Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 109 - 115, 15.12.2020
https://doi.org/10.33401/fujma.690424

Abstract

References

  • [1] R. Hamming, Error detecting and error correcting codes, The Bell Syst. Tech. J., 29 (1950), 147-160.
  • [2] F. J. MacWilliams, Codes and ideals in group algebra, Comb. Math. Appl., (1969), 317-328.
  • [3] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math, 31(3) (2006), 319-335.
  • [4] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, (2007), arXiv:0710.5893v1 [cs.IT].
  • [5] M. Hamed, Constructing codes from group rings, Msc dissertation, Umm Al-Qura University, 2018.
  • [6] M. Hamed, A. Khammash, Coding matrices for GL (2, q), Fundam. J. Math. Appl., 1(2) (2018), 118-130.
  • [7] P. Hurley, T. Hurley, Block codes from matrix and group rings, Chapter 5, in Selected topics in information and coding theory, I. Woungang, S. Misra, (Eds.), World Scientific, (2010), 159-194.

Coding Matrices for the Semi-Direct Product Groups

Year 2020, Volume: 3 Issue: 2, 109 - 115, 15.12.2020
https://doi.org/10.33401/fujma.690424

Abstract

We shall determine the coding matrix of the semi-direct product group $ G = C_{n} \rtimes_{\phi} C_{m} $ ; $ \phi : C_{m} \longrightarrow Aut(C_{n}) $ of two cyclic groups in order to generalize the known result for the dihedral group $D_{2n}$, which is known to be a semi-direct of the two cyclic groups $C_{n} \ , \ C_{2}$.

References

  • [1] R. Hamming, Error detecting and error correcting codes, The Bell Syst. Tech. J., 29 (1950), 147-160.
  • [2] F. J. MacWilliams, Codes and ideals in group algebra, Comb. Math. Appl., (1969), 317-328.
  • [3] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math, 31(3) (2006), 319-335.
  • [4] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, (2007), arXiv:0710.5893v1 [cs.IT].
  • [5] M. Hamed, Constructing codes from group rings, Msc dissertation, Umm Al-Qura University, 2018.
  • [6] M. Hamed, A. Khammash, Coding matrices for GL (2, q), Fundam. J. Math. Appl., 1(2) (2018), 118-130.
  • [7] P. Hurley, T. Hurley, Block codes from matrix and group rings, Chapter 5, in Selected topics in information and coding theory, I. Woungang, S. Misra, (Eds.), World Scientific, (2010), 159-194.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Amnah Alkinani 0000-0001-8208-7995

Ahmed Khammash 0000-0001-8208-7995

Publication Date December 15, 2020
Submission Date February 17, 2020
Acceptance Date July 8, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Alkinani, A., & Khammash, A. (2020). Coding Matrices for the Semi-Direct Product Groups. Fundamental Journal of Mathematics and Applications, 3(2), 109-115. https://doi.org/10.33401/fujma.690424
AMA Alkinani A, Khammash A. Coding Matrices for the Semi-Direct Product Groups. Fundam. J. Math. Appl. December 2020;3(2):109-115. doi:10.33401/fujma.690424
Chicago Alkinani, Amnah, and Ahmed Khammash. “Coding Matrices for the Semi-Direct Product Groups”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 109-15. https://doi.org/10.33401/fujma.690424.
EndNote Alkinani A, Khammash A (December 1, 2020) Coding Matrices for the Semi-Direct Product Groups. Fundamental Journal of Mathematics and Applications 3 2 109–115.
IEEE A. Alkinani and A. Khammash, “Coding Matrices for the Semi-Direct Product Groups”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 109–115, 2020, doi: 10.33401/fujma.690424.
ISNAD Alkinani, Amnah - Khammash, Ahmed. “Coding Matrices for the Semi-Direct Product Groups”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 109-115. https://doi.org/10.33401/fujma.690424.
JAMA Alkinani A, Khammash A. Coding Matrices for the Semi-Direct Product Groups. Fundam. J. Math. Appl. 2020;3:109–115.
MLA Alkinani, Amnah and Ahmed Khammash. “Coding Matrices for the Semi-Direct Product Groups”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 109-15, doi:10.33401/fujma.690424.
Vancouver Alkinani A, Khammash A. Coding Matrices for the Semi-Direct Product Groups. Fundam. J. Math. Appl. 2020;3(2):109-15.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a