Research Article
BibTex RIS Cite

Nar Kabuklarının Döner Tambur Kompostlama Sisteminde Biyoaktivatör İle Kompostlanması

Year 2021, Issue: 25, 318 - 324, 31.08.2021
https://doi.org/10.31590/ejosat.908927

Abstract

Bu çalışma, nar meyvesinin işlenmesi sonrası kalan nar kabuklarının biyoaktivatör ile kompostlamanın etkisini belirlemek amacı ile yapılmıştır. Çalışmada, kompostlama işlemi için 0.38 m3’lük hacme sahip egzoz gazı geri dönüşümlü otomatik kontrollü döner tambur kompostlama sistemi kullanılmıştır. Deney süresince, sıcaklık, CO2 konsantrasyonu, kompost nemi, organik madde, pH, elektriksel iletkenlik, toplam azot ve karbon değişimleri ölçülmüştür. Deneyler 43 gün sürmüş olup, kompostlama aşaması 12 gün, olgunlaşma aşaması ise 31 gün sürmüştür. Biyoaktivatörlü reaktörün 55 °C sıcaklığa 6. günde ulaştığı ve bu sıcaklığı yaklaşık 0.25 gün (6 saat) koruyabildiği anlaşılmaktadır. Biyoaktivatörsüz reaktör 60 °C sıcaklığa ulaşmış, ancak bu sıcaklığı yaklaşık 1.5 gün koruyabilmiş ve 55 °C’nin üzerindeki sıcaklığını ise sadece 2 gün koruyabilmiştir. Organik madde kayıplarının kompostlama süreci ve olgunlaşma süreci sonunda sırasıyla, biyoaktivatörlü reaktörde %59.24 ve %14.63, biyoaktivatörsüz reaktörde %64.32 ve %2.04 olarak belirlenmiştir. Sonuç olarak, kompostlama işleminde biyoaktivatör kullanımı kompostlama performans parametreleri (sıcaklık, CO2 konsantrasyonu, kompost nemi, organik madde, pH, elektriksel iletkenlik, C/N oranı) açısından değerlendirildiğinde biyoaktivatörün bir fark yaratmadığı söylenebilir. Bunun yanında, biyoaktivatör ilavesinin kompost olgunlaşma başlangıcında yapılarak kompostun daha hızlı bir şekilde olgunlaşmasına yardımcı olabileceği söylenebilir.

Thanks

Bu çalışmanın yürütülmesinde destek veren, Cenk Soyöz MTF Makine Kimya Otomasyon, Tunay Gıda San. ve Tic. A.Ş ve Design Group Danışmanlık Hizmetleri San. ve Tic. A.Ş.’ye teşekkür ederiz.

References

  • Agnolucci, M., Cristani, C., Battini, F., Palla, M., Cardelli, R., Saviozzi, A., Nuti, M. (2013). Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level. Bioresour. Technol., 34 (2013), pp. 10-16.
  • Awasthi, M.K., Wang, Q., Chen, H., Wang, M., Rena, X., Zhao, J., Li, J., Guo, D., Li, D.S., Awasthi, S.K., Sun, X., Zhang, Z. (2017). Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost, Bioresour. Technol., 237 (2017), pp. 156-166, 10.1016/j.biortech.2017.01.044.
  • Bertrand R.L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201 (2019), Article e00697.
  • Bohacz J. (2018). Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. J Environ Manage. 2018;206:1052–1062. doi: 10.1016/j.jenvman.2017.11.077.
  • Bosco, T., C., D., Michels, R., N., Bertozzi, J., Junior, I., T., Hashimoto, E., M. (2018). The ideal frequency of temperature data collection in compostability experiments on domestic organic residues. Environmental Technology. Latest Artiles. https://doi.org/10.1080/09593330.2018.1523233.
  • Flynn, P.R., Wood, C.W. (1996). Temperature and chemical changes during composting of broiler litter. Compost Sci Util. 1996, 4(3):62–70. doi: 10.1080/1065657X.1996.10701841.
  • Geng, H., Belas, R. (2010). Molecular mechanisms underlying Roseobacter–phytoplankton symbioses. Curr. Opin. Biotechnol., 21 (2010), pp. 332-338.
  • Ghaly, A. E., and M. Alhattah. (2013). Drying poultry manure for pollution potential reduction and production of organic fertilizer. America Journal of Environmental Science 9(2):88–102. doi:10.3844/ajessp.2013.88.102.
  • Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A. (2001). Microbial characterization during composting of municipal solid waste. J. Bioresour. Technol., 80 (2001), pp. 217-225.
  • He, P.J., Wei, S.Y., Shao, L.M., Lü, F. (2018). Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio-stability under various oxygen levels. Waste Manag., 73 (2018), pp. 113-122.
  • Henry, C. L., and R. B. Harrison. (1996). Carbon Fraction in Compost and Compost Maturity Tests. In Soil organic matter: analysis and interpretation, ed. by F. R. Magdoff, M. A. Taabatabai and E. A. Harlon, 51–67. USA: SSA Special Publication.
  • Iyengar, S.R., Bhave, P.P. (2006). In-vessel composting of household wastes. Waste Manag., 26 (2006), pp. 1070-1080, 10.1016/j.wasman.2005.06.011.
  • İslam, M.K, Yaseen, T., Traversa, A. (2016). Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manage 2016;52:62–68. doi: 10.1016/j.wasman.2016.03.042.
  • Kadir, A. A., N. W. Azhari, and Jamaludin, S. N. (2017). Evaluation of physical, chemical and heavy metal concentration of food waste composting. Web of Conference 103:5–14.
  • Kanat, G. & Ergüven, G. Ö. (2020). Importance of Solid Waste Management on Composting, Problems and Proposed Solutions: The Case of Turkey. Avrupa Bilim ve Teknoloji Dergisi, (19), 66-71.
  • Karak, T., Bhattacharyya, P., Paul, R.K., Das, T., Saha, S.K. (2013). Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality. Clean, 41 (2013), pp. 711-723.
  • Larney, F.J., Sullivan, D.M., Buckley, K.E., Eghball, B. (2006). The role of composting in recycling manure nutrients. Can. J. Soil Sci., 86 (4) (2006), pp. 597-611, 10.4141/S05-116.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
  • Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q. (2011). Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour. Technol., 102 (2011), pp. 9040-9049.
  • Liu, K., Price, G.W. (2011). Evaluation of three composting systems for the management of spent coffee grounds. Bioresour. Technol., 102 (2011), pp. 7966-7974.
  • Luiza, R., M. Javares, and E. Nahas. (2014). Humic fractions of forest, pasture and maize crop soils resulting from microbial activity. Brazilian Journal of Microbiology 45(3):963–69. doi:10.1590/S1517-83822014000300028.
  • Muntjeer, A., Kazmi, AA., Ahmed, N. (2014). Study on effects of temperature, moisture and pH in degradation and degradation kinetics of aldrin, endosulfan, lindane pesticides during full-scale continuous rotary drum composting. Chemosphere, 102 (2014), pp. 68-75.
  • Morais, F.M.C., Queda, C.A.C. (2003). Study of storage in Xuence on evolution of stability and maturity properties of MSW composts. In: Proceedings of the Fourth International Conference of ORBIT Association on Biological Processing of Organics: Advances for a Sustainable Society Part II. Perth, Australia.
  • NY 525-2012, Ministry of agriculture, PRC. 2012, Commercial organic fertilizer standard, China Standards Press.
  • Ojo, A., O., Taiwo, L., B., Adediran, J., A., Oyedele, A., O., Fademi, I., O., Uthman, A., C., O. (2018). Physical, Chemical and Biological Properties of an Accelerated Cassava Based Compost Prepared Using Different Ratios of Cassava Peels and Poultry Manure. Communications in Soil Science and Plant Analysis. V:49, I:14, P:1774-1786.
  • Rousk, J., Baath E. (2011). Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology, 78 (2011), pp. 17-30.
  • Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., Clercq, D., Coosemans, J., Insam, H., Swings. J. (2003). A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol., 53 (2003), pp. 349-410.
  • Sadef, Y., Poulsen, T.G., Bester, K. (2014). Impact of compost process temperature on organic micro-pollutant degradation. Sci Total Environ. 2014;494–495:306–312. doi: 10.1016/j.scitotenv.2014.07.003.
  • Şevik F., Tosun, İ., Ekinci, K. (2018a). Nar İşleme Atıklarının Özellikleri ve Bertaraf. Stratejilerinin Belirlenmesi. Uluslararası Marmara Fen Ve Sosyal Bilimler Kongresi, 23-25 Kasım 2018, Kocaeli.
  • Şevik, F., Tosun, İ., Ekinci, K. (2018b). The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Management. V:80. P:450-456.
  • Thingstad, T.F., Skjoldal, E.F., Bohne, R.A. (1993). Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar. Ecol. Prog. Ser., 99 (1993), pp. 239-259.
  • Truong, T.H.H., Marschner, P. (2018). Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 319 (2018), pp. 167-174.
  • Villar, I., Alves, D., Garrido, J. (2016). Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Manage 2016;54:83–92. doi: 10.1016/j.wasman.2016.05.011.
  • Vlaco. (2016). Gemiddelde samenstelling van Vlaco-compost | Vlaco [WWW Document]. URL http://www.vlaco.be/compost-gebruiken/wat-is-compost/gemiddelde-samenstelling-van-vlaco-compost.
  • Wang, Q., Wang, Z., Awasthi, M.K., Jiang, Y.H., Li, R.H., Ren, X.N., Zhao, J.C., Shen, F., Wang, M. J., Zhang, Z.Q. (2016). Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol., 220 (2016), pp. 297-304.
  • Zhang, C.S., Xu, Y., Zhao, M.H., Rong, H.W., Zhang, K.F. (2018). Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. J. Hazard. Mater., 344 (2018), pp. 163-168.
  • Zhang, J., Bao, Y., Jiang, Y., Liu H. T., Xi, B. D., Wang, D. Q. (2019). Removal and dissipation pathway of typical fluoroquinolones in sewage sludge during aerobic composting. Waste Management. Waste Management. V: 95, P: 450-457.
  • Zhang, L., Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manage., 39 (2015), pp. 119-129.
  • Zhang, W.M., Yu, C.X., Wang, X., Hai, L. (2019). Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technology. 2019, https://doi.org/10.1016/j.biortech.2019.122410

Composting of Pomegranate Peels with Bioactivator in Rotary Drum Composting System

Year 2021, Issue: 25, 318 - 324, 31.08.2021
https://doi.org/10.31590/ejosat.908927

Abstract

This study was carried out to determine the effect of composting of pomegranate peels left after processing pomegranate fruit with bioactivator. In the study, 0.38 m3-automatic controlled rotary drum composting system with exhaust gas recycling was used in the composting process. During the experiment, temperature, CO2 concentration, compost moisture, organic matter, pH, electrical conductivity, total nitrogen and carbon changes were measured. The experiments took 43 days, the composting stage was 12 days, and the maturation stage was 31 days. Results showed that the reactor with bioactivator reached the temperature of 55 °C on the 6th day and maintained this temperature for about 0.25 days (6 hours). The reactor without bioactivator reached a temperature of 60 °C, but it was able to maintain this temperature for about 1.5 days and the temperature above 55 ° C was only able to maintain for 2 days. Organic matter losses were determined as 59.24% and 14.63% in the reactor with bioactivator, 64.32% and 2.04% in the reactor without bioactivator, respectively, at the end of the composting process and maturation process. In conclusion, when the use of bioactivators in composting process is evaluated in terms of composting performance parameters (compost temperature, CO2 concentration, moisture, organic matter, pH, electrical conductivity, C/N ratio), it can be said that the bioactivator does not make a difference. In addition, it can be said that the addition of bioactivators can be made at the beginning of compost maturation to help the compost mature faster.

References

  • Agnolucci, M., Cristani, C., Battini, F., Palla, M., Cardelli, R., Saviozzi, A., Nuti, M. (2013). Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level. Bioresour. Technol., 34 (2013), pp. 10-16.
  • Awasthi, M.K., Wang, Q., Chen, H., Wang, M., Rena, X., Zhao, J., Li, J., Guo, D., Li, D.S., Awasthi, S.K., Sun, X., Zhang, Z. (2017). Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost, Bioresour. Technol., 237 (2017), pp. 156-166, 10.1016/j.biortech.2017.01.044.
  • Bertrand R.L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201 (2019), Article e00697.
  • Bohacz J. (2018). Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. J Environ Manage. 2018;206:1052–1062. doi: 10.1016/j.jenvman.2017.11.077.
  • Bosco, T., C., D., Michels, R., N., Bertozzi, J., Junior, I., T., Hashimoto, E., M. (2018). The ideal frequency of temperature data collection in compostability experiments on domestic organic residues. Environmental Technology. Latest Artiles. https://doi.org/10.1080/09593330.2018.1523233.
  • Flynn, P.R., Wood, C.W. (1996). Temperature and chemical changes during composting of broiler litter. Compost Sci Util. 1996, 4(3):62–70. doi: 10.1080/1065657X.1996.10701841.
  • Geng, H., Belas, R. (2010). Molecular mechanisms underlying Roseobacter–phytoplankton symbioses. Curr. Opin. Biotechnol., 21 (2010), pp. 332-338.
  • Ghaly, A. E., and M. Alhattah. (2013). Drying poultry manure for pollution potential reduction and production of organic fertilizer. America Journal of Environmental Science 9(2):88–102. doi:10.3844/ajessp.2013.88.102.
  • Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A. (2001). Microbial characterization during composting of municipal solid waste. J. Bioresour. Technol., 80 (2001), pp. 217-225.
  • He, P.J., Wei, S.Y., Shao, L.M., Lü, F. (2018). Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio-stability under various oxygen levels. Waste Manag., 73 (2018), pp. 113-122.
  • Henry, C. L., and R. B. Harrison. (1996). Carbon Fraction in Compost and Compost Maturity Tests. In Soil organic matter: analysis and interpretation, ed. by F. R. Magdoff, M. A. Taabatabai and E. A. Harlon, 51–67. USA: SSA Special Publication.
  • Iyengar, S.R., Bhave, P.P. (2006). In-vessel composting of household wastes. Waste Manag., 26 (2006), pp. 1070-1080, 10.1016/j.wasman.2005.06.011.
  • İslam, M.K, Yaseen, T., Traversa, A. (2016). Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manage 2016;52:62–68. doi: 10.1016/j.wasman.2016.03.042.
  • Kadir, A. A., N. W. Azhari, and Jamaludin, S. N. (2017). Evaluation of physical, chemical and heavy metal concentration of food waste composting. Web of Conference 103:5–14.
  • Kanat, G. & Ergüven, G. Ö. (2020). Importance of Solid Waste Management on Composting, Problems and Proposed Solutions: The Case of Turkey. Avrupa Bilim ve Teknoloji Dergisi, (19), 66-71.
  • Karak, T., Bhattacharyya, P., Paul, R.K., Das, T., Saha, S.K. (2013). Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality. Clean, 41 (2013), pp. 711-723.
  • Larney, F.J., Sullivan, D.M., Buckley, K.E., Eghball, B. (2006). The role of composting in recycling manure nutrients. Can. J. Soil Sci., 86 (4) (2006), pp. 597-611, 10.4141/S05-116.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
  • Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q. (2011). Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour. Technol., 102 (2011), pp. 9040-9049.
  • Liu, K., Price, G.W. (2011). Evaluation of three composting systems for the management of spent coffee grounds. Bioresour. Technol., 102 (2011), pp. 7966-7974.
  • Luiza, R., M. Javares, and E. Nahas. (2014). Humic fractions of forest, pasture and maize crop soils resulting from microbial activity. Brazilian Journal of Microbiology 45(3):963–69. doi:10.1590/S1517-83822014000300028.
  • Muntjeer, A., Kazmi, AA., Ahmed, N. (2014). Study on effects of temperature, moisture and pH in degradation and degradation kinetics of aldrin, endosulfan, lindane pesticides during full-scale continuous rotary drum composting. Chemosphere, 102 (2014), pp. 68-75.
  • Morais, F.M.C., Queda, C.A.C. (2003). Study of storage in Xuence on evolution of stability and maturity properties of MSW composts. In: Proceedings of the Fourth International Conference of ORBIT Association on Biological Processing of Organics: Advances for a Sustainable Society Part II. Perth, Australia.
  • NY 525-2012, Ministry of agriculture, PRC. 2012, Commercial organic fertilizer standard, China Standards Press.
  • Ojo, A., O., Taiwo, L., B., Adediran, J., A., Oyedele, A., O., Fademi, I., O., Uthman, A., C., O. (2018). Physical, Chemical and Biological Properties of an Accelerated Cassava Based Compost Prepared Using Different Ratios of Cassava Peels and Poultry Manure. Communications in Soil Science and Plant Analysis. V:49, I:14, P:1774-1786.
  • Rousk, J., Baath E. (2011). Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology, 78 (2011), pp. 17-30.
  • Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., Clercq, D., Coosemans, J., Insam, H., Swings. J. (2003). A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol., 53 (2003), pp. 349-410.
  • Sadef, Y., Poulsen, T.G., Bester, K. (2014). Impact of compost process temperature on organic micro-pollutant degradation. Sci Total Environ. 2014;494–495:306–312. doi: 10.1016/j.scitotenv.2014.07.003.
  • Şevik F., Tosun, İ., Ekinci, K. (2018a). Nar İşleme Atıklarının Özellikleri ve Bertaraf. Stratejilerinin Belirlenmesi. Uluslararası Marmara Fen Ve Sosyal Bilimler Kongresi, 23-25 Kasım 2018, Kocaeli.
  • Şevik, F., Tosun, İ., Ekinci, K. (2018b). The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Management. V:80. P:450-456.
  • Thingstad, T.F., Skjoldal, E.F., Bohne, R.A. (1993). Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar. Ecol. Prog. Ser., 99 (1993), pp. 239-259.
  • Truong, T.H.H., Marschner, P. (2018). Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 319 (2018), pp. 167-174.
  • Villar, I., Alves, D., Garrido, J. (2016). Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Manage 2016;54:83–92. doi: 10.1016/j.wasman.2016.05.011.
  • Vlaco. (2016). Gemiddelde samenstelling van Vlaco-compost | Vlaco [WWW Document]. URL http://www.vlaco.be/compost-gebruiken/wat-is-compost/gemiddelde-samenstelling-van-vlaco-compost.
  • Wang, Q., Wang, Z., Awasthi, M.K., Jiang, Y.H., Li, R.H., Ren, X.N., Zhao, J.C., Shen, F., Wang, M. J., Zhang, Z.Q. (2016). Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol., 220 (2016), pp. 297-304.
  • Zhang, C.S., Xu, Y., Zhao, M.H., Rong, H.W., Zhang, K.F. (2018). Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. J. Hazard. Mater., 344 (2018), pp. 163-168.
  • Zhang, J., Bao, Y., Jiang, Y., Liu H. T., Xi, B. D., Wang, D. Q. (2019). Removal and dissipation pathway of typical fluoroquinolones in sewage sludge during aerobic composting. Waste Management. Waste Management. V: 95, P: 450-457.
  • Zhang, L., Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manage., 39 (2015), pp. 119-129.
  • Zhang, W.M., Yu, C.X., Wang, X., Hai, L. (2019). Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technology. 2019, https://doi.org/10.1016/j.biortech.2019.122410
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kamil Ekinci 0000-0002-7083-5199

Cenk Soyöz This is me 0000-0001-9221-2382

Barbaros Kumbul This is me 0000-0002-7379-7597

Rıfat Yıldırım This is me 0000-0002-4456-9448

Şerafettin Yazıcı This is me 0000-0002-5030-1202

Hilal Rüzgar This is me

Publication Date August 31, 2021
Published in Issue Year 2021 Issue: 25

Cite

APA Ekinci, K., Soyöz, C., Kumbul, B., Yıldırım, R., et al. (2021). Nar Kabuklarının Döner Tambur Kompostlama Sisteminde Biyoaktivatör İle Kompostlanması. Avrupa Bilim Ve Teknoloji Dergisi(25), 318-324. https://doi.org/10.31590/ejosat.908927