Research Article
BibTex RIS Cite

Investigation of Explosion Effects and Explosion Safety on Structural Systems

Year 2021, , 442 - 450, 31.08.2021
https://doi.org/10.31590/ejosat.913858

Abstract

Explosions induced by terrorist activities have been made cause great damage to buildings and cause many casualties. Explosion events can be carried out easily and quickly in terms of application. In attacks by bomb-laden vehicles, while the bomb-laden vehicles provide ease of access to the targeted structure, they have been the opportunity to bring various amounts of explosives according to the vehicle capacities. In the studies about explosion safety in the literature, some analysis methods are encountered on the basis of element or structural. Some of these are determining the performance of a single structural element under the effects of blast loads, performing collapse analyses in a structural system, and effect dynamic explosion loads on the structure. Within the scope of this study, explosion analyses at different distances were made using the SAP 2000 software based on finite element method. The dynamic behaviour of the column located closest to the explosive was modelled in the RC-Blast software, which analyses the column based on a single degree of freedom system, and column capacities were determined and evaluated. Seismic base isolation application for explosion safety of buildings has been proposed and the effect/capacity ratios occurring in the column at the critical point for isolated and fixed-based building situations are compared. It was concluded that structures with seismic isolators absorb explosive effects better. Sheltered around a wall of the building have been recommended to reduce the effects of explosions. Although the behaviour of the structures under the effect of the explosion is not fully known, differentiation of solution methods may bring some approaches. It was concluded that the combination of element-based and system-based methods in explosion analysis would produce more efficient results.

References

  • Al-Salloum, Y. A., Abbas, H., Almusallam, T. H., Ngo, T., & Mendis, P. (2017). Progressive collapse analysis of a typical RC high-rise tower. journal of king saud university-engineering sciences, 29(4), 313-320.
  • Army, U. S. (1990). Structures to resist the effects of accidental explosions, TM 5-1300. US Department of the Army Technical Manual, Washington, DC.
  • ASCE. (1985). Design of structures to resist nuclear weapons effects. ASCE manual 42.
  • Attacks Against Buildings FEMA-452. Washington DC: Department of Homeland Security.
  • Baker W.E., (1973) “Explosions in Air”, Univ. of Texas Press, Austin TX USA.
  • Federal Emergency Management Agency (FEMA). (2003). FEMA-426: Reference Manual to Mitigate Potential Terrorist Attacks against Buildings.
  • FEMA (2007). Risk Management Series, Site and Urban Design for Security Guidance Against Potential Terrorist Attacks, FEMA 430.
  • FEMA. (2003). Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks. FEMA 427.
  • Feng Fu., (2012), Response of a multi-story steel composite building with concentric bracing under consecutive column removal scenarios, Journal of Constructional Steel Research 70, 115–126.
  • Friedlander, F. G. (1946). The diffraction of sound pulses I. Diffraction by a semi-infinite plane. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1006), 322-344.
  • Greenemeier, L. Sticky Savior: US Army Readies a New Blast-Protection Adhesive for Deployment.
  • Guidebook, E. R. (2016). US Department of Transportation Pipeline and Hazardous Materials Safety Administration.
  • Hinman E, Engineers PHC (2017) Blast safety of the building envelope. Whole Building Design Guide 2017.Erişim adresi: https://www.wbdg.org/resources/blast-safety-building-envelope.
  • Jacques, E., 2014, RCBLAST (Version. 0.5.1) [Computer program] Available at http://www.rcblast.ca/ (Accessed Wednesday, March 24, 2021).
  • Kadhum, A. K., & Kadhum, L. K. Behavior Of Architectural And Structural For Steel Fram Tall Building Subjected To Blast Loads.
  • Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. Report EUR, 26456.
  • Karlos, V., Solomos, G., & Larcher, M. (2016). Analysis of the blast wave decay coefficient using the Kingery–Bulmash data. International Journal of Protective Structures, 7(3), 409–429. https://doi.org/10.1177/2041419616659572.
  • Kingery, C. N., & Bulmash, G. (1984). Technical report ARBRL-TR-02555: Air blast parameters from TNT spherical air burst and hemispherical burst. AD-B082, 713.
  • Liu, Y., Yan, J. B., & Huang, F. L. (2018). Behavior of reinforced concrete beams and columns subjected to blast loading. Defence Technology, 14(5), 550-559.
  • Mays, G., Smith, P. D., & Smith, P. D. (Eds.). (1995). Blast effects on buildings: Design of buildings to optimize resistance to blast loading. Thomas Telford.
  • National Research Council. (2002). Protecting People and Buildings from Terrorism: Technology Transfer for Blast-effects Mitigation. National Academies Press.
  • SAP2000, C. S. I. (2019). V21. Integrated Software for Structural Analysis and Design. Computer & Structures Inc. Berkeley, California, USA.
  • Saatcioglu, M., Ravzi, S. R., 1992, “Strength and ductılıty of confıned concrete“, Journal of Structural Engineering, Vol. 118, No. 6, pp.1590-1607.
  • Shobha, R., Vinod, B. R., Prabhu, A. P., Shubhashree, G. R., & Yaksha, V. (2020). Response of Tall Structures Along Face Exposed to Blast Load Applied at Varying Distance. International Journal of Recent Technology and Engineering, 9(1), 455–460. https://doi.org/10.35940/ijrte.a1591.059120.
  • Unified Facilities Criteria (UFC). (2008). Structures to resist the effects of accidental explosions. UHPFRC 3–, 340-02. Url-1<https://www.straitstimes.com/singapore/ntu-scientists-create-new-material-which-can-strengthen-buildings-and-make-walls-bomb>.
  • Wang, W., Zhang, D., Lu, F., Wang, S. C., & Tang, F. (2012). Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading. International Journal of Impact Engineering, 49, 158-164.

Yapı Sistemlerinde Patlama Etkilerinin ve Patlama Güvenliğinin Araştırılması

Year 2021, , 442 - 450, 31.08.2021
https://doi.org/10.31590/ejosat.913858

Abstract

Terör faaliyetleri sonucu meydana gelen patlamalar, binalara büyük zararlar vermekte ve birçok can kaybına neden olmaktadır. Patlama olayları uygulama açısından kolay ve hızlı bir şekilde gerçekleştirilebilmektedir. Bomba yüklü araçlarla yapılacak saldırılarda, bu araçlar, hedeflenen yapıya erişim kolaylığı sağlarken, araç kapasitelerine göre çeşitli miktarlarda patlayıcı getirme olanağına sahiptir. Literatürde yapıların patlama güvenliğine yönelik çalışmalarda eleman bazında ya da yapısal olarak birtakım analiz yöntemleri kullanılmaktadır. Patlama yükü etkisi altında tek bir yapı elemanının performansının belirlenmesi, yapısal bir sistemde çökme analizlerinin yapılması, yapıya dinamik patlama yüklerinin etki ettirilmesi bunlardan bazılarıdır. Bu çalışma kapsamında öncelikle sonlu eleman yöntemine dayalı analiz yapan SAP2000 yazılımı kullanılarak farklı mesafelerden uygulanan patlama yükleri için yapının analizleri gerçekleştirilmiş ve patlayıcıya en yakın konumda bulunan kolonun dinamik davranışı incelenmiştir. Ayrıca eleman bazlı ve tek serbestlik dereceli sisteme dayalı analiz yapan RC-Blast yazılımında mevcut kolonun modellenmesi yapılarak kolon kapasiteleri belirlenmiştir. Yapıların patlama güvenliğine yönelik sismik taban yalıtımı uygulaması önerilmiş ve yalıtımlı ve yalıtımsız yapı durumları için kritik noktadaki kolonda meydana gelen etki/kapasite oranları karşılaştırılmıştır. Sismik izolatörlü yapıların patlama etkilerini daha iyi sönümlediği sonucuna varılmıştır. Çalışma sonucunda RC-Blast ve SAP2000 yazılımlarında yapılan çözümlemelerde yapı davranışları ancak başlangıç seviyesinde benzerlik göstermektedir. Patlama etkilerini azaltmak amacıyla yapı çevresine korunaklı duvar inşa edilmesi önerilmiştir. Yapıların patlama etkileri altında davranışı kesin olarak bilinmemekle birlikte çözüm yöntemlerinin farklılaştırılması belirli yaklaşımları beraberinde getirebilmektedir. Patlama analizlerinde eleman bazlı ve sistem bazlı yöntemlerin bir arada kullanımının daha verimli sonuçlar vereceği sonucuna varılmıştır.

References

  • Al-Salloum, Y. A., Abbas, H., Almusallam, T. H., Ngo, T., & Mendis, P. (2017). Progressive collapse analysis of a typical RC high-rise tower. journal of king saud university-engineering sciences, 29(4), 313-320.
  • Army, U. S. (1990). Structures to resist the effects of accidental explosions, TM 5-1300. US Department of the Army Technical Manual, Washington, DC.
  • ASCE. (1985). Design of structures to resist nuclear weapons effects. ASCE manual 42.
  • Attacks Against Buildings FEMA-452. Washington DC: Department of Homeland Security.
  • Baker W.E., (1973) “Explosions in Air”, Univ. of Texas Press, Austin TX USA.
  • Federal Emergency Management Agency (FEMA). (2003). FEMA-426: Reference Manual to Mitigate Potential Terrorist Attacks against Buildings.
  • FEMA (2007). Risk Management Series, Site and Urban Design for Security Guidance Against Potential Terrorist Attacks, FEMA 430.
  • FEMA. (2003). Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks. FEMA 427.
  • Feng Fu., (2012), Response of a multi-story steel composite building with concentric bracing under consecutive column removal scenarios, Journal of Constructional Steel Research 70, 115–126.
  • Friedlander, F. G. (1946). The diffraction of sound pulses I. Diffraction by a semi-infinite plane. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1006), 322-344.
  • Greenemeier, L. Sticky Savior: US Army Readies a New Blast-Protection Adhesive for Deployment.
  • Guidebook, E. R. (2016). US Department of Transportation Pipeline and Hazardous Materials Safety Administration.
  • Hinman E, Engineers PHC (2017) Blast safety of the building envelope. Whole Building Design Guide 2017.Erişim adresi: https://www.wbdg.org/resources/blast-safety-building-envelope.
  • Jacques, E., 2014, RCBLAST (Version. 0.5.1) [Computer program] Available at http://www.rcblast.ca/ (Accessed Wednesday, March 24, 2021).
  • Kadhum, A. K., & Kadhum, L. K. Behavior Of Architectural And Structural For Steel Fram Tall Building Subjected To Blast Loads.
  • Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. Report EUR, 26456.
  • Karlos, V., Solomos, G., & Larcher, M. (2016). Analysis of the blast wave decay coefficient using the Kingery–Bulmash data. International Journal of Protective Structures, 7(3), 409–429. https://doi.org/10.1177/2041419616659572.
  • Kingery, C. N., & Bulmash, G. (1984). Technical report ARBRL-TR-02555: Air blast parameters from TNT spherical air burst and hemispherical burst. AD-B082, 713.
  • Liu, Y., Yan, J. B., & Huang, F. L. (2018). Behavior of reinforced concrete beams and columns subjected to blast loading. Defence Technology, 14(5), 550-559.
  • Mays, G., Smith, P. D., & Smith, P. D. (Eds.). (1995). Blast effects on buildings: Design of buildings to optimize resistance to blast loading. Thomas Telford.
  • National Research Council. (2002). Protecting People and Buildings from Terrorism: Technology Transfer for Blast-effects Mitigation. National Academies Press.
  • SAP2000, C. S. I. (2019). V21. Integrated Software for Structural Analysis and Design. Computer & Structures Inc. Berkeley, California, USA.
  • Saatcioglu, M., Ravzi, S. R., 1992, “Strength and ductılıty of confıned concrete“, Journal of Structural Engineering, Vol. 118, No. 6, pp.1590-1607.
  • Shobha, R., Vinod, B. R., Prabhu, A. P., Shubhashree, G. R., & Yaksha, V. (2020). Response of Tall Structures Along Face Exposed to Blast Load Applied at Varying Distance. International Journal of Recent Technology and Engineering, 9(1), 455–460. https://doi.org/10.35940/ijrte.a1591.059120.
  • Unified Facilities Criteria (UFC). (2008). Structures to resist the effects of accidental explosions. UHPFRC 3–, 340-02. Url-1<https://www.straitstimes.com/singapore/ntu-scientists-create-new-material-which-can-strengthen-buildings-and-make-walls-bomb>.
  • Wang, W., Zhang, D., Lu, F., Wang, S. C., & Tang, F. (2012). Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading. International Journal of Impact Engineering, 49, 158-164.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Toplu 0000-0001-8019-560X

Osman Kırtel 0000-0001-6451-0323

Publication Date August 31, 2021
Published in Issue Year 2021

Cite

APA Toplu, E., & Kırtel, O. (2021). Yapı Sistemlerinde Patlama Etkilerinin ve Patlama Güvenliğinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(25), 442-450. https://doi.org/10.31590/ejosat.913858