Research Article
BibTex RIS Cite

STM32 Tabanlı Sualtı Kontrol Kartı Tasarımı

Year 2020, Ejosat Special Issue 2020 (ICCEES), 351 - 356, 05.10.2020
https://doi.org/10.31590/ejosat.804609

Abstract

İnsansız su altı araçları (ROV/AUV) su altında yüzebilen, otonom ve uzaktan kontrol edilebilen robotik sistemlerdir. Günümüzde insansız su altı araçları su altı arama kurtarma çalışmaları, gemi su altı bakım ve onarım işlemleri, dalgıçların giremeyeceği tehlikeli ortamlardan görüntü alma, askeri amaçlı kullanım, batıkların incelenmesi ve su altı temizliği gibi çok geniş bir alanda kullanılmaktadır.
Piyasada yerli donanıma ve yazılıma sahip ROV/AUV sayısı çok azdır. Bu eksiklikten yola çıkarak yerlileşmeyi desteklemek amacıyla böyle bir proje üzerine çalışma gereksinimi doğmuştur. Su altı araçları için tasarlanan kontrol kartında ARM tabanlı STM32 mikroişlemci kullanılmış olup IMU, basınç sensörü, iletişim kartı gibi yardımcı elemanlar kullanılmıştır. Bugün dünyada üretilen mikroişlemcilerin %2 gibi küçük bir bölümü kişisel bilgisayarlarda kullanılıyor. Geri kalan %98’lik kısım hayatımızdaki elektronik cihazların içerisinde. Şu günlerde elektronik alanındaki gelişmelere aşina olan birinin ARM ismini duymamış olmasına imkan yok. Başta cep telefonları olmak üzere hemen hemen bütün mobil cihazlarda ARM mimarisine sahip işlemciler bulunuyor. Tasarlanan kontrol kartı uzaktan kontrollü ve otonom araçlarda aracın kontrolü ve su üstü istasyonu ile iletişim için kullanılabilir niteliktedir.
Bu çalışmada su altı araçlarının derinlik ve yön kontrolünü PID algoritmaları kullanarak gerçekleştirecek kontrol kartının tasarımı anlatılmıştır. ROV/AUV platformlarına yönelik mevcut durumda yurtdışından ithal edilmesi gereken otomatik seyir kontrol sistemleri yerine, yurtiçinde yenilikçi otomatik seyir kontrol sistemleri (donanım ve yazılım) ve alt bileşenlerinin geliştirilmesi amaçlanmıştır.

References

  • Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE transactions on control systems technology, 13(4), 559-576.
  • Aono, K. (2011). Application note: Pcb design with eagle. ECE480 Design Team, 5, 1-33.
  • Åström, K. J., Hägglund, T., & Astrom, K. J. (2006). Advanced PID control (Vol. 461): ISA-The Instrumentation, Systems, and Automation Society Research Triangle ….
  • BOLAT, E. D., SOLAK, S., & YAKUT, Ö. (2017). Yaygın Kullanılan ARM Tabanlı Tek Kart Bilgisayar Sistemleri ve Kullanım Alanları. El-Cezeri Journal of Science and Engineering, 4(1).
  • CANLI, G. A., KURTOĞLU, İ., CANLI, M. O., & TUNA, Ö. S. DÜNYADA VE ÜLKEMİZDE İNSANSIZ SUALTI ARAÇLARI İSAA-AUV & ROV TASARIM VE UYGULAMALARI. GİDB Dergi(04), 43-75.
  • Gay, W. (2018). STM32F103C8T6 GPIO Pins. In Beginning STM32 (pp. 393-400): Springer.
  • Grassi, E., Tsakalis, K. S., Dash, S., Gaikwad, S., & Stein, G. (2000). Adaptive/self-tuning PID control by frequency loop-shaping. Paper presented at the Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187).
  • Gupta, R. K. (2012). Co-synthesis of hardware and software for digital embedded systems (Vol. 329): Springer Science & Business Media.
  • Johnson, M. A., & Moradi, M. H. (2005). PID control: Springer.
  • Jones, D. L. (2004). PCB design tutorial. June 29th, 3-25.
  • Khodayari, M. H., & Balochian, S. (2015). Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. Journal of Marine Science and Technology, 20(3), 559-578.
  • Maalouf, D., Tamanaja, I., Campos, E., Chemori, A., Creuze, V., Torres, J., & Lozano, R. (2013). From pd to nonlinear adaptive depth-control of a tethered autonomous underwater vehicle. IFAC Proceedings Volumes, 46(2), 743-748.
  • Marwedel, P. (2006). Embedded system design (Vol. 1): Springer.
  • Moore, S., Bohm, H., Jensen, V., & Johnston, N. (2010). Underwater Robotics. Science, Design and Fabrication. Marine Advanced Technology Education Center (MATE), Monterrey CA, USA.
  • Pardue, J. (2007). Virtual Serial Port Cookbook: Smiley Micros.
  • Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & engineering chemistry process design and development, 25(1), 252-265.
  • Sharawi, M. S. (2004). Practical issues in high speed PCB design. IEEE Potentials, 23(2), 24-27.
  • Shen, F., Cao, Z., Zhou, C., Xu, D., & Gu, N. (2013). Depth control for robotic dolphin based on fuzzy PID control.
  • Xiaolan, W., Hanghui, D., & Debao, C. (2002). PID self-tuning control based on evolutionary programming. Paper presented at the Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527).
  • Yildiz, O., Yilmaz, A. E., & Gokalp, B. (2009). State-of-the-art system solutions for unmanned underwater vehicles. Sensors, 1, 2

STM32 Based Underwater Control Card Design

Year 2020, Ejosat Special Issue 2020 (ICCEES), 351 - 356, 05.10.2020
https://doi.org/10.31590/ejosat.804609

Abstract

Unmanned underwater vehicles (ROV/AUV) are robotic systems that can float underwater, are autonomous and remotely controlled. Today, unmanned underwater vehicles are used in a wide range of areas such as underwater search and rescue operations, ship underwater maintenance and repair operations, taking images from dangerous environments where divers cannot enter, military use, inspection of wrecks and underwater cleaning.
The number of ROV/AUVs with domestic hardware and software on the sector is very limited. Because of this deficiency, we worked on such a project to support nationalisation. Designed for underwater vehicles, the Control Board used the ARM-based STM32 microprocessor and auxiliary elements such as IMU, pressure sensor, communication card. Only 2% of microprocessors produced in the world are used in personal computers. The remaining 98% is inside the electronic devices in our lives. There's no way anyone familiar with the developments in electronics these days has ever did not heard of ARM. Almost all mobile devices, especially mobile phones, have processors with ARM architecture. The designed control card can be used for vehicle control and communication with the ground station in remote controlled and autonomous vehicles.
In this study, the design of the Control Board, which will perform depth and direction control of underwater vehicles using PID algorithms, was explained. Instead of automatic cruise control systems for ROV / AUV platforms that currently need to be imported from abroad, it is aimed to develop innovative automatic cruise control systems (hardware and software) and sub-components domestically.

References

  • Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE transactions on control systems technology, 13(4), 559-576.
  • Aono, K. (2011). Application note: Pcb design with eagle. ECE480 Design Team, 5, 1-33.
  • Åström, K. J., Hägglund, T., & Astrom, K. J. (2006). Advanced PID control (Vol. 461): ISA-The Instrumentation, Systems, and Automation Society Research Triangle ….
  • BOLAT, E. D., SOLAK, S., & YAKUT, Ö. (2017). Yaygın Kullanılan ARM Tabanlı Tek Kart Bilgisayar Sistemleri ve Kullanım Alanları. El-Cezeri Journal of Science and Engineering, 4(1).
  • CANLI, G. A., KURTOĞLU, İ., CANLI, M. O., & TUNA, Ö. S. DÜNYADA VE ÜLKEMİZDE İNSANSIZ SUALTI ARAÇLARI İSAA-AUV & ROV TASARIM VE UYGULAMALARI. GİDB Dergi(04), 43-75.
  • Gay, W. (2018). STM32F103C8T6 GPIO Pins. In Beginning STM32 (pp. 393-400): Springer.
  • Grassi, E., Tsakalis, K. S., Dash, S., Gaikwad, S., & Stein, G. (2000). Adaptive/self-tuning PID control by frequency loop-shaping. Paper presented at the Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187).
  • Gupta, R. K. (2012). Co-synthesis of hardware and software for digital embedded systems (Vol. 329): Springer Science & Business Media.
  • Johnson, M. A., & Moradi, M. H. (2005). PID control: Springer.
  • Jones, D. L. (2004). PCB design tutorial. June 29th, 3-25.
  • Khodayari, M. H., & Balochian, S. (2015). Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. Journal of Marine Science and Technology, 20(3), 559-578.
  • Maalouf, D., Tamanaja, I., Campos, E., Chemori, A., Creuze, V., Torres, J., & Lozano, R. (2013). From pd to nonlinear adaptive depth-control of a tethered autonomous underwater vehicle. IFAC Proceedings Volumes, 46(2), 743-748.
  • Marwedel, P. (2006). Embedded system design (Vol. 1): Springer.
  • Moore, S., Bohm, H., Jensen, V., & Johnston, N. (2010). Underwater Robotics. Science, Design and Fabrication. Marine Advanced Technology Education Center (MATE), Monterrey CA, USA.
  • Pardue, J. (2007). Virtual Serial Port Cookbook: Smiley Micros.
  • Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & engineering chemistry process design and development, 25(1), 252-265.
  • Sharawi, M. S. (2004). Practical issues in high speed PCB design. IEEE Potentials, 23(2), 24-27.
  • Shen, F., Cao, Z., Zhou, C., Xu, D., & Gu, N. (2013). Depth control for robotic dolphin based on fuzzy PID control.
  • Xiaolan, W., Hanghui, D., & Debao, C. (2002). PID self-tuning control based on evolutionary programming. Paper presented at the Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527).
  • Yildiz, O., Yilmaz, A. E., & Gokalp, B. (2009). State-of-the-art system solutions for unmanned underwater vehicles. Sensors, 1, 2
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ercan Ataner 0000-0002-4548-9968

Büşra Özdeş 0000-0002-3902-3053

Akif Durdu 0000-0002-5611-2322

Hakan Terzioğlu 0000-0001-5928-8457

Publication Date October 5, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ICCEES)

Cite

APA Ataner, E., Özdeş, B., Durdu, A., Terzioğlu, H. (2020). STM32 Based Underwater Control Card Design. Avrupa Bilim Ve Teknoloji Dergisi351-356. https://doi.org/10.31590/ejosat.804609