Review
BibTex RIS Cite

Osmotic Dehydration Applications in Meat

Year 2021, Issue: 21, 534 - 542, 31.01.2021
https://doi.org/10.31590/ejosat.818194

Abstract

Osmotic dehydration is a non-thermal, partial drying process applied for the removal of water in food products, as well as for the absorption of various solutes (salt, sugar, etc.). In the osmotic dehydration process, the food material is immersed in a high concentration solution to obtain a final product with lower water activity. However, since the final products with very low water activity cannot be obtained with osmotic dehydration, this method is applied as a pretreatment. The water loss in the product takes place in a shorter time with the osmotic dehydration process applied before drying. The most effective factors on osmotic dehydration are the type of osmotic agent, concentration, process temperature, process time and sample/solution ratio. The low process temperature in osmotic dehydration prevents the loss of color and aroma in food products and contributes the functional, nutritional and sensory properties of products. In addition, the fact that it is a very economical process and does not pose any negative effects in terms of human health makes the method advantageous. In this review, when the osmotic dehydration process is used as a pretreatment in meat processing, the effects on the quality characteristics of the product were mentioned. It has been determined that osmotic dehydration used in various meats (chicken, pork, beef, lamb, ostrich meat and a wide variety of seafood) improves many quality parameters such as color and sensory properties and shelf life of the products. Dried meat with better texture were obtained with the use of specific osmotic agents. It is also recommended to use osmotic dehydration in combination with some applications such as ultrasound or high pressure for effective drying of meat. It was determined that osmotic dehydration process used before convective drying significantly reduced the drying time of meat.

References

  • Akbarian, M., Ghasemkhani, N., & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial: A review. Int. J. Biosci, 4(1), 42-57.
  • Alamatian, S., Mohebbi, M., Varidi, M., & Nezhad, M. M. (2019). Modeling of osmotic treatment of ostrich meat coated by tragacanth and salep. Meat Science, 156, 231-239.
  • Almeida, J. A., Mussi, L. P., Oliveira, D. B., & Pereira, N. R. (2015). Effect of temperature and sucrose concentration on the retention of polyphenol compounds and antioxidant activity of osmotically dehydrated bananas. Journal of Food Processing and Preservation, 39(6), 1061-1069.
  • Andreou, V., Tsironi, T., Dermesonlouoglou, E., Katsaros, G., & Taoukis, P. (2018). Combinatory effect of osmotic and high pressure processing on shelf life extension of animal origin products–Application to chilled chicken breast fillets. Food Packaging and Shelf Life, 15, 43-51.
  • Azoubel, P. M., & Da Silva, F. O. (2008). Optimisation of osmotic dehydration of ‘Tommy Atkins’ mango fruit. International Journal of Food Science & Technology, 43(7), 1276-1280.
  • Azuara, E., Garcia, H. S., & Beristain, C. I. (1996). Effect of the centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, 29(2), 195-199. Bampi, M., Domschke, N., Schmidt, F., & Laurindo, J. (2016). Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts. LWT, 74, 26-33.
  • Berk, Z. (2018). Food process engineering and technology: Academic press.
  • Bohuon, P., Collignan, A., Rios, G., & Raoult-Wack, A.-L. (1998). Soaking process in ternary liquids: experimental study of mass transport under natural and forced convection. Journal of Food Engineering, 37(4), 451-469.
  • Cárcel, J., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76(4), 611-619.
  • Castro-Giraldez, M., Fito, P., & Fito, P. (2010). Non-equilibrium thermodynamic approach to analyze the pork meat (Longissimus dorsi) salting process. Journal of Food Engineering, 99(1), 24-30.
  • Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. Journal of membrane science, 281(1-2), 70-87.
  • Chabbouh, M., Ahmed, S. B. H., Farhat, A., Sahli, A., & Bellagha, S. (2012). Studies on the salting step of Tunisian kaddid meat: experimental kinetics, modeling and quality. Food and Bioprocess Technology, 5(5), 1882-1895.
  • Chabbouh, M., Hajji, W., Hadj Ahmed, S. B., Farhat, A., Bellagha, S., & Sahli, A. (2011). Combined effects of osmotic dehydration and convective air drying on kaddid meats: Kinetics and quality. Drying Technology, 29(13), 1571-1579.
  • Chandra, S., & Kumari, D. (2015). Recent development in osmotic dehydration of fruit and vegetables: a review. Critical reviews in food science and nutrition, 55(4), 552-561.
  • Chawla, S., Chander, R., & Sharma, A. (2006). Safe and shelf-stable natural casing using hurdle technology. Food control, 17(2), 127-131.
  • Chua, K., & Chou, S. (2003). Low-cost drying methods for developing countries. Trends in Food Science & Technology, 14(12), 519-528.
  • Collignan, A., Bohuon, P., Deumier, F., & Poligné, I. (2001). Osmotic treatment of fish and meat products. Journal of Food Engineering, 49(2-3), 153-162.
  • Corzo, O., Bracho, N., Rodríguez, J., & Arias, J. M. (2016). Optimizing salting and smoking of Catfish (Bagre Marinus) using response surface methodology. Journal of Aquatic Food Product Technology, 25(3), 358-372.
  • Curcic, B., Filipovic, V., Nicetin, M., Mišljenovic, N., & Pezo, L. (2014). Evaluation of mass transfer kinetics and efficiency of osmotic dehydration of pork meat. Acta Univ. Sapientiae, 7, 63-72.
  • Ćurčić, B. L., Pezo, L. L., Lević, L. B., Knežević, V. M., Nićetin, M. R., Filipović, V. S., & Kuljanin, T. A. (2013). Osmotic dehydration of pork meat cubes: Response surface method analysis. Acta Periodica Technologica(44), 11-19.
  • Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Sciences, 6(4), 486-510.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2016). Mass transfer kinetics during osmotic processing of beef meat using ternary solutions. Food and Bioproducts Processing, 100, 560-569.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2017). Effect of maltodextrin, sodium chloride, and liquid smoke on the mass transfer kinetics and storage stability of osmotically dehydrated beef meat. Food and Bioprocess Technology, 10(11), 2034-2045.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2019). Diffusion coefficients and volume changes of beef meat during osmotic dehydration in binary and ternary solutions. Food and Bioproducts Processing, 116, 10-19.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2020). Osmotic Processing of Meat: Mathematical Modeling and Quality Parameters. Food Engineering Reviews, 12(1), 32-47.
  • Djelveh, G., Gros, J.-B., & Emam-Djomeh, Z. (2001). Osmotic Dehydration of Foods in a Multicomponent Solution Part II. Water Loss and Solute Uptake in Agar Gels and Meat. LWT-Food Science and Technology, 34(5), 319-323.
  • Doğu, S. Ö., & Sarıçoban, C. (2014). Et ve ürünlerinde dekontaminasyon yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, European Journal of Science and Technology, 1(3), 92-99.
  • Favetto, G., Chirife, J., & Bartholomai, G. (1981). A study of water activity lowering in meat during immersion‐cooking in sodium chloride‐glycerol solutions. I. Equilibrium considerations and diffusional analysis of solute uptake. International Journal of Food Science & Technology, 16(6), 609-619.
  • Fernández‐López, J., Sayas‐Barberá, E., Pérez‐Alvarez, J., & Aranda‐Catalá, V. (2004). Effect of sodium chloride, sodium tripolyphosphate and pH on color properties of pork meat. Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 29(1), 67-74.
  • Filipović, I., Ćurčić, B., Filipović, V., Nićetin, M., Filipović, J., & Knežević, V. (2017). The effects of technological parameters on chicken meat osmotic dehydration process efficiency. Journal of Food Processing and Preservation, 41(1), e13116.
  • Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., & Pezo, L. (2019). The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation, 43(10), e14144.
  • Filipović, V., Lević, L., Ćurčić, B., Nićetin, M., Pezo, L., & Mišljenović, N. (2014). Optimisation of mass transfer kinetics during osmotic dehydration of pork meat cubes in complex osmotic solution. Chemical Industry and Chemical Engineering Quarterly, 20(3), 305-314.
  • Filipović, V. S., Ćurčić, B. L., Nićetin, M. R., Plavšić, D. V., Koprivica, G. B., & Mišljenović, N. M. (2012). Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska industrija, 66(5), 743-748.
  • Gibbs, P., & Gekas, V. (1998). Water activity and microbiological aspects of foods: A knowledge base. Leatherhead Food Research Association, Leatherhead, UK, 1-6.
  • Ibarz, A., & Barbosa-Canovas, G. V. (2014). Introduction to food process engineering: CRC Press.
  • Jain, S., Verma, R., Murdia, L., Jain, H., & Sharma, G. (2011). Optimization of process parameters for osmotic dehydration of papaya cubes. Journal of food science and technology, 48(2), 211-217.
  • Khan, M. R. (2012). Osmotic dehydration technique for fruits preservation-A review. Pakistan Journal of Food Sciences, 22(2), 71-85.
  • Knežević, V., Ćurčić, B., Filipović, V., Nićetin, M., Lević, L., Kuljanin, T., & Gubić, J. (2013). Influence of osmotic dehydration on color and texture of pork meat. Journal on Processing and Energy in Agriculture, 17(1), 39-42.
  • Koprivica, G., Mišljenović, N., Lević, L., & Jevrić, L. (2010). Mass transfer kinetics during osmotic dehydration of plum in sugar beet molasses. Journal on Processing and Energy in Agriculture, 14(1), 27-31.
  • Landim, A. P. M., Barbosa, M. I. M. J., & Júnior, J. L. B. (2016). Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: a review. Ciência Rural, 46(10), 1714-1722.
  • Lemus-Mondaca, R., Zambra, C., Marín, F., Pérez-Won, M., & Tabilo-Munizaga, G. (2018). Mass Transfer Kinetic and Quality Changes During High-Pressure Impregnation (HPI) of Jumbo Squid (Dosidicus gigas) Slices. Food and Bioprocess Technology, 11(8), 1516-1526.
  • Lenart, A., & Flink, J. (1984). Osmotic concentration of potato. I. Criteria for the end‐point of the osmosis process. International Journal of Food Science & Technology, 19(1), 45-63.
  • Lerici, C., Pinnavaia, G., ROSA, M. D., & Bartolucci, L. (1985). Osmotic dehydration of fruit: influence of osmotic agents on drying behavior and product quality. Journal of food science, 50(5), 1217-1219.
  • Li, M., Ye, B., Guan, Z., Ge, Y., Li, J., & Ling, C.-m. (2017). Impact of ultrasound-assisted osmotic dehydration as a pre-treatment on the quality of heat pump dried tilapia fillets. Energy Procedia, 123, 243-255.
  • Ling, J. G., Xuan, X. T., Yu, N., Cui, Y., Shang, H. T., Liao, X. J., . . . Liu, D. H. (2020). High pressure‐assisted vacuum‐freeze drying: A novel, efficient way to accelerate moisture migration in shrimp processing. Journal of food science, 85(4), 1167-1176.
  • Mancini, R., & Hunt, M. (2005). Current research in meat color. Meat Science, 71(1), 100-121.
  • Martins, M. G., Chada, P. S. N., & da Silva Pena, R. (2019). Application of pulsed-vacuum on the salt impregnation process of pirarucu fillet. Food Research International, 120, 407-414.
  • Miano, A. C., Rojas, M. L., & Augusto, P. E. (2017). Other Mass Transfer Unit Operations Enhanced by Ultrasound Ultrasound: Advances for food processing and preservation (pp. 369-389): Elsevier.
  • Muguruma, M., Katayama, K., Nakamura, M., & Yamaguchi, M. (1987). Low-temperature osmotic dehydration improves the quality of intermediate moisture meats. Meat Science, 21(2), 99-109.
  • Muñiz‐Becerá, S., Méndez‐Lagunas, L. L., & Rodríguez‐Ramírez, J. (2017). Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review. Journal of food science, 82(10), 2251-2259.
  • Najafi, A. H., Yusof, Y., Rahman, R., Ganjloo, A., & Ling, C. (2014). Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). International Food Research Journal, 21(2).
  • Offer, G. (1988). The structural basis of water-holding in meat. Part I: General principles and water uptake in meat processing. Developments in meat science.
  • Ojha, K. S., Keenan, D. F., Bright, A., Kerry, J. P., & Tiwari, B. K. (2016). Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. International Journal of Food Science & Technology, 51(1), 37-45.
  • Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2013). Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 119(1), 84-93.
  • Pan, Y., Zhao, L., Zhang, Y., Chen, G., & Mujumdar, A. S. (2003). Osmotic dehydration pretreatment in drying of fruits and vegetables. Drying Technology, 21(6), 1101-1114.
  • Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Science, 89(2), 111-124.
  • Pezo, L. L., Ćurčić, B. L., Filipović, V. S., Nićetin, M. R., Koprivica, G. B., Mišljenović, N. M., & Lević, L. B. (2013). Artificial neural network model of pork meat cubes osmotic dehydratation. Hemijska industrija, 67(3), 465-475.
  • Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7.
  • Pizarro-Oteíza, S., Briones-Labarca, V., Pérez-Won, M., Uribe, E., Lemus-Mondaca, R., Cañas-Sarazúa, R., & Tabilo-Munizaga, G. (2020). Enzymatic impregnation by high hydrostatic pressure as pretreatment for the tenderization process of Chilean abalone (Concholepas concholepas). Innovative Food Science & Emerging Technologies, 65, 102451.
  • Poligné, I., Collignan, A., & Trystram, G. (2002). Effects of salting, drying, cooking, and smoking operations on volatile compound formation and color patterns in pork. Journal of food science, 67(8), 2976-2986.
  • Poligné, I., Collignan, A., & Trystram, G. (2005). Processing smoked pork belly by immersion in a complex solution at high temperature. Journal of Food Engineering, 66(2), 155-169.
  • Qin, J., Wang, Z., Wang, X., & Shi, W. (2020). Effects of microwave time on quality of grass carp fillets processed through microwave combined with hot‐air drying. Food Science & Nutrition, 8(8), 4159-4171.
  • Ramya, V., & Jain, N. (2017). A review on osmotic dehydration of fruits and vegetables: An integrated approach. Journal of Food Process Engineering, 40(3), e12440.
  • Raoult-Wack, A.-L. (1994). Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5(8), 255-260.
  • Rastogi, N., Angersbach, A., & Knorr, D. (2000). Evaluation of mass transfer mechanisms during osmotic treatment of plant materials. Journal of food science, 65(6), 1016-1019.
  • Rastogi, N., Raghavarao, K., & Niranjan, K. (2005). Developments in osmotic dehydration Emerging technologies for food processing (pp. 221-249): Elsevier.
  • Rastogi, N., Raghavarao, K., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science & Technology, 13(2), 48-59.
  • Ruiz-Ramírez, J., Arnau, J., Serra, X., & Gou, P. (2005). Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Science, 70(4), 579-587.
  • Saito, K., HAMADA‐SATO, N., Ahhmed, A., Kawahara, S., & Muguruma, M. (2010). Effects of osmotic dehydration sheets on freshness parameters of thunnus thynnus stored at cold temperatures. Journal of Food Processing and Preservation, 34(6), 1103-1120.
  • Santchurn, S. J., Collignan, A., & Trystram, G. (2007). Impact of solute molecular mass and molality, and solution viscosity on mass transfer during immersion of meat in a complex solution. Journal of Food Engineering, 78(4), 1188-1201.
  • Shi, J., & Xue, J. (2009). Application and development of osmotic dehydration technology in food processing. Advances in food dehydration, 20.
  • Šuput, D., Lazıć, V., Pezo, L., Gubıć, J., Šojıć, B., Plavšıć, D., . . . Kneževıć, V. (2019). Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanıan Bıotechnologıcal Letters, 24(3), 545-553.
  • Šuput, D. Z., Lazić, V. L., Pezo, L. L., Lončar, B. L., Filipović, V. S., Nićetin, M. R., & Knežević, V. (2015). Effects of temperature and immersion time on diffusion of moisture and minerals during rehydration of osmotically treated pork meat cubes. Hemijska industrija, 69(3), 297-304.
  • Taiwo, K. A., Eshtiaghi, M. N., Ade‐Omowaye, B. I., & Knorr, D. (2003). Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science & Technology, 38(6), 693-707.
  • Telis, V. R. N., Telis-Romero, J., Mazzotti, H., & Gabas, A. L. (2007). Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. International Journal of food properties, 10(1), 185-195.
  • Villacís, M., Rastogi, N., & Balasubramaniam, V. (2008). Effect of high pressure on moisture and NaCl diffusion into turkey breast. LWT-Food Science and Technology, 41(5), 836-844.
  • Wang, Z., Xu, W., Kang, N., Shen, Q., & Zhang, D. (2016). Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining. Meat Science, 113, 132-138.
  • Welti-Chanes, J., Vergara-Balderas, F., & Bermúdez-Aguirre, D. (2005). Transport phenomena in food engineering: basic concepts and advances. Journal of Food Engineering, 67(1-2), 113-128. Zorba, Ö., & Şükrü, K. (2005). Yüksek basınç uygulamalarının et ve et ürünleri kalitesi üzerine etkisi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 71-76.

Etlerde Ozmotik Dehidrasyon Uygulamaları

Year 2021, Issue: 21, 534 - 542, 31.01.2021
https://doi.org/10.31590/ejosat.818194

Abstract

Ozmotik dehidrasyon, gıda ürünlerinde suyun uzaklaştırılması, aynı zamanda çeşitli çözünen maddelerin (tuz, şeker vb.) emilimi için uygulanan ve termal olmayan, kısmi kurutma işlemidir. Ozmotik dehidrasyon işleminde, daha düşük su aktivitesine sahip bir son ürün elde etmek için, gıda materyali yüksek konsantrasyonda bir çözeltiye daldırılmaktadır. Fakat bu yöntem ile çok düşük su aktivitesine sahip son ürünler elde edilemediğinden, ön işlem olarak uygulanmaktadır. Kurutma öncesi uygulanan ozmotik dehidrasyon işlemi ile üründeki su kaybı daha kısa sürede gerçekleşmektedir. Ozmotik dehidrasyonda gerçekleşen kütle transferi mekanizması ve son ürünün kalitesi üzerinde en etkili faktörlere, ozmotik ajan çeşidi, konsantrasyonu, işlem sıcaklığı, süresi ve örnek/çözelti oranı örnek verilebilmektedir. Ozmotik dehidrasyonda kullanılan düşük işlem sıcaklığı, gıda ürünlerindeki renk-aroma kaybı ve oluşabilecek enzimatik reaksiyonları engellemekte; ürünlerin fonksiyonel, besinsel ve duyusal özelliklerine katkıda bulunmaktadır. Ayrıca oldukça ekonomik bir işlem olması ve insan sağlığı açısından herhangi bir olumsuzluk teşkil etmemesi de yöntemi avantajlı hale getirmektedir. Bu derlemede, ozmotik dehidrasyon prosesinin, etlerin işlenmesinde bir ön işlem olarak kullanımının, ürünün kalite karakteristikleri üzerine etkilerine yer verilmiştir. Çeşitli etlerde (tavuk, domuz, sığır, kuzu, deve kuşu eti ve çok çeşitli su ürünleri) kullanılan ozmotik dehidrasyonun, ürünlerin renk ve duyusal özellikleri ile raf ömrü gibi birçok kalite parametresini geliştirdiği belirlenmiştir. Belirli ozmotik ajanlar kullanımı ile daha iyi tektürel özelliklere sahip kurutulmuş etler elde edilmiştir. Etlerin etkin kurutulmasında, ozmotik dehidrasyon işleminin ultrases veya yüksek basınç gibi uygulamalarla birlikte kullanımı da önerilmektedir. Ayrıca konvektif kurutma öncesinde kullanılan ozmotik dehidrasyon işleminin, etin kuruma süresini önemli derecede azalttığı da belirlenmiştir.

References

  • Akbarian, M., Ghasemkhani, N., & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial: A review. Int. J. Biosci, 4(1), 42-57.
  • Alamatian, S., Mohebbi, M., Varidi, M., & Nezhad, M. M. (2019). Modeling of osmotic treatment of ostrich meat coated by tragacanth and salep. Meat Science, 156, 231-239.
  • Almeida, J. A., Mussi, L. P., Oliveira, D. B., & Pereira, N. R. (2015). Effect of temperature and sucrose concentration on the retention of polyphenol compounds and antioxidant activity of osmotically dehydrated bananas. Journal of Food Processing and Preservation, 39(6), 1061-1069.
  • Andreou, V., Tsironi, T., Dermesonlouoglou, E., Katsaros, G., & Taoukis, P. (2018). Combinatory effect of osmotic and high pressure processing on shelf life extension of animal origin products–Application to chilled chicken breast fillets. Food Packaging and Shelf Life, 15, 43-51.
  • Azoubel, P. M., & Da Silva, F. O. (2008). Optimisation of osmotic dehydration of ‘Tommy Atkins’ mango fruit. International Journal of Food Science & Technology, 43(7), 1276-1280.
  • Azuara, E., Garcia, H. S., & Beristain, C. I. (1996). Effect of the centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, 29(2), 195-199. Bampi, M., Domschke, N., Schmidt, F., & Laurindo, J. (2016). Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts. LWT, 74, 26-33.
  • Berk, Z. (2018). Food process engineering and technology: Academic press.
  • Bohuon, P., Collignan, A., Rios, G., & Raoult-Wack, A.-L. (1998). Soaking process in ternary liquids: experimental study of mass transport under natural and forced convection. Journal of Food Engineering, 37(4), 451-469.
  • Cárcel, J., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76(4), 611-619.
  • Castro-Giraldez, M., Fito, P., & Fito, P. (2010). Non-equilibrium thermodynamic approach to analyze the pork meat (Longissimus dorsi) salting process. Journal of Food Engineering, 99(1), 24-30.
  • Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. Journal of membrane science, 281(1-2), 70-87.
  • Chabbouh, M., Ahmed, S. B. H., Farhat, A., Sahli, A., & Bellagha, S. (2012). Studies on the salting step of Tunisian kaddid meat: experimental kinetics, modeling and quality. Food and Bioprocess Technology, 5(5), 1882-1895.
  • Chabbouh, M., Hajji, W., Hadj Ahmed, S. B., Farhat, A., Bellagha, S., & Sahli, A. (2011). Combined effects of osmotic dehydration and convective air drying on kaddid meats: Kinetics and quality. Drying Technology, 29(13), 1571-1579.
  • Chandra, S., & Kumari, D. (2015). Recent development in osmotic dehydration of fruit and vegetables: a review. Critical reviews in food science and nutrition, 55(4), 552-561.
  • Chawla, S., Chander, R., & Sharma, A. (2006). Safe and shelf-stable natural casing using hurdle technology. Food control, 17(2), 127-131.
  • Chua, K., & Chou, S. (2003). Low-cost drying methods for developing countries. Trends in Food Science & Technology, 14(12), 519-528.
  • Collignan, A., Bohuon, P., Deumier, F., & Poligné, I. (2001). Osmotic treatment of fish and meat products. Journal of Food Engineering, 49(2-3), 153-162.
  • Corzo, O., Bracho, N., Rodríguez, J., & Arias, J. M. (2016). Optimizing salting and smoking of Catfish (Bagre Marinus) using response surface methodology. Journal of Aquatic Food Product Technology, 25(3), 358-372.
  • Curcic, B., Filipovic, V., Nicetin, M., Mišljenovic, N., & Pezo, L. (2014). Evaluation of mass transfer kinetics and efficiency of osmotic dehydration of pork meat. Acta Univ. Sapientiae, 7, 63-72.
  • Ćurčić, B. L., Pezo, L. L., Lević, L. B., Knežević, V. M., Nićetin, M. R., Filipović, V. S., & Kuljanin, T. A. (2013). Osmotic dehydration of pork meat cubes: Response surface method analysis. Acta Periodica Technologica(44), 11-19.
  • Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Sciences, 6(4), 486-510.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2016). Mass transfer kinetics during osmotic processing of beef meat using ternary solutions. Food and Bioproducts Processing, 100, 560-569.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2017). Effect of maltodextrin, sodium chloride, and liquid smoke on the mass transfer kinetics and storage stability of osmotically dehydrated beef meat. Food and Bioprocess Technology, 10(11), 2034-2045.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2019). Diffusion coefficients and volume changes of beef meat during osmotic dehydration in binary and ternary solutions. Food and Bioproducts Processing, 116, 10-19.
  • Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2020). Osmotic Processing of Meat: Mathematical Modeling and Quality Parameters. Food Engineering Reviews, 12(1), 32-47.
  • Djelveh, G., Gros, J.-B., & Emam-Djomeh, Z. (2001). Osmotic Dehydration of Foods in a Multicomponent Solution Part II. Water Loss and Solute Uptake in Agar Gels and Meat. LWT-Food Science and Technology, 34(5), 319-323.
  • Doğu, S. Ö., & Sarıçoban, C. (2014). Et ve ürünlerinde dekontaminasyon yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, European Journal of Science and Technology, 1(3), 92-99.
  • Favetto, G., Chirife, J., & Bartholomai, G. (1981). A study of water activity lowering in meat during immersion‐cooking in sodium chloride‐glycerol solutions. I. Equilibrium considerations and diffusional analysis of solute uptake. International Journal of Food Science & Technology, 16(6), 609-619.
  • Fernández‐López, J., Sayas‐Barberá, E., Pérez‐Alvarez, J., & Aranda‐Catalá, V. (2004). Effect of sodium chloride, sodium tripolyphosphate and pH on color properties of pork meat. Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 29(1), 67-74.
  • Filipović, I., Ćurčić, B., Filipović, V., Nićetin, M., Filipović, J., & Knežević, V. (2017). The effects of technological parameters on chicken meat osmotic dehydration process efficiency. Journal of Food Processing and Preservation, 41(1), e13116.
  • Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., & Pezo, L. (2019). The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation, 43(10), e14144.
  • Filipović, V., Lević, L., Ćurčić, B., Nićetin, M., Pezo, L., & Mišljenović, N. (2014). Optimisation of mass transfer kinetics during osmotic dehydration of pork meat cubes in complex osmotic solution. Chemical Industry and Chemical Engineering Quarterly, 20(3), 305-314.
  • Filipović, V. S., Ćurčić, B. L., Nićetin, M. R., Plavšić, D. V., Koprivica, G. B., & Mišljenović, N. M. (2012). Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska industrija, 66(5), 743-748.
  • Gibbs, P., & Gekas, V. (1998). Water activity and microbiological aspects of foods: A knowledge base. Leatherhead Food Research Association, Leatherhead, UK, 1-6.
  • Ibarz, A., & Barbosa-Canovas, G. V. (2014). Introduction to food process engineering: CRC Press.
  • Jain, S., Verma, R., Murdia, L., Jain, H., & Sharma, G. (2011). Optimization of process parameters for osmotic dehydration of papaya cubes. Journal of food science and technology, 48(2), 211-217.
  • Khan, M. R. (2012). Osmotic dehydration technique for fruits preservation-A review. Pakistan Journal of Food Sciences, 22(2), 71-85.
  • Knežević, V., Ćurčić, B., Filipović, V., Nićetin, M., Lević, L., Kuljanin, T., & Gubić, J. (2013). Influence of osmotic dehydration on color and texture of pork meat. Journal on Processing and Energy in Agriculture, 17(1), 39-42.
  • Koprivica, G., Mišljenović, N., Lević, L., & Jevrić, L. (2010). Mass transfer kinetics during osmotic dehydration of plum in sugar beet molasses. Journal on Processing and Energy in Agriculture, 14(1), 27-31.
  • Landim, A. P. M., Barbosa, M. I. M. J., & Júnior, J. L. B. (2016). Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: a review. Ciência Rural, 46(10), 1714-1722.
  • Lemus-Mondaca, R., Zambra, C., Marín, F., Pérez-Won, M., & Tabilo-Munizaga, G. (2018). Mass Transfer Kinetic and Quality Changes During High-Pressure Impregnation (HPI) of Jumbo Squid (Dosidicus gigas) Slices. Food and Bioprocess Technology, 11(8), 1516-1526.
  • Lenart, A., & Flink, J. (1984). Osmotic concentration of potato. I. Criteria for the end‐point of the osmosis process. International Journal of Food Science & Technology, 19(1), 45-63.
  • Lerici, C., Pinnavaia, G., ROSA, M. D., & Bartolucci, L. (1985). Osmotic dehydration of fruit: influence of osmotic agents on drying behavior and product quality. Journal of food science, 50(5), 1217-1219.
  • Li, M., Ye, B., Guan, Z., Ge, Y., Li, J., & Ling, C.-m. (2017). Impact of ultrasound-assisted osmotic dehydration as a pre-treatment on the quality of heat pump dried tilapia fillets. Energy Procedia, 123, 243-255.
  • Ling, J. G., Xuan, X. T., Yu, N., Cui, Y., Shang, H. T., Liao, X. J., . . . Liu, D. H. (2020). High pressure‐assisted vacuum‐freeze drying: A novel, efficient way to accelerate moisture migration in shrimp processing. Journal of food science, 85(4), 1167-1176.
  • Mancini, R., & Hunt, M. (2005). Current research in meat color. Meat Science, 71(1), 100-121.
  • Martins, M. G., Chada, P. S. N., & da Silva Pena, R. (2019). Application of pulsed-vacuum on the salt impregnation process of pirarucu fillet. Food Research International, 120, 407-414.
  • Miano, A. C., Rojas, M. L., & Augusto, P. E. (2017). Other Mass Transfer Unit Operations Enhanced by Ultrasound Ultrasound: Advances for food processing and preservation (pp. 369-389): Elsevier.
  • Muguruma, M., Katayama, K., Nakamura, M., & Yamaguchi, M. (1987). Low-temperature osmotic dehydration improves the quality of intermediate moisture meats. Meat Science, 21(2), 99-109.
  • Muñiz‐Becerá, S., Méndez‐Lagunas, L. L., & Rodríguez‐Ramírez, J. (2017). Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review. Journal of food science, 82(10), 2251-2259.
  • Najafi, A. H., Yusof, Y., Rahman, R., Ganjloo, A., & Ling, C. (2014). Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). International Food Research Journal, 21(2).
  • Offer, G. (1988). The structural basis of water-holding in meat. Part I: General principles and water uptake in meat processing. Developments in meat science.
  • Ojha, K. S., Keenan, D. F., Bright, A., Kerry, J. P., & Tiwari, B. K. (2016). Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. International Journal of Food Science & Technology, 51(1), 37-45.
  • Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2013). Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 119(1), 84-93.
  • Pan, Y., Zhao, L., Zhang, Y., Chen, G., & Mujumdar, A. S. (2003). Osmotic dehydration pretreatment in drying of fruits and vegetables. Drying Technology, 21(6), 1101-1114.
  • Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Science, 89(2), 111-124.
  • Pezo, L. L., Ćurčić, B. L., Filipović, V. S., Nićetin, M. R., Koprivica, G. B., Mišljenović, N. M., & Lević, L. B. (2013). Artificial neural network model of pork meat cubes osmotic dehydratation. Hemijska industrija, 67(3), 465-475.
  • Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7.
  • Pizarro-Oteíza, S., Briones-Labarca, V., Pérez-Won, M., Uribe, E., Lemus-Mondaca, R., Cañas-Sarazúa, R., & Tabilo-Munizaga, G. (2020). Enzymatic impregnation by high hydrostatic pressure as pretreatment for the tenderization process of Chilean abalone (Concholepas concholepas). Innovative Food Science & Emerging Technologies, 65, 102451.
  • Poligné, I., Collignan, A., & Trystram, G. (2002). Effects of salting, drying, cooking, and smoking operations on volatile compound formation and color patterns in pork. Journal of food science, 67(8), 2976-2986.
  • Poligné, I., Collignan, A., & Trystram, G. (2005). Processing smoked pork belly by immersion in a complex solution at high temperature. Journal of Food Engineering, 66(2), 155-169.
  • Qin, J., Wang, Z., Wang, X., & Shi, W. (2020). Effects of microwave time on quality of grass carp fillets processed through microwave combined with hot‐air drying. Food Science & Nutrition, 8(8), 4159-4171.
  • Ramya, V., & Jain, N. (2017). A review on osmotic dehydration of fruits and vegetables: An integrated approach. Journal of Food Process Engineering, 40(3), e12440.
  • Raoult-Wack, A.-L. (1994). Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5(8), 255-260.
  • Rastogi, N., Angersbach, A., & Knorr, D. (2000). Evaluation of mass transfer mechanisms during osmotic treatment of plant materials. Journal of food science, 65(6), 1016-1019.
  • Rastogi, N., Raghavarao, K., & Niranjan, K. (2005). Developments in osmotic dehydration Emerging technologies for food processing (pp. 221-249): Elsevier.
  • Rastogi, N., Raghavarao, K., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science & Technology, 13(2), 48-59.
  • Ruiz-Ramírez, J., Arnau, J., Serra, X., & Gou, P. (2005). Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Science, 70(4), 579-587.
  • Saito, K., HAMADA‐SATO, N., Ahhmed, A., Kawahara, S., & Muguruma, M. (2010). Effects of osmotic dehydration sheets on freshness parameters of thunnus thynnus stored at cold temperatures. Journal of Food Processing and Preservation, 34(6), 1103-1120.
  • Santchurn, S. J., Collignan, A., & Trystram, G. (2007). Impact of solute molecular mass and molality, and solution viscosity on mass transfer during immersion of meat in a complex solution. Journal of Food Engineering, 78(4), 1188-1201.
  • Shi, J., & Xue, J. (2009). Application and development of osmotic dehydration technology in food processing. Advances in food dehydration, 20.
  • Šuput, D., Lazıć, V., Pezo, L., Gubıć, J., Šojıć, B., Plavšıć, D., . . . Kneževıć, V. (2019). Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanıan Bıotechnologıcal Letters, 24(3), 545-553.
  • Šuput, D. Z., Lazić, V. L., Pezo, L. L., Lončar, B. L., Filipović, V. S., Nićetin, M. R., & Knežević, V. (2015). Effects of temperature and immersion time on diffusion of moisture and minerals during rehydration of osmotically treated pork meat cubes. Hemijska industrija, 69(3), 297-304.
  • Taiwo, K. A., Eshtiaghi, M. N., Ade‐Omowaye, B. I., & Knorr, D. (2003). Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science & Technology, 38(6), 693-707.
  • Telis, V. R. N., Telis-Romero, J., Mazzotti, H., & Gabas, A. L. (2007). Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. International Journal of food properties, 10(1), 185-195.
  • Villacís, M., Rastogi, N., & Balasubramaniam, V. (2008). Effect of high pressure on moisture and NaCl diffusion into turkey breast. LWT-Food Science and Technology, 41(5), 836-844.
  • Wang, Z., Xu, W., Kang, N., Shen, Q., & Zhang, D. (2016). Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining. Meat Science, 113, 132-138.
  • Welti-Chanes, J., Vergara-Balderas, F., & Bermúdez-Aguirre, D. (2005). Transport phenomena in food engineering: basic concepts and advances. Journal of Food Engineering, 67(1-2), 113-128. Zorba, Ö., & Şükrü, K. (2005). Yüksek basınç uygulamalarının et ve et ürünleri kalitesi üzerine etkisi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 71-76.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Aybike Kamiloğlu 0000-0002-6756-0331

Naciye Kutlu Kantar 0000-0002-4075-8823

Tuğba Elbir This is me 0000-0002-8836-8808

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Kamiloğlu, A., Kutlu Kantar, N., & Elbir, T. (2021). Etlerde Ozmotik Dehidrasyon Uygulamaları. Avrupa Bilim Ve Teknoloji Dergisi(21), 534-542. https://doi.org/10.31590/ejosat.818194