Research Article
BibTex RIS Cite

Alüminyum Atıktan Üretilmiş Si3N4 Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi

Year 2021, Issue: 28, 758 - 765, 30.11.2021
https://doi.org/10.31590/ejosat.1010738

Abstract

Bu çalışmada öncelikle, atık alüminyum içecek kutuları ergitilip kalıplara dökülerek külçe halinde matris malzemesi elde edilmiştir. Kompozit malzeme üretimi için karıştırma döküm yöntemi kullanılmıştır. Matris malzemesine ağırlıkça % 0.5, % 0.75 ve % 1 oranlarında Si3N4 takviyesi yapılmıştır. Takviye oranlarının kompozit malzemelerin yoğunluk, sertlik, çekme dayanımı, darbe dayanımı ve mikroyapısına etkisi incelenmiştir. Si3N4 takviyeli kompozitlerde, artan takviye oranına bağlı olarak, çekme mukavemeti 54,5 MPa’dan 105,17 MPa’ya, darbe mukavemeti 4,94 J’den 13,18 J’ye ve sertlik 70 HV’den 87,9 HV’ye yükselmiştir. Yapılan yoğunluk ölçümlerinde takviye oranının artmasıyla yoğunluğun ve gözenek oranının arttığı görülmüştür. Üretilen kompozitlerin taramalı elektron mikroskobu (SEM) görüntülerinden, takviye oranının artmasıyla partikül dağılımının arttığı ve takviye malzemesinin homojen olarak dağıldığı belirlenmiştir.

References

  • Bajaj, P. (2011). Mechanical behaviour of aluminium based metal matrix composites reinforced with SiC and alumina [Master’s Thesis, Thapar University Master of Engineering in Production & Industrial Engineering]. Ediz, Ç. (2011). Recycling process of aluminum and the effects of the materials used in the process on aluminum components [Master’s Thesis, Bilecik University Institute of Science].
  • Gui, M. C., Wang, D. B., Wu, J., Yuan, G. & Li, C. G. (2000). Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process. material science and technology. Materials Science and Technology, 16(5), 556-563.
  • Hashim, J., Looney, L. & Hashmi, M. S. J. (1999). Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology, (92-93), 1-7.
  • Hindi, J., Kini, A. U., Sharma, S. S., Gurumurthy, B. M. & Shankar, G. (2015). Mechanical characterization of stir cast Al 6063 matrix SiC reinforced metal matrix composites. 5th International Conference on Automotive, Mechanical and Materials Engineering (ICAMME'2015), 69-73.
  • İzgi, N. (2011). Recycling of aluminium and improving its qualities [Master’s Thesis, Istanbul Technical University Institute of Science].
  • Kalemtaş, A. (2014). An overview of metal matrix composites. Putech & Composites.
  • Kılıç, C. (2008). Abrasive wear of abrasion and cold forming for the composite produced by squeeze casting method with Al-Mg matrix (AA5754) SiCP consolidation [Master’s Thesis, Trakya University Institute of Science].
  • Kok, M. (2005). Production and mechanical properties of Al2O3 particle reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161(3), 381-387.
  • Kumar, N. M., Kumaran, S. S. & Kumaraswamidhas, L. A. (2015). An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. Journal of Alloys and Compounds, 652, 244-249.
  • Nazik, C. (2013). The production of aluminum matrix-B4C particle reinforced composites by powder metallurgy method and investigation of their mechanical properties [Master’s Thesis, Selçuk University Institute of Science].
  • Özkök, Ö. (2004). Production of α-Si3N4 reınforced aluminum based composite materials and ınvestigation of their properties [Master’ Thesis, Gazi University Institute of Science].
  • Pulat, D., Altubay, M., Erzi, E., Yüksel, Ç. & Dışpınar, D. (2014). Investigation of efficiency and fluidity in aluminum recycling. 15th International Materials Symposium (IMSP’2014), 905-909.
  • Sharma, P., Sharma, S. & Khanduja, D. (2015). Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
  • Singh, L., Ram, B. & Singh, A. (2013). Optimization of process parameter for stir casted aluminium metal matrix composite using taguchi method. International Journal of Research in Engineering and Technology, 2(8), 375-383.
  • Singla, M., Dwivedi, D. D., Singh, L. & Chawla, V. (2009). Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 8(6), 455-467.
  • Sujan, D., Oo, Z., Rahman, M., Maleque, M. & Tan, C. K. (2012). Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6(8), 678 – 681.
  • Sur, G., Şahin, Y. & Gökkaya, H. (2005). Production of aluminum based particulate reinforced composites using molten metal mixing and squeeze casting methods. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 233-238.
  • Surappa, M.K. (2003). Aluminum matrix composites: Challenges and opportunities. Sadhana, 28, 319-334.

Investigation of Mechanical Properties of Si3N4 Reinforced Composites Produced from Aluminum Waste

Year 2021, Issue: 28, 758 - 765, 30.11.2021
https://doi.org/10.31590/ejosat.1010738

Abstract

In this study, first of all, waste aluminum beverage cans were melted and poured into molds to obtain matrix material in the form of ingots. Stir casting process was used for composite material production. 0.5%, 0.75% and 1% by weight Si3N4 reinforcement was added to the matrix material. The effects of reinforcement ratios on the density, hardness, tensile strength, impact strength and microstructure of composite materials were investigated. In Si3N4 reinforced composites, tensile strength increased from 54,5 MPa to 105,17 MPa, impact strength increased from 4,94 J to 13,18 J, and hardness increased from 70 HV to 87,9 HV depending on the increased reinforcement ratio. Also, in the density measurements, density and porosity ratio increased with the increase of the reinforcement ratio. From the scanning electron microscope (SEM) images of the produced composites, it was determined that the particle distribution increased with the increase in the reinforcement ratio and the reinforcement material was homogeneously dispersed.

References

  • Bajaj, P. (2011). Mechanical behaviour of aluminium based metal matrix composites reinforced with SiC and alumina [Master’s Thesis, Thapar University Master of Engineering in Production & Industrial Engineering]. Ediz, Ç. (2011). Recycling process of aluminum and the effects of the materials used in the process on aluminum components [Master’s Thesis, Bilecik University Institute of Science].
  • Gui, M. C., Wang, D. B., Wu, J., Yuan, G. & Li, C. G. (2000). Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process. material science and technology. Materials Science and Technology, 16(5), 556-563.
  • Hashim, J., Looney, L. & Hashmi, M. S. J. (1999). Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology, (92-93), 1-7.
  • Hindi, J., Kini, A. U., Sharma, S. S., Gurumurthy, B. M. & Shankar, G. (2015). Mechanical characterization of stir cast Al 6063 matrix SiC reinforced metal matrix composites. 5th International Conference on Automotive, Mechanical and Materials Engineering (ICAMME'2015), 69-73.
  • İzgi, N. (2011). Recycling of aluminium and improving its qualities [Master’s Thesis, Istanbul Technical University Institute of Science].
  • Kalemtaş, A. (2014). An overview of metal matrix composites. Putech & Composites.
  • Kılıç, C. (2008). Abrasive wear of abrasion and cold forming for the composite produced by squeeze casting method with Al-Mg matrix (AA5754) SiCP consolidation [Master’s Thesis, Trakya University Institute of Science].
  • Kok, M. (2005). Production and mechanical properties of Al2O3 particle reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161(3), 381-387.
  • Kumar, N. M., Kumaran, S. S. & Kumaraswamidhas, L. A. (2015). An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. Journal of Alloys and Compounds, 652, 244-249.
  • Nazik, C. (2013). The production of aluminum matrix-B4C particle reinforced composites by powder metallurgy method and investigation of their mechanical properties [Master’s Thesis, Selçuk University Institute of Science].
  • Özkök, Ö. (2004). Production of α-Si3N4 reınforced aluminum based composite materials and ınvestigation of their properties [Master’ Thesis, Gazi University Institute of Science].
  • Pulat, D., Altubay, M., Erzi, E., Yüksel, Ç. & Dışpınar, D. (2014). Investigation of efficiency and fluidity in aluminum recycling. 15th International Materials Symposium (IMSP’2014), 905-909.
  • Sharma, P., Sharma, S. & Khanduja, D. (2015). Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
  • Singh, L., Ram, B. & Singh, A. (2013). Optimization of process parameter for stir casted aluminium metal matrix composite using taguchi method. International Journal of Research in Engineering and Technology, 2(8), 375-383.
  • Singla, M., Dwivedi, D. D., Singh, L. & Chawla, V. (2009). Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 8(6), 455-467.
  • Sujan, D., Oo, Z., Rahman, M., Maleque, M. & Tan, C. K. (2012). Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6(8), 678 – 681.
  • Sur, G., Şahin, Y. & Gökkaya, H. (2005). Production of aluminum based particulate reinforced composites using molten metal mixing and squeeze casting methods. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 233-238.
  • Surappa, M.K. (2003). Aluminum matrix composites: Challenges and opportunities. Sadhana, 28, 319-334.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Burak Öztop 0000-0003-3947-9103

Mevlüt Gürbüz 0000-0003-2365-5918

Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Öztop, B., & Gürbüz, M. (2021). Investigation of Mechanical Properties of Si3N4 Reinforced Composites Produced from Aluminum Waste. Avrupa Bilim Ve Teknoloji Dergisi(28), 758-765. https://doi.org/10.31590/ejosat.1010738