Review
BibTex RIS Cite

Zemin İyileştirme Yöntemleri ve Yaygın Kullanımına Bağlı Değerlendirilmesi

Year 2021, Issue: 23, 481 - 496, 30.04.2021
https://doi.org/10.31590/ejosat.881603

Abstract

Zemin iyileştirme M.Ö 3000 yılına dayanan en eski inşaat mühendisliği uygulamalarından biridir. Artan dünya nüfusuna paralel olarak yapılaşmaya olan talep artmakta ve yapılaşma için uygun zeminlerin bulunması zorlaşmaktadır. Ortaya çıkan talep doğrultusunda yapılar için elverişsiz zeminler kullanılmaya başlanmıştır. Bahse konu zeminlerde genellikle taşıma kapasitesi, oturma, şişme veya deprem durumunda sıvılaşma problemleri yaşanmaktadır. Gelişen teknoloji ve artan araştırma geliştirme olanakları neticesinde problemli zeminlerin yapılara elverişli duruma getirilmesi için yeni teknikler geliştirilmektedir. Bu derleme Türkiye ve yakın coğrafyamızda yaygın olarak inşaat endüstrisi tarafından kullanılan zemin iyileştirme yöntemlerini incelemektedir. Yaygın kullanılan yöntemler yanında son yıllarda araştırmacılar tarafından çalışmaları süren yenilikçi, sürdürülebilir ve çevreci uygulamalardan da bahsedilmektedir. Çalışmanın neticesinde mevcut yaygın kullanılan yöntemler zemin türü, kullanım alanı, kullanım sıklığı, uygulama süresi, maliyet ve kontrol gerekliliği göz önünde bulundurularak değerlendirilmiştir. Değerlendirme sonucunda oluşturulan çizelge neticesinde uygulayıcıların karar verme sürecine yardımcı olmak amaçlanmıştır.

References

  • Akyıldız, H. (2019). Elektroosmoz ve Isıl İşlemler YöntemleriZeminlerin İyileştirilmesi ve Stabilizasyonu. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10 (3), 1137-1144. DOI: 10.24012/dumf.562993
  • Altun, S. (2010). Zemin iyileştirme yöntemleri, derin temeller ve uygulama örnekleri. Ege Üniversitesi, İMO.
  • Bal, E., Öner, L., Çetin, K. (2015). Darbeli Kırmataş Kolonlar ile İyileştirilen Atıksu Arıtma Tesisi Sahasında Oturma Davranışının Gözlemlenmesi. 6. Geoteknik Sempozyumu, Çukurova Üniversitesi, 26-27 Kasım 2015, Adana.
  • Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. ASCE.
  • Bergado, D. T., & Lorenzo, G. A. (2005). A full-scale study on cement deep mixing in soft Bangkok clay. In Elsevier Geo-Engineering Book series (Vol. 3, pp. 305-325). Elsevier.
  • Bildik, S. 2017. Zemin İyileştirme Yöntemleri. İstanbul İnşaat Mühendisleri Odası.
  • Chu, J., Low, B. K., & Choa, V. (2003). Soil improvement: Prefabricated vertical drain techniques. Thomson Learning Asia.
  • Burgos, M., Samper, F., & Alonso, J. J. (2007). Improvements carried out in very soft dredged mud soil in the port of Valencia (Spain). In Proceedings of the 14th European Conference SMGE, Madrid, Spain (Vol. 4, pp. 2091-2103).
  • Karol, R. H. (2003). Chemical grouting and soil stabilization, revised and expanded (Vol. 12). Crc Press.
  • Chu, J., Bo, M. W., & Arulrajah, A. (2009). Soil improvement works for an offshore land reclamation. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(1), 21-32.
  • Chu, J., Yan, S., & Indraranata, B. (2008). Vacuum preloading techniques—recent developments and applications. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 586-595).
  • Collin, J. G., Han, J., & Huang, J. (2005). Geosynthetic reinforced column support embankment design guidelines. In Proceedings, the North America Geosynthetics Society Conference (pp. 1-15).
  • Cui, X. (2010). Real-time diagnosis method of compaction state of subgrade during dynamic compaction. Geotechnical Testing Journal, 33(4), 299-303.
  • De Cock, F. (2008). Ground anchors: overview of types, installation methods and recent trends. Proc. Int. Sypm. On Ground Anchors, 1, 14.
  • Gohl, W. B., Jefferies, M. G., Howies, J. A., & Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Geotechnique, 50(6), 657-665.
  • Demiröz, A. (1992). Zemin İyileştirme Metotları. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya.
  • Demiröz, A., & Karaduman, M. (2009). Zemin İyileştirme Metotları. Selçuk-Teknik Dergisi, 8(3), 176-192.
  • Distribution & Fabrication of Specialist Thermal Insultation Products. (2008). www.foam-tech.com
  • Ekinci, A., & Ferreira, P. M. V. (2012). Effects of fibre reinforcement in the shrinkage behaviour of compacted clay. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering.
  • Hanafi, M., Aydin, E., & Ekinci, A. (2020a). Engineering Properties of Basalt Fiber-Reinforced Bottom Ash Cement Paste Composites. Materials, 13(8), 1952.
  • Ekinci, A., Hanafi, M., & Aydin, E. (2020b). Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay. Minerals, 10(9), 796.
  • Erol, O., Bayram, Z. (2018). Jet Enjeksiyon Yöntemi. Yüksel Proje, Ankara.
  • Greater London Industrial Archeaeology Society. (2015). http://www.glias.org.uk
  • Gunther, J., Holm, G., Westberg, G., & Eriksson, H. (2004). Modified Dry Mixing (MDM)–a new possibility in Deep mixing. In Geotechnical Engineering for Transportation Projects (pp. 1375-1384).
  • Hann, G., Dabrowska, K., & Townsend-Greaves, T. (2015). Iraq: The Ancient Sites and Iraqi Kurdistan. Bradt Travel Guides.
  • Holtz, R.D., Jamiolkowski, L.R., & Pedroni, R. 1991. Prefabricated Vertical Drains: Design & Performance. CIRIA Ground Engineering Report, Butterworth-Heinemann Ltd., London.
  • James, K. (2009). Great Wall of China. Internet sites: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Jinshangling2.jpg/800px-Jinshangling2.jpg
  • Jefferson, I., Rogers, C., Evstatiev, D., & Karastanev, D. (2005). Treatment of metastable loess soils: Lessons from Eastern Europe. In Elsevier geo-engineering book series (Vol. 3, pp. 723-762). Elsevier.
  • Kitazume, M. (2005). The Sand Compaction Pile Method, Port and Airport Research Institute, Yokosuka, Japan.
  • Kitazume, M. (2007). Design, execution and quality control of ground improvement in land reclamation. In Proceedings of the 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata (pp. 135-149).
  • Kummerer, C. (2003). Numerical modelling of displacement grouting and application to case histories. Doktora Tezi, Graz Teknik Üniversitesi.
  • Liu, H. L., Chu, J., & Ren, Z. (2009). New methods for measuring the installation depth of prefabricated vertical drains. Geotextiles and Geomembranes, 27(6), 493-496.
  • Lomize, G. M., Kirillov, A. A., Semushkina, L. A., Kirillov, Y. A., & Abramkin, A. V. (1973). Tests of application of the electric spark method for compaction of the subsiding loess soils. Gidrotekhnicheskoe Stroitel'stvo, 6, 22-25.
  • Menge, P. (2007). Surface compaction of hydraulic fills of limited thickness. In Presentation made at TC 17 Workshop at 14ECSMGE, Madrid (pp. 24-27).
  • Metchell, J. K. (1981). Soil improvement state-of-the-art report [C]. In Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 509-521). Balkema.
  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 131(10), 1222-1233.
  • Önalp, A. (1985). Samsun Liman Sahasında Dinamik Konsoli dasyon Uygulaması. Türkiye İnşaat Mühendisliği 8.Teknik Kongresi, p. 189-208, Ankara.
  • Özaydın, K. (1999). Zemin Mekaniği. Birsen Yayın evi. İstanbul.
  • Öztoprak, S. (2016). Zemin İyileştirmesi Yöntemlerine Genel Bir Bakış. İMO İstanbul Karaköy.
  • Rahardjo, P. P. (2005). The use of bamboo and bakau piles for soil improvements and application of pile raft system for the construction of embankment on peats and soft soils. In Elsevier Geo-Engineering Book Series (Vol. 3, pp. 899-921). Elsevier.
  • Raithel, M., Kirchner, A., Schade, C., & Leusink, E. (2005). Foundation of constructions on very soft soils with geotextile encased columns-state of the art. Innovations in Grouting and Soil Improvement, 1-11.
  • Raju, V.R., & Sondermann, W. (2005). Application of the vacuum preloading method in land reclamation and soil improvement projects. Chapter 21, Ground Improvement - Case Histories. B. Indraratna & J. Chu (Eds.), Elsevier, 601-638.
  • Sankey, J.E, Bailey, M.J. & Chen, B. (2008). SeaTac third runway: Design and performance of MSE tall wall. New Horizons in Earth Reinforcement – Otani, Miyata & Mukunoki (eds), Taylor & Francis: 151-156.
  • Slocombe, B.C. (2004). Dynamic compaction. In M.P.Moseley & K. Kirsch (Eds.), Ground improvement, 2nd Ed.: Spon Press.
  • Smoltzyk, U. (2003). Ground dewatering. Geotechnical Engineering Handbook – Volume 2: Procedures, Ernst and Son Verlag, Germany, 365-398.
  • Şengezer, L. (2010). Granüler Zeminlerde Dinamik Kompaksiyon Uygulaması. Doktora Tezi, İstanbul Teknik Üniversitesi.
  • Terashi, M., & Juran, I. (2000). Ground Improvement-State of the Art, Proceedings of GeoEng2000. Melbourne, Australia. 1: 461-519.
  • Topolnicki, M. (2004). Insitu soil mixing. In M. P.Moseley & K.Kirsch (Eds.), Ground improvement,2nd Ed.: Spon Press.
  • Tumluer, G. (2006). Çimento Katkılı Kumlu Zeminlerin Mukavemeti. Yüksek Lisans Tezi, Çukurova Üniversitesi.
  • Tunçdemir, F. (2004). Temel Zeminlerinin Enjeksiyon Tekniğiyle İyileştirilmesi. Türkiye Mühendislik Haberleri, 430.
  • Van Impe, W. F. (1989). Soil improvement techniques and their evolution: Taylor & Francis.
  • Wehr, J. (2007). Vibro Compaction of reclaimed land, TC 17 Workshop at 14ECSMGE, Madrid, 27 Sept. TC17 website: www.bbri.be/go/tc17.
  • Welsh, J. P., & Burke, G. K. (2000). Advances in grouting technology. In ISRM International Symposium. International Society for Rock Mechanics and Rock Engineering.
  • Wong, P. K., & Lacazedieu, M. (2004). Dynamic Replacement Ground Improvement–Field Performance Versus Design Predictions for the Alexandria City Centre Project in Egypt. Institution of Civil Engineers , London, UK, on 29–31 March 2004 (pp. 1193-1204). Thomas Telford Publishing.
  • Woodward, J. (2005). An introduction to geotechnical processes. CRC Press.
  • Yan, S. W., & Chu, J. (2005). Soil improvement for a storage yard using the combined vacuum and fill preloading method. Canadian Geotechnical Journal, 42(4), 1094-1104.
  • Yang P. (2008). Ground Freezing Method, TC17 website: www.bbri.be/go/tc17

The Interpretation of Ground Improvement Techniques: State-of-the-art

Year 2021, Issue: 23, 481 - 496, 30.04.2021
https://doi.org/10.31590/ejosat.881603

Abstract

Ground Improvement is one of the oldest civil engineering disciplines dating back to 3000 BC. Population increases results in demand in shelter and infrastructure needs resulting in lack of availability of suitable grounds. Therefore, structures are being build on soils which have bearing capacity, settlement, swelling or liquefaction problems. Nevertheless, with advancements in technology and research methods are being developed to improve such soils. In this review paper ground improvement techniques widely used in Turkey have been evaluated. In addition to widely available techniques, innovative, sustainable, and environmentally friendly were also investigated. Findings have been evaluated in light of soil type, suitability, cost, monitoring requirements, availability and proposed use. As a result, a guide has been proposed to be used during decision process of ground improvement.

References

  • Akyıldız, H. (2019). Elektroosmoz ve Isıl İşlemler YöntemleriZeminlerin İyileştirilmesi ve Stabilizasyonu. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10 (3), 1137-1144. DOI: 10.24012/dumf.562993
  • Altun, S. (2010). Zemin iyileştirme yöntemleri, derin temeller ve uygulama örnekleri. Ege Üniversitesi, İMO.
  • Bal, E., Öner, L., Çetin, K. (2015). Darbeli Kırmataş Kolonlar ile İyileştirilen Atıksu Arıtma Tesisi Sahasında Oturma Davranışının Gözlemlenmesi. 6. Geoteknik Sempozyumu, Çukurova Üniversitesi, 26-27 Kasım 2015, Adana.
  • Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. ASCE.
  • Bergado, D. T., & Lorenzo, G. A. (2005). A full-scale study on cement deep mixing in soft Bangkok clay. In Elsevier Geo-Engineering Book series (Vol. 3, pp. 305-325). Elsevier.
  • Bildik, S. 2017. Zemin İyileştirme Yöntemleri. İstanbul İnşaat Mühendisleri Odası.
  • Chu, J., Low, B. K., & Choa, V. (2003). Soil improvement: Prefabricated vertical drain techniques. Thomson Learning Asia.
  • Burgos, M., Samper, F., & Alonso, J. J. (2007). Improvements carried out in very soft dredged mud soil in the port of Valencia (Spain). In Proceedings of the 14th European Conference SMGE, Madrid, Spain (Vol. 4, pp. 2091-2103).
  • Karol, R. H. (2003). Chemical grouting and soil stabilization, revised and expanded (Vol. 12). Crc Press.
  • Chu, J., Bo, M. W., & Arulrajah, A. (2009). Soil improvement works for an offshore land reclamation. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(1), 21-32.
  • Chu, J., Yan, S., & Indraranata, B. (2008). Vacuum preloading techniques—recent developments and applications. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 586-595).
  • Collin, J. G., Han, J., & Huang, J. (2005). Geosynthetic reinforced column support embankment design guidelines. In Proceedings, the North America Geosynthetics Society Conference (pp. 1-15).
  • Cui, X. (2010). Real-time diagnosis method of compaction state of subgrade during dynamic compaction. Geotechnical Testing Journal, 33(4), 299-303.
  • De Cock, F. (2008). Ground anchors: overview of types, installation methods and recent trends. Proc. Int. Sypm. On Ground Anchors, 1, 14.
  • Gohl, W. B., Jefferies, M. G., Howies, J. A., & Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Geotechnique, 50(6), 657-665.
  • Demiröz, A. (1992). Zemin İyileştirme Metotları. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya.
  • Demiröz, A., & Karaduman, M. (2009). Zemin İyileştirme Metotları. Selçuk-Teknik Dergisi, 8(3), 176-192.
  • Distribution & Fabrication of Specialist Thermal Insultation Products. (2008). www.foam-tech.com
  • Ekinci, A., & Ferreira, P. M. V. (2012). Effects of fibre reinforcement in the shrinkage behaviour of compacted clay. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering.
  • Hanafi, M., Aydin, E., & Ekinci, A. (2020a). Engineering Properties of Basalt Fiber-Reinforced Bottom Ash Cement Paste Composites. Materials, 13(8), 1952.
  • Ekinci, A., Hanafi, M., & Aydin, E. (2020b). Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay. Minerals, 10(9), 796.
  • Erol, O., Bayram, Z. (2018). Jet Enjeksiyon Yöntemi. Yüksel Proje, Ankara.
  • Greater London Industrial Archeaeology Society. (2015). http://www.glias.org.uk
  • Gunther, J., Holm, G., Westberg, G., & Eriksson, H. (2004). Modified Dry Mixing (MDM)–a new possibility in Deep mixing. In Geotechnical Engineering for Transportation Projects (pp. 1375-1384).
  • Hann, G., Dabrowska, K., & Townsend-Greaves, T. (2015). Iraq: The Ancient Sites and Iraqi Kurdistan. Bradt Travel Guides.
  • Holtz, R.D., Jamiolkowski, L.R., & Pedroni, R. 1991. Prefabricated Vertical Drains: Design & Performance. CIRIA Ground Engineering Report, Butterworth-Heinemann Ltd., London.
  • James, K. (2009). Great Wall of China. Internet sites: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Jinshangling2.jpg/800px-Jinshangling2.jpg
  • Jefferson, I., Rogers, C., Evstatiev, D., & Karastanev, D. (2005). Treatment of metastable loess soils: Lessons from Eastern Europe. In Elsevier geo-engineering book series (Vol. 3, pp. 723-762). Elsevier.
  • Kitazume, M. (2005). The Sand Compaction Pile Method, Port and Airport Research Institute, Yokosuka, Japan.
  • Kitazume, M. (2007). Design, execution and quality control of ground improvement in land reclamation. In Proceedings of the 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata (pp. 135-149).
  • Kummerer, C. (2003). Numerical modelling of displacement grouting and application to case histories. Doktora Tezi, Graz Teknik Üniversitesi.
  • Liu, H. L., Chu, J., & Ren, Z. (2009). New methods for measuring the installation depth of prefabricated vertical drains. Geotextiles and Geomembranes, 27(6), 493-496.
  • Lomize, G. M., Kirillov, A. A., Semushkina, L. A., Kirillov, Y. A., & Abramkin, A. V. (1973). Tests of application of the electric spark method for compaction of the subsiding loess soils. Gidrotekhnicheskoe Stroitel'stvo, 6, 22-25.
  • Menge, P. (2007). Surface compaction of hydraulic fills of limited thickness. In Presentation made at TC 17 Workshop at 14ECSMGE, Madrid (pp. 24-27).
  • Metchell, J. K. (1981). Soil improvement state-of-the-art report [C]. In Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 509-521). Balkema.
  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 131(10), 1222-1233.
  • Önalp, A. (1985). Samsun Liman Sahasında Dinamik Konsoli dasyon Uygulaması. Türkiye İnşaat Mühendisliği 8.Teknik Kongresi, p. 189-208, Ankara.
  • Özaydın, K. (1999). Zemin Mekaniği. Birsen Yayın evi. İstanbul.
  • Öztoprak, S. (2016). Zemin İyileştirmesi Yöntemlerine Genel Bir Bakış. İMO İstanbul Karaköy.
  • Rahardjo, P. P. (2005). The use of bamboo and bakau piles for soil improvements and application of pile raft system for the construction of embankment on peats and soft soils. In Elsevier Geo-Engineering Book Series (Vol. 3, pp. 899-921). Elsevier.
  • Raithel, M., Kirchner, A., Schade, C., & Leusink, E. (2005). Foundation of constructions on very soft soils with geotextile encased columns-state of the art. Innovations in Grouting and Soil Improvement, 1-11.
  • Raju, V.R., & Sondermann, W. (2005). Application of the vacuum preloading method in land reclamation and soil improvement projects. Chapter 21, Ground Improvement - Case Histories. B. Indraratna & J. Chu (Eds.), Elsevier, 601-638.
  • Sankey, J.E, Bailey, M.J. & Chen, B. (2008). SeaTac third runway: Design and performance of MSE tall wall. New Horizons in Earth Reinforcement – Otani, Miyata & Mukunoki (eds), Taylor & Francis: 151-156.
  • Slocombe, B.C. (2004). Dynamic compaction. In M.P.Moseley & K. Kirsch (Eds.), Ground improvement, 2nd Ed.: Spon Press.
  • Smoltzyk, U. (2003). Ground dewatering. Geotechnical Engineering Handbook – Volume 2: Procedures, Ernst and Son Verlag, Germany, 365-398.
  • Şengezer, L. (2010). Granüler Zeminlerde Dinamik Kompaksiyon Uygulaması. Doktora Tezi, İstanbul Teknik Üniversitesi.
  • Terashi, M., & Juran, I. (2000). Ground Improvement-State of the Art, Proceedings of GeoEng2000. Melbourne, Australia. 1: 461-519.
  • Topolnicki, M. (2004). Insitu soil mixing. In M. P.Moseley & K.Kirsch (Eds.), Ground improvement,2nd Ed.: Spon Press.
  • Tumluer, G. (2006). Çimento Katkılı Kumlu Zeminlerin Mukavemeti. Yüksek Lisans Tezi, Çukurova Üniversitesi.
  • Tunçdemir, F. (2004). Temel Zeminlerinin Enjeksiyon Tekniğiyle İyileştirilmesi. Türkiye Mühendislik Haberleri, 430.
  • Van Impe, W. F. (1989). Soil improvement techniques and their evolution: Taylor & Francis.
  • Wehr, J. (2007). Vibro Compaction of reclaimed land, TC 17 Workshop at 14ECSMGE, Madrid, 27 Sept. TC17 website: www.bbri.be/go/tc17.
  • Welsh, J. P., & Burke, G. K. (2000). Advances in grouting technology. In ISRM International Symposium. International Society for Rock Mechanics and Rock Engineering.
  • Wong, P. K., & Lacazedieu, M. (2004). Dynamic Replacement Ground Improvement–Field Performance Versus Design Predictions for the Alexandria City Centre Project in Egypt. Institution of Civil Engineers , London, UK, on 29–31 March 2004 (pp. 1193-1204). Thomas Telford Publishing.
  • Woodward, J. (2005). An introduction to geotechnical processes. CRC Press.
  • Yan, S. W., & Chu, J. (2005). Soil improvement for a storage yard using the combined vacuum and fill preloading method. Canadian Geotechnical Journal, 42(4), 1094-1104.
  • Yang P. (2008). Ground Freezing Method, TC17 website: www.bbri.be/go/tc17
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Onur Selçukhan This is me 0000-0002-6787-9983

Abdullah Ekinci 0000-0002-6787-9983

Publication Date April 30, 2021
Published in Issue Year 2021 Issue: 23

Cite

APA Selçukhan, O., & Ekinci, A. (2021). Zemin İyileştirme Yöntemleri ve Yaygın Kullanımına Bağlı Değerlendirilmesi. Avrupa Bilim Ve Teknoloji Dergisi(23), 481-496. https://doi.org/10.31590/ejosat.881603