Araştırma Makalesi
BibTex RIS Kaynak Göster

Factors for Generalized Matrix Summability

Yıl 2021, Cilt: 37 Sayı: 3, 462 - 467, 30.12.2021

Öz

Kaynakça

  • Sulaiman, W. T. 2013. Some new factor theorem for absolute summability. Demonstratio Math., 46 (1), 149- 156.
  • Özarslan, H. S. 2018. A new study on generalised absolute matrix summability methods. Maejo Int. J. Sci. Technol., 12 (3), 199-205
  • Tanović-Miller, N. 1979. On strong summability. Glasnik Mat. Ser. III, 14 (34), 87-97.
  • Bor, H. 1993. On absolute summability factors. Proc. Amer. Math. Soc., 118 (1), 71-75.
  • Bor, H. 1996. On |\bar{N},p_n|_k summability factors. Kuwait J. Sci. Eng., 23 (1), 1-5.
  • Mazhar, S. M. 1997. A note on absolute summability factors. Bull. Inst. Math. Acad. Sinica, 25 (3), 233–242.
  • Mazhar, S. M. 1999. Absolute summability factors of infinite series. Kyungpook Math. J., 39 (1), 67-73.
  • Bor, H. 2000. An application of almost increasing and δ-quasi-monotone sequences. JIPAM. J. Inequal. Pure Appl. Math., 1 (2) Article 18, 6pp.
  • Bor, H. 2001. On absolute Riesz summability factors. Adv. Stud. Contemp. Math. (Pusan), 3 (2), 23-29.
  • Bor, H. 2007. A note on absolute Riesz summability factors. Math. Inequal. Appl., 10 (3), 619-625.
  • Özarslan, H. S., Öğdük, H. N. 2007. On absolute matrix summability methods. Math. Commun., 12 (2), 213-220.
  • Özarslan, H. S. 2010. A note on |A, p_{n}| _{k} summability factors. Antarct. J. Math., 7, 23-30.
  • Özarslan, H. S., Keten, A. 2013. On a new application of almost increasing sequence. J. Inequal. Appl., 13, 1-7.
  • Özarslan, H. S. 2013. A new application of almost increasing sequences. Miskolc Math. Notes, 14 (1), 201–208.
  • Özarslan, H. S. 2014. A note on generalized absolute Riesz summability. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 60 (1), 51-56.
  • Özarslan, H. S. 2015. A new application of absolute matrix summability. C. R. Acad. Bulgare Sci., 68 (8), 967-972.
  • Özarslan, H. S., Şakar, M. Ö. 2015. A new application of absolute matrix summability. Math. Sci. Appl. E-Notes, 3 (1), 36-43.
  • Özarslan, H. S. 2016. On generalized absolute matrix summability methods. Int. J. Anal. Appl., 12 (1) , 66-70.
  • Kartal, B. 2017. On generalized absolute Riesz summability method. Commun. Math. Appl., 8 (3), 359-364.
  • Özarslan, H. S., Karakaş, A. 2017. A new result on the almost increasing sequences. J. Comp. Anal. Appl., 22 (6), 989-998.
  • Özarslan, H. S., Kartal, B. 2017. A generalization of a theorem of Bor. J. Inequal. Appl., 179, 1-8.
  • Karakaş, A. 2018. On absolute matrix summability factors of infinite series. J. Class. Anal., 13 (2), 133–139.
  • Karakaş, A. 2018. N note on absolute summability method involving almost increasing and δ-quasi-monotone sequences. Int. J. Math. Comput. Sci., 13 (1), 73-81.
  • Kartal, B. 2019. New results for almost increasing sequences. Ann. Univ. Paedagog. Crac. Stud. Math., 18, 85-91.
  • Özarslan, H. S. 2019. A new factor theorem for absolute matrix summability. Quaest. Math., 42 (6), 803-809.
  • Özarslan, H. S. 2019. An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences. Kyungpook Math. J., 59 (2), 233-240.
  • Özarslan, H. S., Kartal, B. 2020. Absolute matrix summability via almost increasing sequence. Quaest. Math., 43 (10), 1477–1485.

Factors for Generalized Matrix Summability

Yıl 2021, Cilt: 37 Sayı: 3, 462 - 467, 30.12.2021

Öz

In [1], Sulaiman has proved a theorem dealing with |A|_{k} summability of the series \sum a_{n} \lambda_n X_n. In the present paper, generalized absolute matrix summability has been studied. The known theorem on |A|_{k} summability has been generalized to the {\varphi}-|A;\delta|_{k} summability method under some suitable conditions.

Kaynakça

  • Sulaiman, W. T. 2013. Some new factor theorem for absolute summability. Demonstratio Math., 46 (1), 149- 156.
  • Özarslan, H. S. 2018. A new study on generalised absolute matrix summability methods. Maejo Int. J. Sci. Technol., 12 (3), 199-205
  • Tanović-Miller, N. 1979. On strong summability. Glasnik Mat. Ser. III, 14 (34), 87-97.
  • Bor, H. 1993. On absolute summability factors. Proc. Amer. Math. Soc., 118 (1), 71-75.
  • Bor, H. 1996. On |\bar{N},p_n|_k summability factors. Kuwait J. Sci. Eng., 23 (1), 1-5.
  • Mazhar, S. M. 1997. A note on absolute summability factors. Bull. Inst. Math. Acad. Sinica, 25 (3), 233–242.
  • Mazhar, S. M. 1999. Absolute summability factors of infinite series. Kyungpook Math. J., 39 (1), 67-73.
  • Bor, H. 2000. An application of almost increasing and δ-quasi-monotone sequences. JIPAM. J. Inequal. Pure Appl. Math., 1 (2) Article 18, 6pp.
  • Bor, H. 2001. On absolute Riesz summability factors. Adv. Stud. Contemp. Math. (Pusan), 3 (2), 23-29.
  • Bor, H. 2007. A note on absolute Riesz summability factors. Math. Inequal. Appl., 10 (3), 619-625.
  • Özarslan, H. S., Öğdük, H. N. 2007. On absolute matrix summability methods. Math. Commun., 12 (2), 213-220.
  • Özarslan, H. S. 2010. A note on |A, p_{n}| _{k} summability factors. Antarct. J. Math., 7, 23-30.
  • Özarslan, H. S., Keten, A. 2013. On a new application of almost increasing sequence. J. Inequal. Appl., 13, 1-7.
  • Özarslan, H. S. 2013. A new application of almost increasing sequences. Miskolc Math. Notes, 14 (1), 201–208.
  • Özarslan, H. S. 2014. A note on generalized absolute Riesz summability. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 60 (1), 51-56.
  • Özarslan, H. S. 2015. A new application of absolute matrix summability. C. R. Acad. Bulgare Sci., 68 (8), 967-972.
  • Özarslan, H. S., Şakar, M. Ö. 2015. A new application of absolute matrix summability. Math. Sci. Appl. E-Notes, 3 (1), 36-43.
  • Özarslan, H. S. 2016. On generalized absolute matrix summability methods. Int. J. Anal. Appl., 12 (1) , 66-70.
  • Kartal, B. 2017. On generalized absolute Riesz summability method. Commun. Math. Appl., 8 (3), 359-364.
  • Özarslan, H. S., Karakaş, A. 2017. A new result on the almost increasing sequences. J. Comp. Anal. Appl., 22 (6), 989-998.
  • Özarslan, H. S., Kartal, B. 2017. A generalization of a theorem of Bor. J. Inequal. Appl., 179, 1-8.
  • Karakaş, A. 2018. On absolute matrix summability factors of infinite series. J. Class. Anal., 13 (2), 133–139.
  • Karakaş, A. 2018. N note on absolute summability method involving almost increasing and δ-quasi-monotone sequences. Int. J. Math. Comput. Sci., 13 (1), 73-81.
  • Kartal, B. 2019. New results for almost increasing sequences. Ann. Univ. Paedagog. Crac. Stud. Math., 18, 85-91.
  • Özarslan, H. S. 2019. A new factor theorem for absolute matrix summability. Quaest. Math., 42 (6), 803-809.
  • Özarslan, H. S. 2019. An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences. Kyungpook Math. J., 59 (2), 233-240.
  • Özarslan, H. S., Kartal, B. 2020. Absolute matrix summability via almost increasing sequence. Quaest. Math., 43 (10), 1477–1485.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bağdagül Kartal 0000-0001-6223-0838

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kartal, B. (2021). Factors for Generalized Matrix Summability. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(3), 462-467.
AMA Kartal B. Factors for Generalized Matrix Summability. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Aralık 2021;37(3):462-467.
Chicago Kartal, Bağdagül. “Factors for Generalized Matrix Summability”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37, sy. 3 (Aralık 2021): 462-67.
EndNote Kartal B (01 Aralık 2021) Factors for Generalized Matrix Summability. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 3 462–467.
IEEE B. Kartal, “Factors for Generalized Matrix Summability”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 37, sy. 3, ss. 462–467, 2021.
ISNAD Kartal, Bağdagül. “Factors for Generalized Matrix Summability”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37/3 (Aralık 2021), 462-467.
JAMA Kartal B. Factors for Generalized Matrix Summability. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37:462–467.
MLA Kartal, Bağdagül. “Factors for Generalized Matrix Summability”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 37, sy. 3, 2021, ss. 462-7.
Vancouver Kartal B. Factors for Generalized Matrix Summability. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37(3):462-7.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.