Review
BibTex RIS Cite

Drought and Salt Stress in Grapevines

Year 2021, , 358 - 368, 31.01.2021
https://doi.org/10.31590/ejosat.784997

Abstract

Grapevine (Vitis vinifera L.) is one of the most economically important fruit crops worldwide and compared to many other plant species, it is known to be resistant to drought but highly sensitive to salinity. Most of the vineyards are established in regions where seasonal drought occurs intensely during the growing season. In these regions, the vines are frequently exposed to drought and therefore salt stress due to the low water capacity of the soil and high evapotranspiration. Grapevines show resistance to drought stress depending on the duration of stress. Salt tolerance is a complex physiological and multigenic trait. Salt tolerance in grapevine is related to efficient sequestration of the toxic ions at the root level and, more precisely, to the restriction of their transport towards the aerial parts through the xylem. This review synthesizes the studies on the determination of the physiological and biochemical changes that the grapevine has shown under drought and salt stress.

References

  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.
  • Akashi, K., Miyake, C., & Yokota, A. (2001). Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Febs Letters, 508(3), 438-442.
  • Alexieva, V, Ivanov, S, Sergiev, I, & Karanov, E. (2003). Interaction between stresses. Bulgarian Journal of Plant Physiology, Special Issue, 1-17.
  • Alizadeh, M., Singh, S. K., Patel, V. B., Bhattacharya, R. C., & Yadav, B. P. (2010). In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54(2), 381-385.
  • Anonim (2020). http://www.turktarim.gov.tr/Haber/223/kaynaktan-kullaniciya-ulasana-kadar-suyun-yarisindan-fazlasi-kaybediliyor (Erişim tarihi 15.04.2020)
  • Avcıoğlu, R, Demiroğlu, G, Khalvati, MA, & Geren, H. (2003). Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri. II. Prolin, klorofil birikimi ve zar dayanıklılığı. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 40 (2): 9-16.
  • Ayhan B. 2006. Mısır (Zea mays L.)’ın bazı çesitlerinde ağır metal (Cd, Pb) stresinin etkilerinin belirlenmesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 120 sayfa, Ankara.
  • Beis, A., Zotos, A., & Patakas, A. (2009). Influence of sampling time and sap extraction methodology on xylem pH values in two grapevine varieties grown under drought conditions. Environmental and experimental botany, 67(2), 305-311.
  • Ben Ahmed, C., Rouina, B. B., & Boukhris, M. (2008). Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30(4), 553-560.
  • Berli, F.J., Moreno, D., Piccoli, P., Viana, L.H., Silva, M.F., Smith, R.B., Cavagnaro, J.B., & Bottini, R. (2010). Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to Ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 33. 1-10.
  • Bertamini, M., & Nedunchezhian, N. (2002). Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. Journal of Plant Physiology, 159(7), 799-803.
  • Bertamini, M, Zulini L, Muthuchelian, K, & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44 (1): 151-154.
  • Bertamini M, Zulini L, Muthuchelian K, & Nedunchezhian N. (2007). Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biologia Plantarum, 51 (2): 381-385.
  • Bohra JS, & Döffling K. (1993). Potassium nutration of rice (Oryza sativa L.) varieties under NaCl salinitiy. Plant and Soil, 152: 299-303.
  • Borel C, & Simonneau T. (2002). Is the ABA concentration in the sap collected by pressurizing leaves relevant for analyzing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA. Journal of Experimental Botany. 53 (367): 287-296.
  • Bota J, Flexas J, & Medrano H. (2001). Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Annals of Applied Biology, 138: 353-361.
  • Bota J, Medrano H, & Flexas J. (2004). Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytologist, 162: 671-681.
  • Charbaji T, & Ayyoubi Z. (2004). Differential growth of some grapevine varieties in syria in response to salt in vitro. In Vitro Cellular and Developmental Biology Plant, 40: 221-224.
  • Chaves MM, Maroco JP, & Pereira JS. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30: 239-264.
  • Chaves MM, Santos TP, Souza CR, & Ortuńo MF. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 16: 237-252.
  • Chaves MM, Zarrouk O, Francisco JM, Costa T, Santos AP, Regalado ML, & Rodrigues CM. (2010). Grapevine under deficit irrigation:hints from physiological and molecular data. Annals of Botany, 105: 661-676.
  • Cifre J, Bota J, Escalona JM, Medrano H, & Flexas J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) an open gate to improve water-use efficiency? Agriculture, Ecosystems and Environment, 106: 159-170.
  • Collins A. (2001). Caratenoids and genomic stability. Mutation Research, 475, 1-28.
  • Cramer GR, Ergül A, Grimplet J, & Tillet RL. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional and Integrative Genomics, 7: 111-134.
  • Cramer GR. (2010). Abiotic stress and plant responses from the whole vine to the genes. Australian Journal of Grape and Wine Research, 16: 86-93.
  • Curtright R, Rynearson JA, & Markwell J. (1996). Anthocyanins: Model compounds for learning about more than pH. Journal of Chemical Education, 73: 306-309.
  • Çınar S. (2005). Mangan ve demir stresi uygulanmış roka (Eruca sativa) bitkisinde bazı antioksidan enzim aktivitesindeki ve lipid peroksidasyon düzeylerindeki değişimlerin incelenmesi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim dalı, Yüksek Lisans Tezi, 102 sayfa, Manisa.
  • Çırak C, & Esendal E. (2006). Soyada kuraklık stresi. Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi Dergisi, 21(2): 231-237.
  • Dajic Z. (2006). Salt stress. Physiology and molecular biology of stress tolerance in plants. (K.V.M. Rao and K.J. Reddy (eds)), Chapter 6: 345.
  • Dardeniz A, Müftüoğlu NM, Türkmen C, & Sungur A, (2006). Determination of relationship between water consumption and salt tolerance of some table grape cultivars. 18th International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology, 2: 693-696.
  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauchi KA, Merillon JM, Cushman JC, & Cramer GR. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10: 212-245.
  • Desikan R, Hancock JT, & Neill SJ. (2004). Oxidative stress signalling. Plant responses to abiotic stress. Hirt, H. and Shinozaki, K. (eds.), pp. 121-149, Springer- Verlag, Berlin.
  • Doupis G, Chartzoulakis K, Beis A, & Patakas A. (2011). Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Australian Journal of Grape and Wine Research, 17: 36-42.
  • Downton WJ, Loveys BR, & Grant WJR. (1990). Salinity effects on the stomatal behaviour of grapevine. New Phytologist, 116: 499-503.
  • El-Swaify SA. (2000). Soil and water salinity. Plant Nutrient management in Hawaii’s soils. Approachs for Tropical and Subtropical Agriculture, Chapter 17: 151-158.
  • Eriş A, Sivritepe N, & Sivritepe HÖ. (1998). Asmalarda su stresine karşı ortaya çıkan bazı morfolojik ve fizyolojik reaksiyonlar. 4. Bağcılık Sempozyumu Bildirileri, 20-23 Ekim 1998, 64-69, Yalova.
  • Eriş A. (1990). Bahçe bitkileri fizyolojisi, Uludağ Üniversitesi Ziraat Fakültesi Yayınları, Ders Notları No: 11, Bursa. Farshadfar E, Ghasempour H, & Vaezi H. (2008). Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pakistan Journal of Biological Sciences. 11 (1): 118-122.
  • Flexas J, Escanola JM, & Medrano H. (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines, Plant Cell and Environment, 22: 39.
  • Flexas J, Galmes J, Galle A, Gulias J, Pou A, Ribas-Carbo M, Tomas M, & Medrano H. (2010). Improwing water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16 (1): 106-121.
  • Foyer CH. (1993). Ascorbate. Antioxidants in higher plants. Alscher, R.G. and Hess, J.L. (eds.), CRC Press, Boca, Raton, pp. 31-52.
  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, & Davey MR. (2002). Salinity tolerance and antioxidant status in cotton cultures, Free Radical Biology and Medicine, 33 (4): 502-511.
  • Gill SS, & Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stres tolerance in crops. Plant Physiology and Biochemistry, 48: 909-930.
  • Gómez-del-Campo M, Ruiz C, & Lissarrague JR. (2002). The effect of water stress on leaf area development, photosynthesis and productivity in Chardonnay and Airén grapevines. American Journal of Enology and Viticulture, 53: 138-143.
  • Gong H, Blackmore DH, & Walker RR. (2010). Organic and inorganic anions in Shiraz and Chardonnay grape berries and wine as affected by rootstock under saline conditions. Australian Journal of Grape and Wine Research, 16 (1): 227-236.
  • Gosset DR, Millhollon EP, & Lucas C. (1994). Antioksidant response to NaCl stres in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34: 706-714.
  • Grimplet J, Deluc LG, Cramer GR, & Cushman JC. (2007). Integrating functional genomics with salinity and water deficit stress responses in wine grape - Vitis vinifera. M.A. Jenks ve ark. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Chapter 26: 643-668.
  • Güneş A, Çelik H, Alparslan M, Söylemezoğlu G, Erarslan F, Yaşa Z, & Koç Ö. (2003). Asmaların (Vitis spp.) bor toksitesi ve tuzluluğa karşı toleransının belirlenmesine yönelik olarak bor, sodyum ve klor alımlarının karşılaştırılması. Tarım Bilimleri Dergisi, 9 (4): 428-434.
  • Güneş A, Söylemezoğlu G, İnal A, Bağcı EG, Çoban S, & Şahin O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110: 279-284.
  • Gürel A, & Avcıoğlu R. (2001). Bitkilerde strese dayanıklılık fizyolojisi. Bitki Biyoteknolojisi II, Bölüm 21: 289-326.
  • Hepaksoy S, Ben-Asher J, de Malach Y, David I, Sagih M, & Brave B. (2006). Grapevine irrigation with saline water: Effect of rootstocks on quality and yield of Cabernet Sauvignon. Journal of Plant Nutrition, 29: 783-795.
  • Holton TA, & Cornish EC. (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 7: 1017-1083.
  • Iwashina T. (2000). The Structure and distribution of the flavonoids in plants. Journal of Plant Research, 113: 287-299.
  • Jellouli N, Ben Jouria H, Skouri H, Ghorbel A, Gourgoubri A, & Mliki A. (2008). Proteomic analysis of Tunisian grapevine cultivar Rzegui under salt stress. Journal of Plant Physiology, 165: 471-481.
  • Kalefetoğlu T, & Ekmekçi Y. (2005). The Effect of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723-740.
  • Kalefetoğlu T. (2006). Nohut (Cicer arietinum L.) çeşit ve hatlarının kuraklık stresine karşı dayanıklılığının karakterizasyonu. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 143 sayfa, Ankara.
  • Karanlık S. (2001). Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 125 s., Adana.
  • Kerepesi I, & Galiba G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40: 482-487.
  • Koca H. (2007). Tuz stresinin farklı susam çeşitlerinin fizyolojik ve biyokimyasal özellikleri üzerine etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 132 sayfa, İzmir.
  • Kök D. (2007). Responces of V. vinifera spp. Sylvestris (C.C. Gmelin) ecotypes originated from two different geographical regions of turkey to salinity stress at seed germination and plantlet stages. Pakistan Journal of Biological Sciences, 10 (16), 2631-2638.
  • Lovisolo C, Tramontini S, Flexas J, & Schubert A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Enviromental and Experimental Botany, 63: 178-182.
  • Lutts S, Kinet JM, & Bouharmont J. (1996). NaCl Induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398.
  • Mahajan S, & Tuteja N. (2005). Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics, 444: 139-158.
  • Mansour MMF, Salama KHA, & Al-Mutawa MM. (2003). Transport proteins and salt tolerance in plants. Plant Science, 164: 891-900.
  • Munns R, & Tester M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Munns R. (2002). Comparative physiology of salt and water stres. Plant, Cell and Environment, 25. 239-250.
  • Müftüoğlu NM, Dardeniz A, Sungur A, & Altay H. (2006). Bazı sofralık üzüm çeşitlerinin tuza toleranslarının belirlenmesi. Selçuk Üniversitesi Ziraat Fakültesi Dergisi, 20: 37-42.
  • Nawar WW. (1996). Lipids. In “Food Chemistry”, O.R. Fennema (Ed), pp: 225-319. Marcel Dekker, New York.
  • Niyogi KK, Shih C, Chow WS, Pogson B, Dellapenna D, & Björkman O. (2001). Photoprotection in a zeaxanthin and lutein deficient double mutant of Arabidopsis. Photosynthesis Research, 67: 139-145.
  • Önder S, Kanber R, Önder D, & Kapur B. (2005). Global iklim değişimlerine bağlı olarak sulama yöntem ve işletim tekniklerinde gelecekte ortaya çıkabilecek değişiklikler. 4. GAP Tarım Kongresi, Şanlıurfa, 2: 1128-1135.
  • Özden M, Demirel U, & Kahraman A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119: 163-168.
  • Öztürk MA, & Seçmen Ö. (1992). Bitki ekolojisi, Ege Üniversitesi Fen Fakültesi, Yayın No: 141, İzmir.
  • Paranychianakis NV, Aggelides S, & Anglekis AN. (2004). Influence of rootstock, irrigation level and recycled water on growth and yield of Soultanina grapevines. Agricultural Water Management, 69: 13-27.
  • Paranychianakis NV, & Anglekis AN. (2008). The Effect of water stress and rootstock on the development of leaf injuries in grapevines ırrigated with saline water. Agricultural Water Management, 95: 375-382.
  • Parida A, Das AB, & Das P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true Mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Physiology, 45. 28-36.
  • Patakas A, Nikolaou N, Zioziou E, Radoglou K, & Noitsakis B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought stressed grapevines. Plant Science, 163. 361-367.
  • Patakas A, Noitsakis B, & Chouzouri A. (2005). Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agriculture, Ecosystems and Environment, 106: 253-259.
  • Patakas A, & Noitsakis B. (2001). Leaf age effects on solute accumulation in water-stressed grapevines. Journal of Plant Physiology, 158: 63-69.
  • Pavlousek P. (2011). Evaluation of drought tolerance of new grapevine rootstock hybrids. Journal of Environmental Biology, 32: 543-549.
  • Peltzer D, Dreyer E, & Polle A. (2002). Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiology and Biochemistry, 40: 141-150.
  • Sairam RK, & Tyagi A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86 (3): 407-421. Santesteban LG, Miranda C, & Royo JB. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agricultural Water Management, 98: 1171-1179.
  • Saruhan V, Üzen N, Eylen M, & Çetin Ö. (2008). Toprak tuzluluğunun kültür bitkilerine etkileri ve alınabilecek somut önlemler. Sulama Tuzlanma Konferansı, 319-328, Şanlıurfa.
  • Shafiq Ur Rahman Harris P, & Ashraf M. (2005). Stress environment and their impact on crop production. Abiotic stress: plant resistance through breeding and molecular approaches. M. Ashraf and P. Harris. New York, Food Products pres, 3-16.
  • Shai U, & Ben Gal A. (2005). Long term response of grapevines to salinity: Osmotic effects and ion toxicity. American Journal of Enology and Viticulture, 56 (2): 148-154.
  • Shrivastava P, & Kumar R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2): 123-131.
  • Sinclair C, & Hoffmann AA. (2003). Monitoring salt stress in grapevines: are measures of plant trait variability useful?. Journal of Applied Ecology, 40: 928-937.
  • Singh S, Anjum NA, Khan NA, & Nazar R. (2008). Metal binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. In: N.A. Khan, S. Singh (Eds). Abiotic stress and plant responses, IK International, New Delhi, 159-189.
  • Sivritepe N, & Eris A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23: 473-485.
  • Sivritepe N, Ertürk U, Yerlikaya C, Türkan İ, Bor M, & Özdemir F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52 (3): 573-576.
  • Sivritepe N, Kumral NA, Ertürk U, Yerlikaya C, & Kumral A. (2009). Responses of Grapevine to two spotted spider mite mediated biotic stres. Journal of Biological Sciences, 9 (4): 311-318.
  • Sivritepe N, Sivritepe Ö, Çelik H, & Katkat AV. (2010). Salinity responses of grafted grapevines: Effects of scion and rootstock genotypes. Notulae Botanicae Horti Agrobotanici Cluj, 38 (3): 193-201.
  • Sivritepe N. (1995). Asmalarda tuza dayanıklılık testleri ve tuza dayanımda etkili bazı faktörler üzerinde arastırmalar. Uludag Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, Doktora tezi, 167 sayfa, Bursa.
  • Sivritepe N. (2000). Asmalarda tuzdan kaynaklanan ozmotik stresin teşvik ettiği fizyolojik değişimler ve tuza dayanımdaki rolleri. Turkish Journal of Biology, 24: 97-104.
  • Soar CJ, Dry PR, & Loveys BR. (2006). Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Australian Journal of Grape and Wine Research, 12: 82-96.
  • Stahl W, Ale-Agha N, & Polidori MC. (2002). Non-antioxidant properties of carotenoids. Journal of Biological Chemistry, 383: 553-558.
  • Streb P, & Feierabend J. (1996). Oxidative stres responses accompanying photoinactivation of catalase in NaCl-Treated rye leaves. Botanica Acta, 109: 125-132.
  • Taiz L, & Zeiger E. (2008). Bitki fizyolojisi (Çeviri Editörü İ. Türkan). Palma Yayımcılık, Ankara, s: 404-419, p. 547.
  • Tattersall EAR, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, & Cramer GR. (2007). Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stres. Functional and Integrative Genomics, 7: 317-333.
  • Tester M, & Davenport RJ. (2003). Na+ transport and Na+ tolerance in higher plants. Ann Bot (Lond) 91: 503-527.
  • Tezara W, Mitchell VJ, Driscoll SD, & Lawlor DW. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401: 914-917. Tipi, T., Vural, H., Turhan, Ş., & Erdal, B. (2017). Türkiye'de Sulama Yatırımlarının Tarım Alanlarının Kullanım Şekillerine Etkisinin Belirlenmesi. Turkish Journal of Agricultural Economics, 23(2).
  • Toumi I, Gargouri M, Nouairi I, Moschou PN, Ben Salem-Fnayou A, Mliki A, Zarrouk M, & Ghorbel A. (2008). Water stress induced changes in leaf lipid composition of four grapevine genotypes with different drought tolerance. Biologia Plantarum, 52: 161-164.
  • Trebst A, Depka B, & Holländer-Czytko HA. (2002). Specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii, FEBS Letters, 43: 2157-2162.
  • Trouverie J, Thevenot C, Rocher JP, Sotta B, & Prioul JL. (2003). The role of abscisic acid in the response of a specific vacuolar invertase to water stress in adult maize leaf. Journal of Experimental Botany, 54, 2177-2186.
  • UNCCD (1995). The United nations convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa, Text with Annexes, United Nations Environment Programme (UNEP), Geneva.
  • Upreti KK, & Murti GSR. (2010). Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biologia Plantarum, 54 (4): 730-734.
  • Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, & Dubourdieu D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55: 207-217.
  • Vandeleur RK, Mayo G, Sheldeni MC, Gillihami M, Kaiseri BN, & Tyermani SD. (2008). The role of PIP aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149: 445-460.
  • Villora G, Pulgar G, Moreno DA, & Romero L. (1997). Salinty Treatments and Their Effect on Nutrient ConcenTration in Zucchini Plants (Cucurbit pepo L. var. Moschata). Australian Journal of Experimental Agriculture, 37: 605-608.
  • Vincent D, Ergül A, Bohlman MC, Tattersall EAR, & Tillett RL. (2007). Proteomic analysis reveals differences between Vitis Vinifera L. cv. Chardonnay and cv. Cabarnet Sauvignon and their responses to water deficit and salinity. Experimental Botany, 58 (7): 1873-1892.
  • Walker RR, Blackmore DH, Clingeleffer PR, & Correll RL. (2002). Rootstock effects of salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) I. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research, 8: 3-14.
  • Walker, R.R., Blackmore, D.H., Clingeleffer, P.R., & Correll, R.L. (2004). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 10: 90-99.
  • Walker, R.R., Blackmore, D.H., & Clingeleffer, P.R. (2010). Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural enviroments with different irrigation water salinity. Australian Journal of Grape and Wine Research, 16: 243-258.
  • Walker, R.R. (1994). Grapevine responses to salinity. Bulletin de I’OIV. 67(761/762), 634-661.
  • Wang, J., Zhang, H., & Allen, R.D. (1999). Overexpression of an Arabidopsis peroxisomal APX gene in tobacco increases protection against oxidative stress, Plant Cell Physiology, 40: 725-732.
  • Wang, W., Vinocur, B., & Altman. A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., & Uzal, Ö. (2008). Tuz Stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) antioksidatif enzim(SOD, CAT, APX ve GR) aktivitesi üzerine etkisi. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi, 18 (1): 51-55.
  • Yıldız, M., Terzi, H., Cenkci, S., Arıkan, Terzi, E.S., & Uruşak, B. (2010). Bitkilerde Tuzluluğa Toleransın Fizyolojik ve Biyokimyasal Markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, Yaşam Bilimleri ve Biyoteknoloji, 1 (1): 1-33.
  • Yokota, A., Takahara, K., & Akashi, K. (2006). Water stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, The Netherlands, p 15-39.
  • Zhu, J.K. (2001). Plant salt tolerance. Trends Plant Science, 6: 66-71.

Asmalarda Kuraklık ve Tuz Stresi

Year 2021, , 358 - 368, 31.01.2021
https://doi.org/10.31590/ejosat.784997

Abstract

Asma dünyada ekonomik öneme sahip olan çok yıllık bahçe bitkilerinden biri olup, diğer birçok bitki türü ile kıyaslandığında, kuraklığa karşı dayanıklı ancak tuzluluğa karşı ise oldukça hassas olduğu bilinmektedir. Bağların büyük bölümü büyüme sezonunda mevsimsel kuraklığın yoğun olarak ortaya çıktığı bölgelerde kurulmuştur. Bu bölgelerde toprağın su kapasitesinin düşük olması ve evapotranspirasyonun yüksek olmasından dolayı asmalar sık sık kuraklık ve dolayısıyla tuz stresine maruz kalmaktadırlar. Asmalar kuraklık stresine, streste kalma süresine bağlı olarak dayanım göstermektedir. Tuz toleransı ise karmaşık bir fizyolojik ve multigenik özelliktir. Asmadaki tuz toleransı, toksik iyonların kök seviyesinde etkili bir şekilde tutulması ve daha kesin olarak, ksilem yoluyla hava kısımlarına doğru taşınmalarının kısıtlanması ile ilgilidir. Bu derleme, asmanın kuraklık ve tuz stresi altında göstermiş olduğu fizyolojik ve biyokimyasal değişimlerin belirlenmesi üzerine yapılan çalışmaları sentezlemektedir.

References

  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.
  • Akashi, K., Miyake, C., & Yokota, A. (2001). Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Febs Letters, 508(3), 438-442.
  • Alexieva, V, Ivanov, S, Sergiev, I, & Karanov, E. (2003). Interaction between stresses. Bulgarian Journal of Plant Physiology, Special Issue, 1-17.
  • Alizadeh, M., Singh, S. K., Patel, V. B., Bhattacharya, R. C., & Yadav, B. P. (2010). In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54(2), 381-385.
  • Anonim (2020). http://www.turktarim.gov.tr/Haber/223/kaynaktan-kullaniciya-ulasana-kadar-suyun-yarisindan-fazlasi-kaybediliyor (Erişim tarihi 15.04.2020)
  • Avcıoğlu, R, Demiroğlu, G, Khalvati, MA, & Geren, H. (2003). Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri. II. Prolin, klorofil birikimi ve zar dayanıklılığı. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 40 (2): 9-16.
  • Ayhan B. 2006. Mısır (Zea mays L.)’ın bazı çesitlerinde ağır metal (Cd, Pb) stresinin etkilerinin belirlenmesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 120 sayfa, Ankara.
  • Beis, A., Zotos, A., & Patakas, A. (2009). Influence of sampling time and sap extraction methodology on xylem pH values in two grapevine varieties grown under drought conditions. Environmental and experimental botany, 67(2), 305-311.
  • Ben Ahmed, C., Rouina, B. B., & Boukhris, M. (2008). Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30(4), 553-560.
  • Berli, F.J., Moreno, D., Piccoli, P., Viana, L.H., Silva, M.F., Smith, R.B., Cavagnaro, J.B., & Bottini, R. (2010). Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to Ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 33. 1-10.
  • Bertamini, M., & Nedunchezhian, N. (2002). Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. Journal of Plant Physiology, 159(7), 799-803.
  • Bertamini, M, Zulini L, Muthuchelian, K, & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44 (1): 151-154.
  • Bertamini M, Zulini L, Muthuchelian K, & Nedunchezhian N. (2007). Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biologia Plantarum, 51 (2): 381-385.
  • Bohra JS, & Döffling K. (1993). Potassium nutration of rice (Oryza sativa L.) varieties under NaCl salinitiy. Plant and Soil, 152: 299-303.
  • Borel C, & Simonneau T. (2002). Is the ABA concentration in the sap collected by pressurizing leaves relevant for analyzing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA. Journal of Experimental Botany. 53 (367): 287-296.
  • Bota J, Flexas J, & Medrano H. (2001). Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Annals of Applied Biology, 138: 353-361.
  • Bota J, Medrano H, & Flexas J. (2004). Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytologist, 162: 671-681.
  • Charbaji T, & Ayyoubi Z. (2004). Differential growth of some grapevine varieties in syria in response to salt in vitro. In Vitro Cellular and Developmental Biology Plant, 40: 221-224.
  • Chaves MM, Maroco JP, & Pereira JS. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30: 239-264.
  • Chaves MM, Santos TP, Souza CR, & Ortuńo MF. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 16: 237-252.
  • Chaves MM, Zarrouk O, Francisco JM, Costa T, Santos AP, Regalado ML, & Rodrigues CM. (2010). Grapevine under deficit irrigation:hints from physiological and molecular data. Annals of Botany, 105: 661-676.
  • Cifre J, Bota J, Escalona JM, Medrano H, & Flexas J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) an open gate to improve water-use efficiency? Agriculture, Ecosystems and Environment, 106: 159-170.
  • Collins A. (2001). Caratenoids and genomic stability. Mutation Research, 475, 1-28.
  • Cramer GR, Ergül A, Grimplet J, & Tillet RL. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional and Integrative Genomics, 7: 111-134.
  • Cramer GR. (2010). Abiotic stress and plant responses from the whole vine to the genes. Australian Journal of Grape and Wine Research, 16: 86-93.
  • Curtright R, Rynearson JA, & Markwell J. (1996). Anthocyanins: Model compounds for learning about more than pH. Journal of Chemical Education, 73: 306-309.
  • Çınar S. (2005). Mangan ve demir stresi uygulanmış roka (Eruca sativa) bitkisinde bazı antioksidan enzim aktivitesindeki ve lipid peroksidasyon düzeylerindeki değişimlerin incelenmesi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim dalı, Yüksek Lisans Tezi, 102 sayfa, Manisa.
  • Çırak C, & Esendal E. (2006). Soyada kuraklık stresi. Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi Dergisi, 21(2): 231-237.
  • Dajic Z. (2006). Salt stress. Physiology and molecular biology of stress tolerance in plants. (K.V.M. Rao and K.J. Reddy (eds)), Chapter 6: 345.
  • Dardeniz A, Müftüoğlu NM, Türkmen C, & Sungur A, (2006). Determination of relationship between water consumption and salt tolerance of some table grape cultivars. 18th International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology, 2: 693-696.
  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauchi KA, Merillon JM, Cushman JC, & Cramer GR. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10: 212-245.
  • Desikan R, Hancock JT, & Neill SJ. (2004). Oxidative stress signalling. Plant responses to abiotic stress. Hirt, H. and Shinozaki, K. (eds.), pp. 121-149, Springer- Verlag, Berlin.
  • Doupis G, Chartzoulakis K, Beis A, & Patakas A. (2011). Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Australian Journal of Grape and Wine Research, 17: 36-42.
  • Downton WJ, Loveys BR, & Grant WJR. (1990). Salinity effects on the stomatal behaviour of grapevine. New Phytologist, 116: 499-503.
  • El-Swaify SA. (2000). Soil and water salinity. Plant Nutrient management in Hawaii’s soils. Approachs for Tropical and Subtropical Agriculture, Chapter 17: 151-158.
  • Eriş A, Sivritepe N, & Sivritepe HÖ. (1998). Asmalarda su stresine karşı ortaya çıkan bazı morfolojik ve fizyolojik reaksiyonlar. 4. Bağcılık Sempozyumu Bildirileri, 20-23 Ekim 1998, 64-69, Yalova.
  • Eriş A. (1990). Bahçe bitkileri fizyolojisi, Uludağ Üniversitesi Ziraat Fakültesi Yayınları, Ders Notları No: 11, Bursa. Farshadfar E, Ghasempour H, & Vaezi H. (2008). Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pakistan Journal of Biological Sciences. 11 (1): 118-122.
  • Flexas J, Escanola JM, & Medrano H. (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines, Plant Cell and Environment, 22: 39.
  • Flexas J, Galmes J, Galle A, Gulias J, Pou A, Ribas-Carbo M, Tomas M, & Medrano H. (2010). Improwing water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16 (1): 106-121.
  • Foyer CH. (1993). Ascorbate. Antioxidants in higher plants. Alscher, R.G. and Hess, J.L. (eds.), CRC Press, Boca, Raton, pp. 31-52.
  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, & Davey MR. (2002). Salinity tolerance and antioxidant status in cotton cultures, Free Radical Biology and Medicine, 33 (4): 502-511.
  • Gill SS, & Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stres tolerance in crops. Plant Physiology and Biochemistry, 48: 909-930.
  • Gómez-del-Campo M, Ruiz C, & Lissarrague JR. (2002). The effect of water stress on leaf area development, photosynthesis and productivity in Chardonnay and Airén grapevines. American Journal of Enology and Viticulture, 53: 138-143.
  • Gong H, Blackmore DH, & Walker RR. (2010). Organic and inorganic anions in Shiraz and Chardonnay grape berries and wine as affected by rootstock under saline conditions. Australian Journal of Grape and Wine Research, 16 (1): 227-236.
  • Gosset DR, Millhollon EP, & Lucas C. (1994). Antioksidant response to NaCl stres in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34: 706-714.
  • Grimplet J, Deluc LG, Cramer GR, & Cushman JC. (2007). Integrating functional genomics with salinity and water deficit stress responses in wine grape - Vitis vinifera. M.A. Jenks ve ark. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Chapter 26: 643-668.
  • Güneş A, Çelik H, Alparslan M, Söylemezoğlu G, Erarslan F, Yaşa Z, & Koç Ö. (2003). Asmaların (Vitis spp.) bor toksitesi ve tuzluluğa karşı toleransının belirlenmesine yönelik olarak bor, sodyum ve klor alımlarının karşılaştırılması. Tarım Bilimleri Dergisi, 9 (4): 428-434.
  • Güneş A, Söylemezoğlu G, İnal A, Bağcı EG, Çoban S, & Şahin O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110: 279-284.
  • Gürel A, & Avcıoğlu R. (2001). Bitkilerde strese dayanıklılık fizyolojisi. Bitki Biyoteknolojisi II, Bölüm 21: 289-326.
  • Hepaksoy S, Ben-Asher J, de Malach Y, David I, Sagih M, & Brave B. (2006). Grapevine irrigation with saline water: Effect of rootstocks on quality and yield of Cabernet Sauvignon. Journal of Plant Nutrition, 29: 783-795.
  • Holton TA, & Cornish EC. (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 7: 1017-1083.
  • Iwashina T. (2000). The Structure and distribution of the flavonoids in plants. Journal of Plant Research, 113: 287-299.
  • Jellouli N, Ben Jouria H, Skouri H, Ghorbel A, Gourgoubri A, & Mliki A. (2008). Proteomic analysis of Tunisian grapevine cultivar Rzegui under salt stress. Journal of Plant Physiology, 165: 471-481.
  • Kalefetoğlu T, & Ekmekçi Y. (2005). The Effect of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723-740.
  • Kalefetoğlu T. (2006). Nohut (Cicer arietinum L.) çeşit ve hatlarının kuraklık stresine karşı dayanıklılığının karakterizasyonu. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 143 sayfa, Ankara.
  • Karanlık S. (2001). Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 125 s., Adana.
  • Kerepesi I, & Galiba G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40: 482-487.
  • Koca H. (2007). Tuz stresinin farklı susam çeşitlerinin fizyolojik ve biyokimyasal özellikleri üzerine etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 132 sayfa, İzmir.
  • Kök D. (2007). Responces of V. vinifera spp. Sylvestris (C.C. Gmelin) ecotypes originated from two different geographical regions of turkey to salinity stress at seed germination and plantlet stages. Pakistan Journal of Biological Sciences, 10 (16), 2631-2638.
  • Lovisolo C, Tramontini S, Flexas J, & Schubert A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Enviromental and Experimental Botany, 63: 178-182.
  • Lutts S, Kinet JM, & Bouharmont J. (1996). NaCl Induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398.
  • Mahajan S, & Tuteja N. (2005). Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics, 444: 139-158.
  • Mansour MMF, Salama KHA, & Al-Mutawa MM. (2003). Transport proteins and salt tolerance in plants. Plant Science, 164: 891-900.
  • Munns R, & Tester M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Munns R. (2002). Comparative physiology of salt and water stres. Plant, Cell and Environment, 25. 239-250.
  • Müftüoğlu NM, Dardeniz A, Sungur A, & Altay H. (2006). Bazı sofralık üzüm çeşitlerinin tuza toleranslarının belirlenmesi. Selçuk Üniversitesi Ziraat Fakültesi Dergisi, 20: 37-42.
  • Nawar WW. (1996). Lipids. In “Food Chemistry”, O.R. Fennema (Ed), pp: 225-319. Marcel Dekker, New York.
  • Niyogi KK, Shih C, Chow WS, Pogson B, Dellapenna D, & Björkman O. (2001). Photoprotection in a zeaxanthin and lutein deficient double mutant of Arabidopsis. Photosynthesis Research, 67: 139-145.
  • Önder S, Kanber R, Önder D, & Kapur B. (2005). Global iklim değişimlerine bağlı olarak sulama yöntem ve işletim tekniklerinde gelecekte ortaya çıkabilecek değişiklikler. 4. GAP Tarım Kongresi, Şanlıurfa, 2: 1128-1135.
  • Özden M, Demirel U, & Kahraman A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119: 163-168.
  • Öztürk MA, & Seçmen Ö. (1992). Bitki ekolojisi, Ege Üniversitesi Fen Fakültesi, Yayın No: 141, İzmir.
  • Paranychianakis NV, Aggelides S, & Anglekis AN. (2004). Influence of rootstock, irrigation level and recycled water on growth and yield of Soultanina grapevines. Agricultural Water Management, 69: 13-27.
  • Paranychianakis NV, & Anglekis AN. (2008). The Effect of water stress and rootstock on the development of leaf injuries in grapevines ırrigated with saline water. Agricultural Water Management, 95: 375-382.
  • Parida A, Das AB, & Das P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true Mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Physiology, 45. 28-36.
  • Patakas A, Nikolaou N, Zioziou E, Radoglou K, & Noitsakis B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought stressed grapevines. Plant Science, 163. 361-367.
  • Patakas A, Noitsakis B, & Chouzouri A. (2005). Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agriculture, Ecosystems and Environment, 106: 253-259.
  • Patakas A, & Noitsakis B. (2001). Leaf age effects on solute accumulation in water-stressed grapevines. Journal of Plant Physiology, 158: 63-69.
  • Pavlousek P. (2011). Evaluation of drought tolerance of new grapevine rootstock hybrids. Journal of Environmental Biology, 32: 543-549.
  • Peltzer D, Dreyer E, & Polle A. (2002). Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiology and Biochemistry, 40: 141-150.
  • Sairam RK, & Tyagi A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86 (3): 407-421. Santesteban LG, Miranda C, & Royo JB. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agricultural Water Management, 98: 1171-1179.
  • Saruhan V, Üzen N, Eylen M, & Çetin Ö. (2008). Toprak tuzluluğunun kültür bitkilerine etkileri ve alınabilecek somut önlemler. Sulama Tuzlanma Konferansı, 319-328, Şanlıurfa.
  • Shafiq Ur Rahman Harris P, & Ashraf M. (2005). Stress environment and their impact on crop production. Abiotic stress: plant resistance through breeding and molecular approaches. M. Ashraf and P. Harris. New York, Food Products pres, 3-16.
  • Shai U, & Ben Gal A. (2005). Long term response of grapevines to salinity: Osmotic effects and ion toxicity. American Journal of Enology and Viticulture, 56 (2): 148-154.
  • Shrivastava P, & Kumar R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2): 123-131.
  • Sinclair C, & Hoffmann AA. (2003). Monitoring salt stress in grapevines: are measures of plant trait variability useful?. Journal of Applied Ecology, 40: 928-937.
  • Singh S, Anjum NA, Khan NA, & Nazar R. (2008). Metal binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. In: N.A. Khan, S. Singh (Eds). Abiotic stress and plant responses, IK International, New Delhi, 159-189.
  • Sivritepe N, & Eris A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23: 473-485.
  • Sivritepe N, Ertürk U, Yerlikaya C, Türkan İ, Bor M, & Özdemir F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52 (3): 573-576.
  • Sivritepe N, Kumral NA, Ertürk U, Yerlikaya C, & Kumral A. (2009). Responses of Grapevine to two spotted spider mite mediated biotic stres. Journal of Biological Sciences, 9 (4): 311-318.
  • Sivritepe N, Sivritepe Ö, Çelik H, & Katkat AV. (2010). Salinity responses of grafted grapevines: Effects of scion and rootstock genotypes. Notulae Botanicae Horti Agrobotanici Cluj, 38 (3): 193-201.
  • Sivritepe N. (1995). Asmalarda tuza dayanıklılık testleri ve tuza dayanımda etkili bazı faktörler üzerinde arastırmalar. Uludag Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, Doktora tezi, 167 sayfa, Bursa.
  • Sivritepe N. (2000). Asmalarda tuzdan kaynaklanan ozmotik stresin teşvik ettiği fizyolojik değişimler ve tuza dayanımdaki rolleri. Turkish Journal of Biology, 24: 97-104.
  • Soar CJ, Dry PR, & Loveys BR. (2006). Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Australian Journal of Grape and Wine Research, 12: 82-96.
  • Stahl W, Ale-Agha N, & Polidori MC. (2002). Non-antioxidant properties of carotenoids. Journal of Biological Chemistry, 383: 553-558.
  • Streb P, & Feierabend J. (1996). Oxidative stres responses accompanying photoinactivation of catalase in NaCl-Treated rye leaves. Botanica Acta, 109: 125-132.
  • Taiz L, & Zeiger E. (2008). Bitki fizyolojisi (Çeviri Editörü İ. Türkan). Palma Yayımcılık, Ankara, s: 404-419, p. 547.
  • Tattersall EAR, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, & Cramer GR. (2007). Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stres. Functional and Integrative Genomics, 7: 317-333.
  • Tester M, & Davenport RJ. (2003). Na+ transport and Na+ tolerance in higher plants. Ann Bot (Lond) 91: 503-527.
  • Tezara W, Mitchell VJ, Driscoll SD, & Lawlor DW. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401: 914-917. Tipi, T., Vural, H., Turhan, Ş., & Erdal, B. (2017). Türkiye'de Sulama Yatırımlarının Tarım Alanlarının Kullanım Şekillerine Etkisinin Belirlenmesi. Turkish Journal of Agricultural Economics, 23(2).
  • Toumi I, Gargouri M, Nouairi I, Moschou PN, Ben Salem-Fnayou A, Mliki A, Zarrouk M, & Ghorbel A. (2008). Water stress induced changes in leaf lipid composition of four grapevine genotypes with different drought tolerance. Biologia Plantarum, 52: 161-164.
  • Trebst A, Depka B, & Holländer-Czytko HA. (2002). Specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii, FEBS Letters, 43: 2157-2162.
  • Trouverie J, Thevenot C, Rocher JP, Sotta B, & Prioul JL. (2003). The role of abscisic acid in the response of a specific vacuolar invertase to water stress in adult maize leaf. Journal of Experimental Botany, 54, 2177-2186.
  • UNCCD (1995). The United nations convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa, Text with Annexes, United Nations Environment Programme (UNEP), Geneva.
  • Upreti KK, & Murti GSR. (2010). Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biologia Plantarum, 54 (4): 730-734.
  • Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, & Dubourdieu D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55: 207-217.
  • Vandeleur RK, Mayo G, Sheldeni MC, Gillihami M, Kaiseri BN, & Tyermani SD. (2008). The role of PIP aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149: 445-460.
  • Villora G, Pulgar G, Moreno DA, & Romero L. (1997). Salinty Treatments and Their Effect on Nutrient ConcenTration in Zucchini Plants (Cucurbit pepo L. var. Moschata). Australian Journal of Experimental Agriculture, 37: 605-608.
  • Vincent D, Ergül A, Bohlman MC, Tattersall EAR, & Tillett RL. (2007). Proteomic analysis reveals differences between Vitis Vinifera L. cv. Chardonnay and cv. Cabarnet Sauvignon and their responses to water deficit and salinity. Experimental Botany, 58 (7): 1873-1892.
  • Walker RR, Blackmore DH, Clingeleffer PR, & Correll RL. (2002). Rootstock effects of salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) I. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research, 8: 3-14.
  • Walker, R.R., Blackmore, D.H., Clingeleffer, P.R., & Correll, R.L. (2004). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 10: 90-99.
  • Walker, R.R., Blackmore, D.H., & Clingeleffer, P.R. (2010). Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural enviroments with different irrigation water salinity. Australian Journal of Grape and Wine Research, 16: 243-258.
  • Walker, R.R. (1994). Grapevine responses to salinity. Bulletin de I’OIV. 67(761/762), 634-661.
  • Wang, J., Zhang, H., & Allen, R.D. (1999). Overexpression of an Arabidopsis peroxisomal APX gene in tobacco increases protection against oxidative stress, Plant Cell Physiology, 40: 725-732.
  • Wang, W., Vinocur, B., & Altman. A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., & Uzal, Ö. (2008). Tuz Stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) antioksidatif enzim(SOD, CAT, APX ve GR) aktivitesi üzerine etkisi. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi, 18 (1): 51-55.
  • Yıldız, M., Terzi, H., Cenkci, S., Arıkan, Terzi, E.S., & Uruşak, B. (2010). Bitkilerde Tuzluluğa Toleransın Fizyolojik ve Biyokimyasal Markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, Yaşam Bilimleri ve Biyoteknoloji, 1 (1): 1-33.
  • Yokota, A., Takahara, K., & Akashi, K. (2006). Water stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, The Netherlands, p 15-39.
  • Zhu, J.K. (2001). Plant salt tolerance. Trends Plant Science, 6: 66-71.
There are 118 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zehra Babalik 0000-0002-1784-4563

Nilgün Göktürk Baydar 0000-0002-5482-350X

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Babalik, Z., & Göktürk Baydar, N. (2021). Asmalarda Kuraklık ve Tuz Stresi. Avrupa Bilim Ve Teknoloji Dergisi(21), 358-368. https://doi.org/10.31590/ejosat.784997