Research Article
BibTex RIS Cite

Grassmann cebirleri sınıfında simetrik polinomlar üzerine

Year 2021, , 907 - 913, 18.12.2021
https://doi.org/10.18185/erzifbed.732117

Abstract

Let K be a field of characteristic zero, and L be the associative algebra of rank 2 over K, in the variety generated by Grassmann algebras. In this paper we study the subalgebra L^(S_2 ) of symmetric polynomials in the algebra L, and give a finite generating set for L^(S_2 ).

References

  • Cox, D., Little, J. and O’Shea, D. (2015). “Ideals Varieties, and Algorithms 4th ed.”, Springer, New York, 345-352.
  • Drensky, V. (1996). “Free Algebras and PI-Algebras”, Springer, Singapore, 12-51.
  • Krakovski, D. and Regev, A. 1973. “The Polynomial Identities of the Grassmann Algebra”, Trans. Amer. Math. Soc., 181, 429-438.
  • Latyshev, V.N., 1976. “Partially Ordered Sets and Nonmatrix Identities of Associative Algebras” Algebr. Log., 15(1), 34-45.
  • Strumfels, B. (2008). “Algorithms in Invariant Theory 2nd ed.”, Springer-Verlag, Wien, 2-6.
  • van der Waerden, B.L. (1949). “Modern Algebra”, F. Ungar, New York, 78-82.

On the symmetric polynomials in the variety of Grassmann algebras

Year 2021, , 907 - 913, 18.12.2021
https://doi.org/10.18185/erzifbed.732117

Abstract

𝐾 karakteristiği sıfır olan bir cisim ve 𝐿, Grassmann cebirleri tarafından üretilen varyetede, 𝐾 cismi üzerinde rankı 2 olan birleşmeli cebir olsun. Bu çalışmada, 𝐿 cebirinin 𝐿𝑆2 simetrik polinomlar alt cebiri incelenmiş ve 𝐿𝑆2 için sonlu bir üreteç kümesi verilmiştir.

References

  • Cox, D., Little, J. and O’Shea, D. (2015). “Ideals Varieties, and Algorithms 4th ed.”, Springer, New York, 345-352.
  • Drensky, V. (1996). “Free Algebras and PI-Algebras”, Springer, Singapore, 12-51.
  • Krakovski, D. and Regev, A. 1973. “The Polynomial Identities of the Grassmann Algebra”, Trans. Amer. Math. Soc., 181, 429-438.
  • Latyshev, V.N., 1976. “Partially Ordered Sets and Nonmatrix Identities of Associative Algebras” Algebr. Log., 15(1), 34-45.
  • Strumfels, B. (2008). “Algorithms in Invariant Theory 2nd ed.”, Springer-Verlag, Wien, 2-6.
  • van der Waerden, B.L. (1949). “Modern Algebra”, F. Ungar, New York, 78-82.
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nazan Akdoğan 0000-0003-3207-8198

Publication Date December 18, 2021
Published in Issue Year 2021

Cite

APA Akdoğan, N. (2021). On the symmetric polynomials in the variety of Grassmann algebras. Erzincan University Journal of Science and Technology, 14(3), 907-913. https://doi.org/10.18185/erzifbed.732117