Chlorpyrifos and deltamethrin degradation potentials of two Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) strains
Year 2020,
, 165 - 176, 01.06.2020
Ayşegül Kumral
,
Nabi Alper Kumral
,
Ozan Gurbuz
Abstract
Many soil bacteria can degrade the synthetic insecticides chlorpyrifos and deltamethrin by their esterase enzymes and/or by using them as carbon and energy sources. The hypothesis tested was that similar degradation potential could be found in Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) which is used in food fermentations. This study was conducted in-vitro in Bursa Uludağ University laboratories during 2017-2018 to demonstrate the two degradation mechanisms of L. plantarum strains LB-1 and LB-2 4 d after inoculation. Significant growth in LB-1 found in mineral salt (MS) medium containing chlorpyrifos and deltamethrin compared with MS medium without insecticide and any carbon source. This strain also exhibited significantly enhanced hydrolysis activity. These capacities were found lower in LB-2 than LB-1. Based on periodically GC-MS analysis, degradation of chlorpyrifos and deltamethrin in MS medium proceeded by strains LB-1 and LB-2 reached the values of 96 and 90% and 24 and 53% after 3 d, respectively. Significant degradation of deltamethrin with both strains (86-82%) determined after 10 d. The study demonstrated that some L. plantarum strains could degrade chlorpyrifos and deltamethrin. Further studies should be conducted to show their effectiveness in the fermentation process of some fruits and vegetables and different bacteria inoculation rates.
Supporting Institution
Bursa Uludag University, Scientific Research Unit, Bursa, Turkey
Project Number
OUB(Z)-2015/9.
Thanks
This project was supported by Bursa Uludağ University, Scientific Research Unit, Bursa, Turkey, Grant Project No: OUB(Z)-2015/9. A part of this research was orally presented in Eighth International Olive Symposium (Split, Croatia) with an abstract included in the proceedings.
References
- Aksu, P., 2007. Developing of Multi Residue Analyze Method in Determining Pesticide Residues on Fruits and Vegetables by Gas Chromatography/Mass Spectrometry. Ege University Graduate School of Natural and Applied Science, Department of Food Engineering, (Unpublished) PhD Thesis, İzmir, Turkey, 422 pp.
- Alvarez, M. E., M. V. Augier & J. Baratti, 1999. Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. Bioscience, Biotechnology and Biochemistry, 63: 1865-1870.
- Anonymous, 2019. Republic of Turkey, Ministry of Food, Agriculture and Livestock, General Directorate of Food and Control, Department of Plant Protection Products. Plant Protection Products Database. (Web page: www.bku.tarim.gov.tr/Arama/Index) (Date accessed: October 2019).
- Anonymous, 2020. The pesticide properties database. (Web page: www. sitem.herts.ac.uk/aeru/ppdb/en/Reports/154.htm) (Date accessed: January 2020).
- Anwar, S., F. Liaquat, Q. M. Khan, Z. M. Khalid & S. Iqbal, 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. Journal of Hazardous Materials, 168: 400-405.
- Boethling, R. S., 1993. “Biodegradation of Xenobiotic Chemicals, 55-67”. In: Handbook of Hazardous Materials (Ed. M. Corn). Academic Press, San Diego, California, USA, 772 pp.
- Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
- Chen, S., Q. Hu, M. Hu, J. Luo, Q. Weng & K. Lai, 2011a. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology, 102: 8110-8116.
- Chen, S., K. Lai, Y. Li, M. Hu, Y. Zhang & Y. Zeng, 2011b. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90: 1471-1483.
- Chen, S., L. Yang, M. Hu & J. Liu, 2011c. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Applied Microbiology and Biotechnology, 90: 755-767.
- Chen, S., L. Yang, M. Hu, J. Liu, G. Zhong & L. Yang, 2011d. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials, 187: 433-440.
- Chen, S., P. Geng, Y. Xiao, & M. Hu, 2012a. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology and Biotechnology, 94: 505-515.
- Chen, S., J. Luo, M. Hu, K. Lai, P. Geng & H. Huang, 2012b. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology, 110: 97-104.
- Cho, K. M., R. K. Math, S. M. A. Islam, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Chon & H. D. Yun, 2009. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. Journal of Agricultural and Food Chemistry, 57: 1882-1889.
- Choi, Y. J., C. B. Miguez & B. H. Lee, 2004. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Applied Environmental Microbiology, 70: 3213-3221.
- Cogan, T. M., T. P. Beresford, J. Steele, J. Broadbent, N. P. Shah & Z. Ustunol, 2007. Advances in starter cultures and cultured foods. Journal of Dairy Science, 90 (9): 4005-4021.
- Cycon, M., M. Wojcik & Z. Piotrowska-Seget, 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76: 494-501.
- Cycon, M., A. Zmijowska & Z. Piotrowska-Seget, 2014. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science and Technology, 11: 1305-1316.
- de Man, J. C., M. Rogosa & M. E. Sharpe, 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology, 23: 130-135.
- Dordevic, T. M., S. S. Siler-Marinkovic, R. D. Durovic, S. I. Dimitrijevic-Brankovic & J. S. Gajic Umiljendic, 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture, 93: 3377-3383.
- Eaton, D. L., R. B. Daroff, H. Autrup, J. Bridges, P. Buffler, L. G. Costa, J. Coyle, G. McKhann, W. C. Mobley, L. Nadel, D. Neubert, R. Schulte-Hermann & P. S. Spencer, 2008. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Critical Reviews in Toxicology, 38: 1-125.
- EC (European Commission), 2019. EU-Pesticides database. (Web page: www.ec.europa.eu/food/plant/pesticides_en) (Date accessed: October 2019).
- FAO, 2019. Food and Agriculture Organization of the United Nations, Statistical Database. (Web page: www.faostat.fao.org) (Date accessed: October 2019).
- Fenner, K., S. Canonica, L. P. Wackett & M. Elsner, 2013. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341: 752-758.
- Islam, S. M. A., R. K. Math, K. M. Cho, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Cho & H. D. Yun, 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Journal of Agricultural and Food Chemistry, 58: 5380-5386.
- Kavitake, D., S. Kandasamy, P. B. Devi & P. H. Shetty, 2018. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods-A review. Food Bioscience, 21: 34-44.
- Kim, H. K., S. Y. Park, J. K. Lee & T. K. Oh, 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology and Biochemistry, 62: 66-71.
- Kumral, A. Y. & N. A. Kumral, 2013. “Decontamination of insecticides by lactic acid bacteria, 293-296”. Proceedings of the 24. International Scientific-Expert-Conference of Agriculture and Food Industry (25-28 September, Sarajevo, Bosnia and Herzegovina), 599 pp.
- Kumral, A., M. Korukluoğlu, A. De Castro, J. L. Ruiz-Barba, C. Romero & M. Brenes, 2012. “Esterase and β-glucosidase activities of lactic acid bacteria isolated from naturally black olives of Gemlik cultivar, 145”. Proceedings of the 4. International Table Olive Conference (16-17 February, Cordoba, Spain).
- Kumral, A. Y. & N. A. Kumral, 2014. “A preliminary study for the survival of different Lactobacillus plantarum strains in mineral salt medium with chlorpyrifos and deltamethrin, 99”. Proceedings of the 25. International- Scientific- Expert Congress on Agriculture and Food Industry (25-27 September, Izmir, Turkey), 242 pp.
- Kumral, A. Y. & N. A. Kumral, 2016. “The insecticide degradation potential of two Lactobacillus plantarum strains isolated from fermented table olives, 167”. Proceedings of the 8. International Olive Symposium (10-14 October, Split, Croatia), 202 pp.
- Lakshmi, C. V., M. Kumar & S. Khanna, 2008. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. International Biodeterioration & Biodegradation, 62: 204-209.
- Lu, J., L. Wu, J. Newman, B. Faber & J. Gan, 2006. Degradation of pesticides in nursery recycling pond waters. Journal of Agriculture & Food Chemistry, 54: 2658-2663.
- Madiha, F. M., S. Farghaly, M. A. Zayed, D. Soliman & M. Soliman, 2013. Deltamethrin degradation and effects on soil microbial activity. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 48: 575-581.
- Maragkoudakis, P. A., G. Zoumpopoulou, C. Miaris, G. Kalantzopoulos, B. Pot & E. Tsakalidou, 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16: 189-199.
- Maya, K., R. S. Singh, S. N. Upadhyay & S. K. Dubey, 2011. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochemistry, 46: 2130-2136.
- Morichi, T., M. E. Sharpe & B. Reiter, 1968. Esterases and other soluble proteins of some lactic acid bacteria. Microbiology, 53: 405-414.
- Nawab, A., A. Aleem & A. Malik, 2003. Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresource Technology, 88: 41-46.
- Roberts, T. R., D. H. Hutson & P. J. Jewess, 1998. Metabolic Pathways of Agrochemicals: Insecticides and Fungicides (Vol. 1). Royal Society of Chemistry, Cambridge, UK, 1476 pp.
- SAS, 2007. SAS Institute. JMP version 7.0.2 Release Notes Cary, NC: SAS Institute Print Center, 1-20.
- Simon, J. Y., 2014. The Toxicology and Biochemistry of Insecticides. CRC press, Boca Roton, Florida, USA, 380 pp.
- Singh, B. K. & A. Walker, 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30: 428-471.
- Sogorb, M. A. & E. Vilanova, 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128: 215-228.
- Torriani, S., G. E. Felis & F. Dellaglio, 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Applied Environmental Microbiology, 67: 3450-3454.
- Wu, P. C., Y. H. Liu, Z. Y. Wang, X. Y. Zhang, H. Li, W. Q. Liang, N., Luo, J. M. Hu, J. Q. Lu, T. G. Luan & L. X. Cao, 2006. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Journal of Agricultural and Food Chemistry, 54: 836-842.
- Yang, C., N. Liu, X. Guo & C. Qiao, 2006. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiology Letters, 265: 118-125.
- Zhao, X. H. & J. Wang, 2012. A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42ºC. Food Chemistry, 131 (1): 300-304.
İki Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) suşunun chlorpyrifos ve deltamethrini parçalama potansiyelleri
Year 2020,
, 165 - 176, 01.06.2020
Ayşegül Kumral
,
Nabi Alper Kumral
,
Ozan Gurbuz
Abstract
Birçok toprak bakterisi chlorpyrifos ve deltamethrin gibi sentetik insektisitleri esteraz enzimleriyle ve/veya bunları karbon ve enerji kaynağı olarak kullanarak parçalayabilmektedir. Bizim bu çalışmadaki hipotezimiz gıda fermantasyonu aşamalarında kullanılan Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae)’un benzer bir insektisit parçalama potansiyelinin gösterilmesidir. Bu çalışma,raroa ei Lactobacillus plantarum’un iki farklı suşunun (LB-1 ve LB-2) aşılamadan sonraki 4 gün içinde, iki farklı insektisit parçalama mekanizmasını göstermek amacıyla 2017-2018 yıllarında, Bursa Uludağ Üniversitesi laboratuvarlarında, in-vitro koşullarda gerçekleştirilmiştir. Herhangi bir karbon ve enerji kaynağı içermeyen MS ortamı ile karşılaştırıldığında, chlorpyrifos ve deltamethrin içeren MS ortamında önemli düzeyde LB-1 gelişimi saptanmıştır. Ayrıca, bu suş için önemli düzeyde artan hidroliz aktivitesi de gözlemlenmiştir. Bu özellikler LB-2’de bir miktar daha düşük bulunmuştur. GC-MS cihazı ile yapılan periyodik analizler sonucunda, LB-1 ve LB-2 inoküle edilmiş MS ortamı içinde chlorpyrifos ve deltamethrin’in parçalama oranları, 3 gün sonra chlorpyrifos için sırasıyla %96 ve 90, deltamethrin için %24 ve 53 olarak belirlenmiştir. Deltamethrin için önemli düzeyde bir parçalanma (%86-82) inkübasyondan 10 gün sonra gerçekleşmiştir. Bu çalışma, denemede kullanılan L. plantarum suşlarının chlorpyrifos ve deltamethrin parçalama potansiyellerinin olduğunu göstermiştir. İleride bazı meyve sebzelerin fermentasyon süreçlerinde kullanımı ve bu suşların farklı inokülasyon oranlarında etkinliğinin belirlenmesi amacıyla daha fazla çalışma yapılması gerekmektedir.
Project Number
OUB(Z)-2015/9.
References
- Aksu, P., 2007. Developing of Multi Residue Analyze Method in Determining Pesticide Residues on Fruits and Vegetables by Gas Chromatography/Mass Spectrometry. Ege University Graduate School of Natural and Applied Science, Department of Food Engineering, (Unpublished) PhD Thesis, İzmir, Turkey, 422 pp.
- Alvarez, M. E., M. V. Augier & J. Baratti, 1999. Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. Bioscience, Biotechnology and Biochemistry, 63: 1865-1870.
- Anonymous, 2019. Republic of Turkey, Ministry of Food, Agriculture and Livestock, General Directorate of Food and Control, Department of Plant Protection Products. Plant Protection Products Database. (Web page: www.bku.tarim.gov.tr/Arama/Index) (Date accessed: October 2019).
- Anonymous, 2020. The pesticide properties database. (Web page: www. sitem.herts.ac.uk/aeru/ppdb/en/Reports/154.htm) (Date accessed: January 2020).
- Anwar, S., F. Liaquat, Q. M. Khan, Z. M. Khalid & S. Iqbal, 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. Journal of Hazardous Materials, 168: 400-405.
- Boethling, R. S., 1993. “Biodegradation of Xenobiotic Chemicals, 55-67”. In: Handbook of Hazardous Materials (Ed. M. Corn). Academic Press, San Diego, California, USA, 772 pp.
- Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
- Chen, S., Q. Hu, M. Hu, J. Luo, Q. Weng & K. Lai, 2011a. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology, 102: 8110-8116.
- Chen, S., K. Lai, Y. Li, M. Hu, Y. Zhang & Y. Zeng, 2011b. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90: 1471-1483.
- Chen, S., L. Yang, M. Hu & J. Liu, 2011c. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Applied Microbiology and Biotechnology, 90: 755-767.
- Chen, S., L. Yang, M. Hu, J. Liu, G. Zhong & L. Yang, 2011d. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials, 187: 433-440.
- Chen, S., P. Geng, Y. Xiao, & M. Hu, 2012a. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology and Biotechnology, 94: 505-515.
- Chen, S., J. Luo, M. Hu, K. Lai, P. Geng & H. Huang, 2012b. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology, 110: 97-104.
- Cho, K. M., R. K. Math, S. M. A. Islam, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Chon & H. D. Yun, 2009. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. Journal of Agricultural and Food Chemistry, 57: 1882-1889.
- Choi, Y. J., C. B. Miguez & B. H. Lee, 2004. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Applied Environmental Microbiology, 70: 3213-3221.
- Cogan, T. M., T. P. Beresford, J. Steele, J. Broadbent, N. P. Shah & Z. Ustunol, 2007. Advances in starter cultures and cultured foods. Journal of Dairy Science, 90 (9): 4005-4021.
- Cycon, M., M. Wojcik & Z. Piotrowska-Seget, 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76: 494-501.
- Cycon, M., A. Zmijowska & Z. Piotrowska-Seget, 2014. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science and Technology, 11: 1305-1316.
- de Man, J. C., M. Rogosa & M. E. Sharpe, 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology, 23: 130-135.
- Dordevic, T. M., S. S. Siler-Marinkovic, R. D. Durovic, S. I. Dimitrijevic-Brankovic & J. S. Gajic Umiljendic, 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture, 93: 3377-3383.
- Eaton, D. L., R. B. Daroff, H. Autrup, J. Bridges, P. Buffler, L. G. Costa, J. Coyle, G. McKhann, W. C. Mobley, L. Nadel, D. Neubert, R. Schulte-Hermann & P. S. Spencer, 2008. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Critical Reviews in Toxicology, 38: 1-125.
- EC (European Commission), 2019. EU-Pesticides database. (Web page: www.ec.europa.eu/food/plant/pesticides_en) (Date accessed: October 2019).
- FAO, 2019. Food and Agriculture Organization of the United Nations, Statistical Database. (Web page: www.faostat.fao.org) (Date accessed: October 2019).
- Fenner, K., S. Canonica, L. P. Wackett & M. Elsner, 2013. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341: 752-758.
- Islam, S. M. A., R. K. Math, K. M. Cho, W. J. Lim, S. Y. Hong, J. M. Kim, M. G. Yun, J. J. Cho & H. D. Yun, 2010. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. Journal of Agricultural and Food Chemistry, 58: 5380-5386.
- Kavitake, D., S. Kandasamy, P. B. Devi & P. H. Shetty, 2018. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods-A review. Food Bioscience, 21: 34-44.
- Kim, H. K., S. Y. Park, J. K. Lee & T. K. Oh, 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology and Biochemistry, 62: 66-71.
- Kumral, A. Y. & N. A. Kumral, 2013. “Decontamination of insecticides by lactic acid bacteria, 293-296”. Proceedings of the 24. International Scientific-Expert-Conference of Agriculture and Food Industry (25-28 September, Sarajevo, Bosnia and Herzegovina), 599 pp.
- Kumral, A., M. Korukluoğlu, A. De Castro, J. L. Ruiz-Barba, C. Romero & M. Brenes, 2012. “Esterase and β-glucosidase activities of lactic acid bacteria isolated from naturally black olives of Gemlik cultivar, 145”. Proceedings of the 4. International Table Olive Conference (16-17 February, Cordoba, Spain).
- Kumral, A. Y. & N. A. Kumral, 2014. “A preliminary study for the survival of different Lactobacillus plantarum strains in mineral salt medium with chlorpyrifos and deltamethrin, 99”. Proceedings of the 25. International- Scientific- Expert Congress on Agriculture and Food Industry (25-27 September, Izmir, Turkey), 242 pp.
- Kumral, A. Y. & N. A. Kumral, 2016. “The insecticide degradation potential of two Lactobacillus plantarum strains isolated from fermented table olives, 167”. Proceedings of the 8. International Olive Symposium (10-14 October, Split, Croatia), 202 pp.
- Lakshmi, C. V., M. Kumar & S. Khanna, 2008. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. International Biodeterioration & Biodegradation, 62: 204-209.
- Lu, J., L. Wu, J. Newman, B. Faber & J. Gan, 2006. Degradation of pesticides in nursery recycling pond waters. Journal of Agriculture & Food Chemistry, 54: 2658-2663.
- Madiha, F. M., S. Farghaly, M. A. Zayed, D. Soliman & M. Soliman, 2013. Deltamethrin degradation and effects on soil microbial activity. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 48: 575-581.
- Maragkoudakis, P. A., G. Zoumpopoulou, C. Miaris, G. Kalantzopoulos, B. Pot & E. Tsakalidou, 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16: 189-199.
- Maya, K., R. S. Singh, S. N. Upadhyay & S. K. Dubey, 2011. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochemistry, 46: 2130-2136.
- Morichi, T., M. E. Sharpe & B. Reiter, 1968. Esterases and other soluble proteins of some lactic acid bacteria. Microbiology, 53: 405-414.
- Nawab, A., A. Aleem & A. Malik, 2003. Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresource Technology, 88: 41-46.
- Roberts, T. R., D. H. Hutson & P. J. Jewess, 1998. Metabolic Pathways of Agrochemicals: Insecticides and Fungicides (Vol. 1). Royal Society of Chemistry, Cambridge, UK, 1476 pp.
- SAS, 2007. SAS Institute. JMP version 7.0.2 Release Notes Cary, NC: SAS Institute Print Center, 1-20.
- Simon, J. Y., 2014. The Toxicology and Biochemistry of Insecticides. CRC press, Boca Roton, Florida, USA, 380 pp.
- Singh, B. K. & A. Walker, 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30: 428-471.
- Sogorb, M. A. & E. Vilanova, 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128: 215-228.
- Torriani, S., G. E. Felis & F. Dellaglio, 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Applied Environmental Microbiology, 67: 3450-3454.
- Wu, P. C., Y. H. Liu, Z. Y. Wang, X. Y. Zhang, H. Li, W. Q. Liang, N., Luo, J. M. Hu, J. Q. Lu, T. G. Luan & L. X. Cao, 2006. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Journal of Agricultural and Food Chemistry, 54: 836-842.
- Yang, C., N. Liu, X. Guo & C. Qiao, 2006. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiology Letters, 265: 118-125.
- Zhao, X. H. & J. Wang, 2012. A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42ºC. Food Chemistry, 131 (1): 300-304.