Research Article
BibTex RIS Cite

Invitro Decontamination Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Important Foodborne Pathogens

Year 2021, Volume: 32 Issue: 1, 1 - 5, 30.06.2021
https://doi.org/10.35864/evmd.861846

Abstract

Zinc oxide (ZnO) has been used for many years in the pharmaceutical, cosmetic, paint, textile, and food industries for coating surfaces, absorbing UV rays and due to its antimicrobial properties in nanoscale it has been identified as important chemical for decontamination. Zinc can be found in many foods as well and its allowed daily intake for adults has been reported as 8-11 mg. Zinc Oxide Nanoparticles (ZnO-NPs) are generally regarded as safe (GRAS) for it being stable under hard processing conditions. Compared to organic acids, ZnO-NPs have better durability, selectivity, and heat resistance. In the present study, it was aimed to understand the decontamination effect of ZnO-NPs on S. enteritidis, S. typhimurium, S. aureus, L. monocytogenes, and E. coli O157 to develop novel, safe decontamination agents for food industry. For this purpose, <50 µ ZnO-NPs were added into Tryptic Soy Broth in 20 mMolar final concentration for understanding of antimicrobial effect. After inoculation of the pathogens, counting procedure was performed using the Tryptic Soy Agar by the pour on plate method at 0, 1st, 2nd, 4th, 6th, 8th, 12th and 24th hours. As a result, S. enteritidis and S. aureus 3 Log CFU/mL, S. typhimurium and E. coli O157 4 Log CFU/mL, L. monocytogenes 2 Log CFU/mL decreased in 24 hours.

Supporting Institution

-

Project Number

-

References

  • Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. doi:https://doi.org/10.1016/j.scitotenv.2011.01.014
  • Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61(1), 1-10. doi:https://doi.org/10.1016/S0168-1605(00)00377-9
  • Bharat, T. C., Shubham, Mondal, S., S.Gupta, H., Singh, P. K., & Das, A. K. (2019). Synthesis of Doped Zinc Oxide Nanoparticles: A Review. Materials Today: Proceedings, 11, 767-775. doi:https://doi.org/10.1016/j.matpr.2019.03.041
  • Dar, M. A., Ahmad, S. M., Bhat, S. A., Ahmed, R., Urwat, U., Mumtaz, P. T., . . . Ganai, N. A. (2017). Salmonella typhimurium in poultry: a review. World's Poultry Science Journal, 73(2), 345-354. doi:10.1017/S0043933917000204
  • Das, S., Sinha, S., Das, B., Jayabalan, R., Suar, M., Mishra, A., . . . Tripathy, S. K. (2017). Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles. Scientific Reports, 7(1), 104. doi:10.1038/s41598-017-00173-0
  • Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97, 954-965. doi:https://doi.org/10.1016/j.msec.2018.12.102
  • El-Mashad, H. M., & Pan, Z. (2015). Food Decontamination Using Nanomaterials. MOJ Food Processing & Technology, 1(2). doi:10.15406/mojfpt.2015.01.00011
  • Fonseca, B. B., Silva, P. L. A. P. A., Silva, A. C. A., Dantas, N. O., de Paula, A. T., Olivieri, O. C. L., . . . Goulart, L. R. (2019). Nanocomposite of Ag-Doped ZnO and AgO Nanocrystals as a Preventive Measure to Control Biofilm Formation in Eggshell and Salmonella spp. Entry Into Eggs. Frontiers in Microbiology, 10(217). doi:10.3389/fmicb.2019.00217
  • Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113(1), 1-15. doi:https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  • Habeeb Rahman, A. P., Misra, A. J., Das, S., Das, B., Jayabalan, R., Suar, M., . . . Tripathy, S. K. (2018). Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles. Chemical Engineering Journal, 336, 476-488. doi:https://doi.org/10.1016/j.cej.2017.12.053
  • Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. d., Rojo, T., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:https://doi.org/10.1016/j.tibtech.2012.06.004
  • Hakeem, M. J., Feng, J., Nilghaz, A., Ma, L., Seah, H. C., Konkel, M. E., & Lu, X. (2020). Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls &lt;span class=&quot;named-content genus-species&quot; id=&quot;named-content-1&quot;&gt;Campylobacter jejuni&lt;/span&gt; in Raw Chicken Meat. Applied and Environmental Microbiology, 86(22), e01195-01120. doi:10.1128/AEM.01195-20
  • Hennekinne, J.-A., De Buyser, M.-L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815-836. doi:10.1111/j.1574-6976.2011.00311.x
  • Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819-830. doi:https://doi.org/10.1016/j.foodres.2011.05.014
  • ISO, T. E. (2014). Microbiology of the food chain - Horizontal method for the enumeration of microorganisms - Part 1: Colony count at 30 degrees C by the pour plate technique. In (Vol. 4833-1).
  • Kevenk, T. O., & Terzi Gulel, G. (2016). Prevalence, Antimicrobial Resistance and Serotype Distribution of Listeria monocytogenes Isolated from Raw Milk and Dairy Products. Journal of Food Safety, 36(1), 11-18. doi:https://doi.org/10.1111/jfs.12208
  • Khare, P., Sonane, M., Nagar, Y., Moin, N., Ali, S., Gupta, K. C., & Satish, A. (2015). Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology, 9(4), 423-432. doi:10.3109/17435390.2014.940403
  • Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 107(4), 1193-1201. doi:https://doi.org/10.1111/j.1365-2672.2009.04303.x
  • Mirhosseini, M., & Arjmand, V. (2014). Reducing Pathogens by Using Zinc Oxide Nanoparticles and Acetic Acid in Sheep Meat. Journal of Food Protection, 77(9), 1599-1604. doi:10.4315/0362-028x.Jfp-13-210
  • Peng, Y.-H., Tsai, Y.-C., Hsiung, C.-E., Lin, Y.-H., & Shih, Y.-h. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials, 322, 348-356. doi:https://doi.org/10.1016/j.jhazmat.2016.10.003
  • Prev CDC (2019). Surveillance for Foodborne Disease Outbreaks United States, 2017: Annual Report.
  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., . . . Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84. doi:https://doi.org/10.1016/j.enmm.2017.12.006
  • Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-465. doi:https://doi.org/10.1016/j.nantod.2011.08.001
  • Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. Journal of Food Safety, 31(2), 211-218. doi:10.1111/j.1745-4565.2010.00287.x
  • Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., & Wang, Z. (2016). A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 8(7), 176. Retrieved from https://www.mdpi.com/2072-6651/8/7/176
  • Yadav T., M. A. A., Mungray A.K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In W. D. (Ed.), Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Vol. 230, pp. 83-110): Springer, Cham.

Çinko Oksit Nanopartiküllerin (ZnO-NP) Önemli Gıda Kaynaklı Patojenler Üzerine İn Vitro Kontaminasyon Etkisi

Year 2021, Volume: 32 Issue: 1, 1 - 5, 30.06.2021
https://doi.org/10.35864/evmd.861846

Abstract

Çinko oksit (ZnO) ilaç, kozmetik, boya, tekstil ve gıda endüstrilerinde yüzeyleri kaplamak, UV ışınlarını absorbe etmek için uzun yıllardır kullanılmaktadır. Aynı zamanda nano ölçekte antimikrobiyal özellikleri nedeniyle dekontaminasyon için de önemli bir kimyasal olarak tanımlanmıştır. Çinko, birçok besinde bulunan bir element olup, yetişkinler için izin verilen günlük alım miktarı 8-11 mg olarak bildirilmiştir. Çinko Oksit Nanopartiküller (ZnO-NP'ler) ise zorlu gıda işleme koşulları altında stabil kalabilmeleri nedeniyle genellikle güvenli olarak (GRAS) kabul edilmişlerdir. Organik asitlerle karşılaştırıldığında, ZnO-NP'lerin dayanıklı, seçici ve ısıya daha dirençli oldukları belirlenmiştir. Çalışmamızda, ZnO-NP'lerin S. enteritidis, S. typhimurium, S. aureus, L. monocytogenes ve E. coli O157 üzerindeki dekontaminasyon etkisini anlamak ve dekontaminasyon amacıyla yeni, güvenli ajanlar geliştirmek hedeflenmiştir. Bu amaçla, antimikrobiyal etkinin anlaşılması için Tryptic Soy Broth içerisine nihai konsantrasyonu 20 mMolar olacak şekilde <50 µ büyüklüğünde ZnO-NP'ler eklenmiştir. Patojenlerin inokülasyonundan sonra, 0., 1., 2., 4., 6., 8., 12. ve 24. saatlerde Tryptic Soy Agar’da dökme plak yöntemi ile bakteri sayımları yapılmıştır. Sonuç olarak ZnO-NP'lerin dekontaminasyon etkisi 24 saat sonunda, S. enteritidis ve S. aureus 3 Log CFU / mL., S. typhimurium ve E. coli O157 4 Log CFU / mL., L. monocytogenes ise 2 Log CFU / mL. olarak belirlenmiştir.

Project Number

-

References

  • Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. doi:https://doi.org/10.1016/j.scitotenv.2011.01.014
  • Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61(1), 1-10. doi:https://doi.org/10.1016/S0168-1605(00)00377-9
  • Bharat, T. C., Shubham, Mondal, S., S.Gupta, H., Singh, P. K., & Das, A. K. (2019). Synthesis of Doped Zinc Oxide Nanoparticles: A Review. Materials Today: Proceedings, 11, 767-775. doi:https://doi.org/10.1016/j.matpr.2019.03.041
  • Dar, M. A., Ahmad, S. M., Bhat, S. A., Ahmed, R., Urwat, U., Mumtaz, P. T., . . . Ganai, N. A. (2017). Salmonella typhimurium in poultry: a review. World's Poultry Science Journal, 73(2), 345-354. doi:10.1017/S0043933917000204
  • Das, S., Sinha, S., Das, B., Jayabalan, R., Suar, M., Mishra, A., . . . Tripathy, S. K. (2017). Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles. Scientific Reports, 7(1), 104. doi:10.1038/s41598-017-00173-0
  • Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97, 954-965. doi:https://doi.org/10.1016/j.msec.2018.12.102
  • El-Mashad, H. M., & Pan, Z. (2015). Food Decontamination Using Nanomaterials. MOJ Food Processing & Technology, 1(2). doi:10.15406/mojfpt.2015.01.00011
  • Fonseca, B. B., Silva, P. L. A. P. A., Silva, A. C. A., Dantas, N. O., de Paula, A. T., Olivieri, O. C. L., . . . Goulart, L. R. (2019). Nanocomposite of Ag-Doped ZnO and AgO Nanocrystals as a Preventive Measure to Control Biofilm Formation in Eggshell and Salmonella spp. Entry Into Eggs. Frontiers in Microbiology, 10(217). doi:10.3389/fmicb.2019.00217
  • Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113(1), 1-15. doi:https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  • Habeeb Rahman, A. P., Misra, A. J., Das, S., Das, B., Jayabalan, R., Suar, M., . . . Tripathy, S. K. (2018). Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles. Chemical Engineering Journal, 336, 476-488. doi:https://doi.org/10.1016/j.cej.2017.12.053
  • Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. d., Rojo, T., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:https://doi.org/10.1016/j.tibtech.2012.06.004
  • Hakeem, M. J., Feng, J., Nilghaz, A., Ma, L., Seah, H. C., Konkel, M. E., & Lu, X. (2020). Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls &lt;span class=&quot;named-content genus-species&quot; id=&quot;named-content-1&quot;&gt;Campylobacter jejuni&lt;/span&gt; in Raw Chicken Meat. Applied and Environmental Microbiology, 86(22), e01195-01120. doi:10.1128/AEM.01195-20
  • Hennekinne, J.-A., De Buyser, M.-L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815-836. doi:10.1111/j.1574-6976.2011.00311.x
  • Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819-830. doi:https://doi.org/10.1016/j.foodres.2011.05.014
  • ISO, T. E. (2014). Microbiology of the food chain - Horizontal method for the enumeration of microorganisms - Part 1: Colony count at 30 degrees C by the pour plate technique. In (Vol. 4833-1).
  • Kevenk, T. O., & Terzi Gulel, G. (2016). Prevalence, Antimicrobial Resistance and Serotype Distribution of Listeria monocytogenes Isolated from Raw Milk and Dairy Products. Journal of Food Safety, 36(1), 11-18. doi:https://doi.org/10.1111/jfs.12208
  • Khare, P., Sonane, M., Nagar, Y., Moin, N., Ali, S., Gupta, K. C., & Satish, A. (2015). Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology, 9(4), 423-432. doi:10.3109/17435390.2014.940403
  • Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 107(4), 1193-1201. doi:https://doi.org/10.1111/j.1365-2672.2009.04303.x
  • Mirhosseini, M., & Arjmand, V. (2014). Reducing Pathogens by Using Zinc Oxide Nanoparticles and Acetic Acid in Sheep Meat. Journal of Food Protection, 77(9), 1599-1604. doi:10.4315/0362-028x.Jfp-13-210
  • Peng, Y.-H., Tsai, Y.-C., Hsiung, C.-E., Lin, Y.-H., & Shih, Y.-h. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials, 322, 348-356. doi:https://doi.org/10.1016/j.jhazmat.2016.10.003
  • Prev CDC (2019). Surveillance for Foodborne Disease Outbreaks United States, 2017: Annual Report.
  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., . . . Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84. doi:https://doi.org/10.1016/j.enmm.2017.12.006
  • Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-465. doi:https://doi.org/10.1016/j.nantod.2011.08.001
  • Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. Journal of Food Safety, 31(2), 211-218. doi:10.1111/j.1745-4565.2010.00287.x
  • Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., & Wang, Z. (2016). A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 8(7), 176. Retrieved from https://www.mdpi.com/2072-6651/8/7/176
  • Yadav T., M. A. A., Mungray A.K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In W. D. (Ed.), Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Vol. 230, pp. 83-110): Springer, Cham.
There are 26 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section Original Article
Authors

Tahsin Onur Kevenk 0000-0003-2519-8060

Ahmet Koluman 0000-0001-5308-8884

Project Number -
Early Pub Date January 7, 2021
Publication Date June 30, 2021
Submission Date January 15, 2021
Published in Issue Year 2021 Volume: 32 Issue: 1

Cite

APA Kevenk, T. O., & Koluman, A. (2021). Invitro Decontamination Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Important Foodborne Pathogens. Etlik Veteriner Mikrobiyoloji Dergisi, 32(1), 1-5. https://doi.org/10.35864/evmd.861846

download