.07.007.
  • Xue, S., Xu, X., Shan, H., Wang, H., Yang, J., & Zhou, G., (2018). Effects of high-intensity ultrasound, high pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins, Innovative Food Science.&Emerging Technologies, 45 , 354–360. https://doi.org/10.1016/j.ifset.2017.12.007.
  • Zhang, Z.-S., Wang, J-T., Li, D., Jiao, S-S., Chen, X-D., & Mao, Z-H., (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. https://doi.org/10.1016/j.seppur.2008.01.014
  • Zhang, Q.-A., Zhang, Z-Q.,Yue, X.-F., Fan, X.-H., Li, T., & Chen, T.-L., (2009). Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 116(2), 513-518. https://doi.org/10.1016/j.foodchem.2009.02.071.
  • Zhang, L., Zhou, C., Wang, B., Yagoub, A.E.A., Ma, H., Zhang, X., & Wu, M., (2017). Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrasonics - Sonochemistry, 37(7), 106-113. doi: 10.1016/j.ultsonch.2016.12.034.
  • Zhang, Z., Regenstein, J. M., Zhou, P., & Yang, Y. (2017). Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrasonics Sonochemistry, 34, 960–967. https://doi.org/10.1016/j.ultsonch.2016.08.008.
  • Yang, Z., Cao, S., Cai, Y., & Zheng, Y., (2011). Combination of salicylic acid and ultrasound to control postharvest blue mould caused by Penicillium expansum in peach fruit. Innovative Food Science and Emerging Technologies, 12(3), 310- 314. https://doi.org/10.1016/j.ifset.2011.04.010.
  • Yao, Y., Pan, Y., & Liu, S., (2019). Power Ultrasound and Its Applications: A State-of-the-art Review. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2019.104722.
  • Yusaf, T., & Al-Juboori, R.A., (2014). Alternative methods of microorganism disruption for agricultural applications. Applied Energy.,114, 909–923. https://doi.org/10.1016/j.apenergy.2013.08.085

Yağlı Tohumlarda Ultrasonik-Destekli Ekstraksiyon Yöntemi ve Avantajları

Year 2021, , 313 - 322, 31.01.2021
https://doi.org/10.31590/ejosat.759702

Abstract

Tohum yağları, endüstriyel olarak mekanik presleme veya organik çözücü kullanılarak ekstrakte edilmektedir. Endüstriyel olarak solvent ekstraksiyon aşamasında, tohumlardan yağ ekstrakte etmek için çözgenler kullanılmaktadır. Bu tür çözücülerin endüstriyel kullanımı ile ilgili çevresel kaygılara ek olarak, yüksek sıcaklık ve uzun ekstraksiyon zamanı gerektirmesi solvent ekstraksiyonunun dezavantajı olarak kabul edilmektedir. Son yıllarda solvent ekstraksiyonuna alternatif yöntemler denenmektedir. Bu çalışmalardan elde edilen sonuçlar, ultrasonik-destekli ekstraksiyonun (UAE) umut verici yöntemlerden biri olduğunu ortaya koymaktadır. Ultrasound uygulaması akustik kavitasyon kuvveti ile sıvıdaki kütle transferini artırmaktadır. Patlayıcı kabarcıklar tarafından üretilen yüksek kayma derecesi, hücre duvarlarına zarar vererek hücre içi bileşenlerin çözücüye geçişini artırmaktadır. UAE yöntemi; hızlı, yüksek verimli ve düşük sıcaklıklarda uygulandığından ekstraktların termal zararlanmasını önleyerek biyoaktif bileşiklerin yapısal ve moleküler özelliklerinin korunumunda etkili bir yöntemdir. Sıralanan avantajları nedeni ile yağ endüstrisinde ideal bir seçenek oluşturmaktadır. Ultrasonik uygulamalar, sürdürülebilir “yeşil kimya” ve ekstraksiyon hedefine ulaşmada kilit bir teknoloji olarak dikkat çekmektedir. Mevcut çalışmada UAE’ nin uygulama alanları ile diğer yöntemlere kıyasla sahip olduğu avantajlar derlenmiştir.

References

  • Abdelkebira, R., Alcántarac, C., Falcód, I.,Sáncheze, G., Garcia-Perezf, J.V., Neffatia, M., Lorenzog, J.M., Francisco J. Barbab, F.J., & Colladoc, M.C., (2019). Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts. Innovative Food Science and Emerging Technologies, 52, 189–196. https://doi.org/10.1016/j.ifset.2018.12.009.
  • Akdeniz, V., & Akalın, A.S., (2019). New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology, 86, 392-398. https://doi.org/10.1016/j.tifs.2019.02.046.
  • Alarcon-Rojo, A.D., Carrillo-Lopez, L.M., Reyes-Villagrana,R., Huerta-Jimenez, M., & Garcia Galicia, I.A., (2019).Ultrasound and meat quality: A review. Ultrasonics - Sonochemistry, 55,369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016
  • Arroyo, C., Cebrián, G., Pagán, R., & Condón, S., (2011). Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. International Journal of Food Microbiology, 144 (3), 446–454. https://doi.org/10.1016/j.ijfoodmicro.2010.10.033.
  • Arslan Tontul, S., Mutlu, C., Koç, A., & Erbaş, M. (2018). Çiya tohumundan ultrason destekli yağ ekstraksiyonunun optimizasyonu. GIDA, 43 (3), 393-402. doi: 10.15237
  • Ashokkumar, M., (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25, 17–23. https://doi.org/10.1016/j.ultsonch.2014.08.012.
  • Assami, K., Pingret, D., Chemat, S., Meklatia, B.Y., & Chemat, F., (2012). Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chemical Engineering and Processing: Process Intensification, 62, 99-105. https://doi.org/10.1016/j.cep.2012.09.003
  • Ayyildiz, O., Sanik¸S., & Ileri, B., (2011). Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrasonics Sonochemistry, 18(2), 683-688. https://doi.org/10.1016/j.ultsonch.2010.08.008.
  • Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., & Youssef, M.M., (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48, 410-427. https://doi.org/10.1016/j.foodres.2012.05.004.
  • Barizao, E.O., Boeing, J.S., Martins, A.C., Visentainer, J.V., & Almeida, V.C. (2015). Application of Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil. Food Anal Method, 8(9), 2392-2400. doi: 10.1007/s12161-015-0135-5.
  • Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G.V., (2011) Ultrasound Applications in Food Processing, in Ultrasound Technologies for Food and Bioprocessing, H. Feng, G. Barbosa-Canovas, and J. Weiss, Editors., Springer New York: New York, NY. p. 65-105.
  • Bimakr, M., Rahman, R.A., Taip, F.S., Adzahan, N.M., Sarker, M.Z.I., & Ganjloo, A. (2012). Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida) Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition. Molecule, 17(10), 11748-11762. doi: 10.3390/molecules171011748.
  • Boateng, E.F., & Nasiru, M.M., (2019). Applications of Ultrasound in Meat Processing Technology: A Review. Food Science and Technology, 7(2), 11-15. doi: 10.13189/fst.2019.070201
  • Boistier-Marquis, E., Lagsir-Oulahal, N., & Callard,M., (1999). Applications des ultrasons de puissances en industries alimentaires. Industries Agricoles et Alimentaires, 116, 23– 31.
  • Brilhante de São José , J.F., José de Andrade ,N., Ramos,A.M., Dantas Vanetti , M.C., Stringheta, P.C., & Paes Chaves, J.B., (2014). Decontamination by ultrasound application in fresh fruits and vegetables. Food Control, 45,36-50. doi: 10.1016/j.foodcont.2014.04.015.
  • Capelo-Martínez, J.-L., (2009). Ultrasound in chemistry: analytical applications.John Wiley & Sons, (171 pages).
  • Caraveo, O., Alarcon-Rojo, A.D., Renteria, A., Santellano, E., & Paniwnyk,L., (2015). Physicochemical and microbiological characteristics of beef treated with highintensity ultrasound and stored at 4 °C, Journal Science. Food and Agriculture, 95, 2487–2493, https://doi.org/10.1002/jsfa.6979.
  • Carrín, M.E. & Crapiste G.H. (2008). Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor. Journal of Food Engineering, 85(3), 418-425. https://doi.org/10.1016/j.jfoodeng.2007.08.003
  • Chang, H-J., Wang, Q., Tang, C-H., & Zhou, G-H., (2015). Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle, Journal Food Quality, 38 , 256–267. https://doi.org/10.1111/jfq.12141
  • Chemat, F., Huma, Z., & Khan, M. K., (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  • Chemat, F., Rombaut, N., Sicaire, A-G.,Meullemiestre, A., Fabiano- Tixier, A-S., & Abert-Vian, M., (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications.A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
  • Chen, Z., & Zhu, C., (2011). Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biology and Technology, 61(2-3), 117-123. https://doi.org/10.1016/j.postharvbio.2011.03.006.
  • de Lima Alves, L., Stefanello da Silva, M., Martins Flores, D.R., Rodrigues Athayde,D., Roggia Ruviaro, A., da Silva Brum, D., Fagundes Batista,V.S., de Oliveira Mello, R., Ragagnin de Menezes, C., Bastianello Campagnol, P.C.,Wagner, R., Smanioto Barin, J., & Cichoski A.J., (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. doi: 10.1016/j.foodres.2017.12.074.
  • Eikani, M.H., Golmohammad, F., & Homami, S.S., (2012). Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food and Bioproducts Processing, 90(1), 32-36. https://doi.org/10.1016/j.fbp.2011.01.002
  • Ercan, S.S., & Soysal, C., (2011). Effect of ultrasound and temperature on tomato peroxidase. Ultrasonics Sonochemistry, 18(2), 686-695. https://doi.org/10.1016/j.ultsonch.2010.09.014.
  • Ercan, S. & Soysal, Ç., (2013). Use of ultrasound in food preservation. Natural Science, 5,5-13. doi: 10.4236/ns.2013.58A2002
  • Fan, D., Huang, L., Li, B., Huang, J., Zhao, J., Yan, B., Zhou, W., Zhang, W., & Zhang, H., (2017). Acoustic intensity in ultrasound field and ultrasound-assisted gelling of surimi, LWT – Food Science Technology, 75, 497–504. https://doi.org/10.1016/j.lwt.2016.08.002.
  • Feng, H., & Yang, W., (2005). Power ultrasound. In Y. H. Hui (Eds). Handbook of food science, technology and engineering. New York: CRC Press; 1st Edition..
  • Flannigan, D.J., & Suslick, K.S., (2010). Inertially confined plasma in an imploding bubble. Nature Physics, 6(8), 598. doi: 10.1038/NPHYS1701
  • Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., & García-Pérez, J.V., (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 2014, 128 (5): 132–139. doi: 10.1016/j.jfoodeng.2013.12.021.
  • Gonzalez-Gonzalez, L., Luna-Rodriguez, L., Carrillo-Lopez, L.M., Alarcon-Rojo, A.D., Garcia-Galicia, I., & Reyes-Villagrana, R., (2017). Ultrasound as an alternative to conventional marination: acceptability and mass transfer. Journal of Food Quality, 2, 1-8. https://doi.org/10.1155/2017/8675720.
  • Gharibzahedi, S.M.T., & Smith, B., (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107–116. https://doi.org/10.1016/j.tifs.2020.02.002.
  • Gulzar, S., & Benjakul, S., (2018). Ultrasound waves increase the yield and carotenoid content of lipid extracted from cephalothorax of Pacific white shrimp (Litopenaeus vannamei). European Journal of Lipid Science and Technology, 120(5), 1–11. https://doi.org/10.1002/ejlt.201700495.
  • Gulzar, S., Rajua, N., Nagarajaraob, R.C., & Benjakul, S., (2020). Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application- A review. Trends in Food Science & Technology, 100, 307–319. https://doi.org/10.1016/j.tifs.2020.04.005.
  • Hashemi, S.M.B., Michiels, J., Yousefabad, S.H.A., & Hosseini, M., (2015). Kolkhoung (Pistacia khinjuk) kernel oil quality is affected by different parameters in pulsed ultrasound-assisted solvent extraction. Industrial Crops and Products, 70, 28-33. https://doi.org/10.1016/j.indcrop.2015.03.023
  • Hongyu, W., Hulbert, G.J., & Mount, J.R., (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter, Innovative Food Sci. Emerg. Technology, 1, 211–218. doi: 10.1016/S1466-8564(00)00020-5.
  • Hu, H., Cheung, I. W., Pan, S., & Li-Chan, E. C. (2015). Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 45, 102–110. https://doi.org/10.1016/j.foodhyd.2014.11.004.
  • Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., & Ma, H., (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018.
  • Kentish, S. & Ashokkumar, M., (2011). The Physical and Chemical Effects of Ultrasound, in Ultrasound Technologies for Food and Bioprocessing, H. Feng, G. Barbosa-Canovas, and J. Weiss, Editors. , Springer New York: New York, NY. p. 1-12.
  • Koubaa, M., Roselló-Soto, E., Šic Žlabur, J., Režek Jambrak, A., Brnčić, M., Grimi, N., Boussetta, N., & Barba, F. J. (2015). Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry, 63, 6835–6846. https://doi.org/10.1021/acs.jafc.5b01994
  • Koubaa, M., Mhemdi, H., Barba, F.J., Roohinejad, S., Greiner, R., & Vorobiev, E., (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International, 85, 59–66. https://doi.org/10.1016/j.foodres.2016.04.007
  • Lebovka, N., Vorobiev, E., & Chemat, F., (2016). Enhancing extraction processes in the food industry, 1st Edition, (570 pages). CRC Press.
  • Leong, T., Ashokkumar, M., & Kentish, S., (2011).The fundamentals of power ultrasound-A review. Acoustics Australia, 39 (2), 54-63. August (2011) No. 2 - 4329.
  • Li, H., Pordesimo, L., & Weiss, J., (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738 https://doi.org/10.1016/j.foodres.2004.02.016.
  • Liu, W., Fu, Y-J., Zu, Y-G., Tong, M-H., Wu, N., Liu, X-L., & Zang, S., (2009a). Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chemistry, 114(1),334-339. https://doi.org/10.1016/j.foodchem.2008.09.049.
  • Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C., (2009b). Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. The Journal of Supercritical Fluids, 48(1) 9-14. https://doi.org/10.1016/j.supflu.2008.09.013
  • Liu, G., Xu, X., Hao, Q., & Gao, Y., (2009c). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT - Food Science and Technology, 42(9), 1491-1495. https://doi.org/10.1016/j.lwt.2009.04.011
  • Liu, Z., Juliano, P., Williams, R., Niere, J., & Augustin, M., (2014). Ultrasound effects on the assembly of casein micelles in reconstituted skim milk. Journal of Dairy Research, 81(2), 146-155. doi: 10.1017/S0022029913000721
  • Lopez, P., Sala, F. J., De La Fuente, J. L., Condon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42, 252-256. https://doi.org/10.1021/jf00038a005.
  • Luengo, E., Condón-Abanto, S., Condón-, S., Álvarez, I., & Raso, J., (2014). Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation and Purification Technology, 136,130-136. https://doi.org/10.1016/j.seppur.2014.09.008.
  • Luque-Garcia, J.L., & Luque de Castro, M.D., (2004). Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment. Application to the extraction of total fat from oleaginous seeds. Journal Chromatography A, 1034 (1-2),237-42. https://doi.org/10.1016/j.chroma.2004.02.020
  • Madhu, B., Sai Srinivas, M., Srinivas, G., & Jain, S.K., (2019).Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. Current Journal of Applied Science and Technology, 32(5),1-11.doi: 10.9734/CJAST/2019/46909.
  • Mason, T. & Lorimer, J., (2002).Applied Sonochemistry: Uses of Power Ultrasound in. Chemistry.
  • Mason TJ, Paniwnyk,L., & Lorimer,J. P., (1996).The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3,253- 260. https://doi.org/10.1016/S1350-4177(96)00034-X.
  • Mawson, R., Gamage, M., Terefe, N. S., & Knoerzer, K. (2011). Ultrasound in enzyme activation and inactivation. In H. Feng, G. V. Barbosa-Cánovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing (pp. 369-404). New York: Springer.
  • Meireles, M.A.A., Extracting bioactive compounds for food products: theory and applications. 2008: CRC press.
  • Mitra, P., Ramaswamy, H.S., & Chang, K.S. (2009). Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95(1), 208-213. https://doi.org/10.1016/j.jfoodeng.2009.04.033
  • Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., & Abbasvali, M., (2014). Ultrasonic techniques for the milk production industry. Measurement, 58, 93-102. https://doi.org/10.1016/j.measurement.2014.08.022
  • Nithila, S.D, Anandkumar, B., Vanithakumari, S.C., George, R.P., Mudali, U.K., & Dayal, R.K., (2014). Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrasonics Sonochemistry, 21, 189–199. doi: 10.1016/j.ultsonch.2013.06.010.
  • Nguyen, T.M.P., Lee, Y.K., & Zhou, W., (2009). Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound, International Dairy Journal 19 (6-7), 410–416. https://doi.org/10.1016/j.idairyj.2009.02.004
  • Palma, M., Barbero, G.F., Pineiro, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado J.M., & Meireles, M.A.A., (2013). Extraction of natural products: Principles and fundamental aspects. Natural product extraction: principles and applications, RSC Publising, Mauricio A Rostagno, Juliana M Prado, Editors(s.58)
  • Ojha, K. S., Mason, T. J., O'Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/j.ultsonch.2016.06.001.
  • Pétrier, C., Gondrexon, N., & Boldo, P., (2008). Ultrasons et sonochimie. techniques de l’ingénieur. AF, 6,310.
  • Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnel, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrots discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi: 10.1016/j.ultsonch.2011.03.009.
  • Rui, H., Zhang, L., Li, Z., & Pan, Y., (2009). Extraction and characteristics of seed kernel oil from white pitaya. Journal of Food Engineering, 93(4),482-486. https://doi.org/10.1016/j.jfoodeng.2009.02.016
  • Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R. P., Saraiva, J. A., Boussetta, N., Girimi, N., & Barba, F. J. (2015a). Emerging opportunities for the effective valorization of wastes and byproducts generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends in Food Science &Technology, 45(2), 296–310. https://doi.org/10.1016/j.tifs.2015.07.003.
  • Roselló-Soto, E., Galanakis, C. M., Brnčić, M., Orlien, V., Trujillo, F. J., Mawson, R., Knoerzer, K., Tiwari, B.K., & Barba, F.J., (2015b). Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends in Food Science & Technology, 42(2), 134–149. https://doi.org/10.1016/j.tifs.2015.01.002.
  • Sagong, H. G., Lee, S.-Y., Chang, P. S., Heu, S., Ryu, S., Choi, Y. J., & Kang, D-H., (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145(1), 287-292.https://doi.org/10.1016/j.ijfoodmicro.2011.01.010.
  • Sagong, H. G., Cheon, H.-L., Lee, S. Y., Park, K. H., Chung, M.S., Choi, Y. J., & Kang, D-H., (2013). Combined effects of ultrasound and surfactants to reduce Bacillus cereus spores on lettuce and carrots. International Journal of Food Microbiology, 160(3), 367- 372. https://doi.org/10.1016/j.ijfoodmicro.2012.10.014.
  • Samaram, S., Mirhosseini, H., Tan, C.P., & Ghazali, H.M. (2013). Ultrasound-Assisted Extraction (UAE) and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile. Molecule, 18(10), 12474-12487.doi: 10.3390/molecules181012474
  • Samaram, S., Mirhosseini, H., Tan, C,P., & Ghazali, H.M., (2014). Ultrasound-assisted extraction and solvent extraction of papaya seed oil: Crystallization and thermal behavior, saturation degree, color and oxidative stability. Industrial Crops and Products, 52, 702-708. https://doi.org/10.1016/j.indcrop.2013.11.047.
  • Samaram, S., Mirhosseini, H., Tan, C.-P., Ghazalib, H.-M., Bordbar, S., & Serjouiea, A., (2015).Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability.FoodChemistry,172,7-17. https://doi.org/10.1016/j.foodchem.2014.08.068.
  • Senrayan, J., & Venkatachalam, S., (2020). Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science and Emerging Technologies, 62,102347. https://doi.org/10.1016/j.ifset.2020.102347.
  • Seymour, I.J., Burfoot, D., Smith, R.L., Cox, L.A., & Lockwood, A., (2002). Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology,37(5),547– 557.doi: 10.1046/j.1365-2621.2002.00613.x
  • Sevindik, O., & Selli, S., (2017). Üzüm çekirdek yağı eldesinde kullanılan ekstraksiyon yöntemleri. Gıda,42(1),95-103.doi: 10.15237/gida.GD16052.
  • Stanisavljević, I.T., Lazić, M.L., & Veljković, V.B., (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry,14(5), 646-652. https://doi.org/10.1016/j.ultsonch.2006.10.003
  • Serrato, A.G., (1981). Extraction of oil from soybeans. Journal of the American Oil Chemists’ Society, 58(3), 157-159.
  • Tao, Y., Zhang, J., Jiang, S., Xu, Y., & Ye, M., (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering, 2018, 235(10),79-88. https://doi.org/10.1016/j.jfoodeng.2018.04.028
  • Téllez-Morales, J.A., Hernández-Santo, B., & Rodríguez-Miranda, J., (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics – Sonochemistry, 61, 104787. https://doi.org/10.1016/j.ultsonch.2019.104787
  • Tervo, J.T., Mettin, R., & Lauterborn, W., (2006). Bubble cluster dynamics in acoustic cavitation. Acustica united with Acustica, 92,178–180. https://doi.org/10.1121/1.4802906.
  • Wang, C.Y., & Chen, B.H., (2006). Tomato pulp as source for the production of lycopene powder containing high proportion of cis-isomers. European Food Research and Technology, 222(3),347-353. doi: 10.1007/s00217-005-0058-2.
  • Wang, A., Kang, D., Zhang, W., Zhang, C., Zou,Y., & Zhou, G., (2018). Changes in calpain activity,protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 245 , 724–730. https://doi.org/10.1016/j.foodchem.2017.12.003.
  • Wei, F., Gao, G. -Z., Wang, X. -F., Dong, X. -Y., Li, P. -P., Hua, W., & Chen, H. (2008). Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assistedextraction combined with gas chromatography. Ultrasonics Sonochemistry, 15(6), 938–942. doi: 10.1016/j.ultsonch.2008.04.003
  • Wu, J., Gamage, T.V., Vilkhu, K.S., Simons, L.K., & Mawson, R., (2008). Effect of thermosonication on quality improvement of tomato juice. Inno Food Sci Emerg Tec, 9, 186–195. https://doi.org/10.1016/j.ifset.2007.07.007.
  • Xue, S., Xu, X., Shan, H., Wang, H., Yang, J., & Zhou, G., (2018). Effects of high-intensity ultrasound, high pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins, Innovative Food Science.&Emerging Technologies, 45 , 354–360. https://doi.org/10.1016/j.ifset.2017.12.007.
  • Zhang, Z.-S., Wang, J-T., Li, D., Jiao, S-S., Chen, X-D., & Mao, Z-H., (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. https://doi.org/10.1016/j.seppur.2008.01.014
  • Zhang, Q.-A., Zhang, Z-Q.,Yue, X.-F., Fan, X.-H., Li, T., & Chen, T.-L., (2009). Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 116(2), 513-518. https://doi.org/10.1016/j.foodchem.2009.02.071.
  • Zhang, L., Zhou, C., Wang, B., Yagoub, A.E.A., Ma, H., Zhang, X., & Wu, M., (2017). Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrasonics - Sonochemistry, 37(7), 106-113. doi: 10.1016/j.ultsonch.2016.12.034.
  • Zhang, Z., Regenstein, J. M., Zhou, P., & Yang, Y. (2017). Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrasonics Sonochemistry, 34, 960–967. https://doi.org/10.1016/j.ultsonch.2016.08.008.
  • Yang, Z., Cao, S., Cai, Y., & Zheng, Y., (2011). Combination of salicylic acid and ultrasound to control postharvest blue mould caused by Penicillium expansum in peach fruit. Innovative Food Science and Emerging Technologies, 12(3), 310- 314. https://doi.org/10.1016/j.ifset.2011.04.010.
  • Yao, Y., Pan, Y., & Liu, S., (2019). Power Ultrasound and Its Applications: A State-of-the-art Review. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2019.104722.
  • Yusaf, T., & Al-Juboori, R.A., (2014). Alternative methods of microorganism disruption for agricultural applications. Applied Energy.,114, 909–923. https://doi.org/10.1016/j.apenergy.2013.08.085
There are 92 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tuğba Dedebaş This is me 0000-0003-1663-0165

Tugba Dursun Capar 0000-0002-1075-0054

Lütfiye Ekici 0000-0002-2216-9128

Hasan Yalçın 0000-0002-1038-1877

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Dedebaş, T., Dursun Capar, T., Ekici, L., Yalçın, H. (2021). Yağlı Tohumlarda Ultrasonik-Destekli Ekstraksiyon Yöntemi ve Avantajları. Avrupa Bilim Ve Teknoloji Dergisi(21), 313-322. https://doi.org/10.31590/ejosat.759702