Research Article
BibTex RIS Cite

Reconstruction of a Ruled Surface in 3-dimensional Euclidean Space

Year 2024, Volume: 17 Issue: 1, 259 - 267, 28.03.2024
https://doi.org/10.18185/erzifbed.1362369

Abstract

In this paper, we first provide a summary of certain results related to the differential geometry of ruled surfaces. Next, we introduce the signature curve for ruled surfaces in Euclidean three-space. Additionally, we present a straightforward algorithm for the reconstruction of a ruled surface, which is both efficient and entirely local, requiring only the initial motion direction and starting point. Finally, we illustrate the efficiency and accuracy of the algorithm through several examples.
Bu makalede, öncelikle regle yüzeylerin diferesiyel geometrisi ile ilgili bazı sonuçların bir özetini sunuyoruz. Daha sonra, Öklid üç uzayında regle yüzeyler için işaret eğrisini tanıtıyoruz. Ek olarak, bir regle yüzeyin yeniden yapılandırılması için hem verimli hem de tamamen yerel olan, yalnızca ilk hareket yönü ve başlangıç noktası gerektiren basit bir algoritma sunuyoruz. Son olarak, algoritmanın verimliliğini ve doğruluğunu birkaç örnekle gösteriyoruz.

References

  • [1] Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A., Haker, S. (1998). Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision, 26, 107-135.
  • [2] Calabi, E., Olver, P. J., Tannenbaum, A. (1996). Affine geometry, curve flows, and invariant numerical approximations, Adv. Math., 124, 154-196.
  • [3] Surazhsky, T., Elber, G. (2002). Metamorphosis of planar parametric curves via curvature interpolation, International Journal of Shape Modeling, 8, 201-216.
  • [4] Hickman, M. S. (2012). Euclidean signature curves, J. Math. Imaging. Vis., 43, 206-213.
  • [5] Boutin, M. (2000). Numerically invarint signature curves , Int. J. Comput. Vision, 40(3), 235-248.
  • [6] Wu, S., Li, Y. F., Zhang, J.W. (2007). Signature descriptor for free form trajectory modeling, in Proc. IEEE International Conference on Integration Technology, Shenzhen, China, 167-172.
  • [7] Wu, S., Li, Y. F. (2010). Motion trajectory reproduction from generalizedsignature description, Pattern Recognition, 43, 204-221.
  • [8] Wu, S., Li, Y. F. (2008). On signature invariants for effective motion trajectory recognition, The International Journal of Robotics Research, 27, 895-917.
  • [9] Chen, H. Y., Pottmann H. (1974). Approximation by ruled surfaces. J. Comput. Appl. Math. 102, 143-156.
  • [10] Ryuh, B. S., Pennock, G.R. (1988). Accurate motion of a robot end-effector using the curvature theory of ruled surfaces, Journal of Mechanisms, Transmissions, and Automation in Design, 110, 383-388.
  • [11] Peternell, M. (2004). Developable surface fitting to point clouds. Comp. Aided Geom. Design, 21, 785-803.
  • [12] Pottmann, H., Lüa, W., Ravani, B. (1996). Rational ruled surfaces and their Offsets, Graphical Models and Image Processing, 58, 544-552.
  • [13] Kühnel, W. (1994). Ruled W-surfaces, Arch. Math., 62, 475-480.
  • [14] Ekici, C., Çöken, A. C. (2012). The integral invariants of parallel timelike ruled surfaces, J. Math. Anal. Appl. 393, 97-107.
  • [15] Zhang, X.M., Zhu, L.M., Ding, H., Xiong, Y.L. (2012). Kinematic generation of ruled surface based on rational motion of point-line, Science China Technological Sciences, 55, 62- 71.
  • [16] Abdel Baky, R. A. (2003). On the Blaschke approach of ruled surfaces, Tamkang J. Math., 34, 107-116.
  • [17] Ünlütürk, Y., Çimdiker, M., Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space, Communication in Mathematical Modeling and Applications. 1(1), 26-43.
  • [18] Ekici, C., Kaymanlı U.,G., Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space, International Journal of Mathematical Combinatorics, 3, 20-31.
Year 2024, Volume: 17 Issue: 1, 259 - 267, 28.03.2024
https://doi.org/10.18185/erzifbed.1362369

Abstract

References

  • [1] Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A., Haker, S. (1998). Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision, 26, 107-135.
  • [2] Calabi, E., Olver, P. J., Tannenbaum, A. (1996). Affine geometry, curve flows, and invariant numerical approximations, Adv. Math., 124, 154-196.
  • [3] Surazhsky, T., Elber, G. (2002). Metamorphosis of planar parametric curves via curvature interpolation, International Journal of Shape Modeling, 8, 201-216.
  • [4] Hickman, M. S. (2012). Euclidean signature curves, J. Math. Imaging. Vis., 43, 206-213.
  • [5] Boutin, M. (2000). Numerically invarint signature curves , Int. J. Comput. Vision, 40(3), 235-248.
  • [6] Wu, S., Li, Y. F., Zhang, J.W. (2007). Signature descriptor for free form trajectory modeling, in Proc. IEEE International Conference on Integration Technology, Shenzhen, China, 167-172.
  • [7] Wu, S., Li, Y. F. (2010). Motion trajectory reproduction from generalizedsignature description, Pattern Recognition, 43, 204-221.
  • [8] Wu, S., Li, Y. F. (2008). On signature invariants for effective motion trajectory recognition, The International Journal of Robotics Research, 27, 895-917.
  • [9] Chen, H. Y., Pottmann H. (1974). Approximation by ruled surfaces. J. Comput. Appl. Math. 102, 143-156.
  • [10] Ryuh, B. S., Pennock, G.R. (1988). Accurate motion of a robot end-effector using the curvature theory of ruled surfaces, Journal of Mechanisms, Transmissions, and Automation in Design, 110, 383-388.
  • [11] Peternell, M. (2004). Developable surface fitting to point clouds. Comp. Aided Geom. Design, 21, 785-803.
  • [12] Pottmann, H., Lüa, W., Ravani, B. (1996). Rational ruled surfaces and their Offsets, Graphical Models and Image Processing, 58, 544-552.
  • [13] Kühnel, W. (1994). Ruled W-surfaces, Arch. Math., 62, 475-480.
  • [14] Ekici, C., Çöken, A. C. (2012). The integral invariants of parallel timelike ruled surfaces, J. Math. Anal. Appl. 393, 97-107.
  • [15] Zhang, X.M., Zhu, L.M., Ding, H., Xiong, Y.L. (2012). Kinematic generation of ruled surface based on rational motion of point-line, Science China Technological Sciences, 55, 62- 71.
  • [16] Abdel Baky, R. A. (2003). On the Blaschke approach of ruled surfaces, Tamkang J. Math., 34, 107-116.
  • [17] Ünlütürk, Y., Çimdiker, M., Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space, Communication in Mathematical Modeling and Applications. 1(1), 26-43.
  • [18] Ekici, C., Kaymanlı U.,G., Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space, International Journal of Mathematical Combinatorics, 3, 20-31.
There are 18 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Makaleler
Authors

Mustafa Dede 0000-0003-2652-637X

Cumali Ekici 0000-0002-3247-5727

Mahmut Koçak 0000-0001-7774-0144

Early Pub Date March 27, 2024
Publication Date March 28, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Dede, M., Ekici, C., & Koçak, M. (2024). Reconstruction of a Ruled Surface in 3-dimensional Euclidean Space. Erzincan University Journal of Science and Technology, 17(1), 259-267. https://doi.org/10.18185/erzifbed.1362369