Research Article
BibTex RIS Cite

Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi

Year 2017, Volume: 29 Issue: 2, 31 - 36, 01.10.2017

Abstract



Selüloz dünyada en yaygın bulunan makromoleküler
yapılardan biridir ve genellikle bitkilerden elde edilir. Kâğıt kullanımının
artması ve tıp alanındaki bazı gelişmelerden dolayı günümüzde araştırmacılar
alternatif selüloz üretme yöntemlerine odaklanmışlardır. Bakteriyel selüloz
formül olarak bitkisel selüloz ile aynı olmasına rağmen su tutma kapasitesi,
polimerizasyon derecesi ve yüksek saflık gibi bazı özellikler bakımından
bitkisel selülozdan farklıdır. Bu çalışmada, besi yeri ve karbon kaynağı olarak
şeker pancarı melası kullanılarak Gluconacetobacter
 xylinus
NRRL B-759 tarafından
bakteriyel selüloz üretimi incelenmiştir. Bu amaçla, bakteriyel selüloz
üretiminde melas konsantrasyonunun etkisi (40-240 g/L) ve besi yerine etanol
ilavesinin etkisi (5-20 g/L) araştırılmıştır. Sonuç olarak melas
konsantrasyonunun artmasıyla 200 g/L konsantrasyona kadar bakteriyel selüloz
üretiminin arttığı ve daha sonra azaldığı görülmüştür. Etanol ilavesinin
yapıldığı çalışmalarda etanollü besi yerinde üretilen bakteriyel selüloz
miktarının etanolsüz ortama göre en çok 10 g/L etanol ilavesinde arttığı
görülmüştür.     




References

  • 1. Czaja, W., Romanovicz, D. and Brown, R. M. (2004). Structural Investigations of Microbial Cellulose produced in Stationary and Agitated Culture, Cellulose, 11.
  • 2. Dazzo, F. B., Napoli, C., Dazzo, F., & Hubbell, D. (1975). Production of cellulose microfibrils in Rhizobium Production of Cellulose Microfibrils by Rhizobium1, (September 2016).
  • 3. Gupta, B. S. H. S. G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple, 1823–1828. doi:10.1007/s11274-010-0363-1
  • 4. Phisalaphong, M., & Jatupaiboon, N. (2008). Biosynthesis and characterization of bacteria cellulose – chitosan film, 74, 482–488. doi:10.1016/j.carbpol.2008.04.004
  • 5. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial Cellulose : Fermentative Production and Applications, 47(2), 107–124.
  • 6. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A. A., & Mandala, I. (2016). Food Hydrocolloids Bacterial cellulose as stabilizer of o / w emulsions. Food hydrocolloids, 53, 225–232. doi:10.1016/j.foodhyd.2014.12.003
  • 7. Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335. doi:10.1016/j.carbpol.2008.11.009
  • 8. Zeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506–513. doi:10.1016/j.carbpol.2011.02.034
  • 9. Chen, L. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism, (October). doi:10.1016/j.biortech.2012.10.029
  • 10. Guo, X., Cavka, A., Jönsson, L. J., & Hong, F. (2013). Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production, 1–14.
  • 11. Li, Z., Wang, L., Hua, J., Jia, S., Zhang, J., & Liu, H. (2015). Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115–119. doi:10.1016/j.carbpol.2014.11.061
  • 12. Shoda, S. O. B. M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor, 45–51. doi:10.1007/s00253-004-1723-2
  • 13. Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. doi:10.1016/j.carbpol.2014.10.008 14. Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Italian Oral Surgery, 2, 113–119. doi:10.1016/j.aaspro.2014.11.017
  • 15. Krystynowicz, A., Czaja, W., Jezierska, A. W.-, Gonc, M., Mis´kiewicz, A.-, Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(July), 189–195. doi:10.1038/sj.jim.7000303
  • 16. Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40(2), 137–143. doi:10.1016/S0144-8617(99)00050-8
  • 17. Watanabe, K., & Yamanaka, S. (1995). Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions. Bioscience, Biotechnology, and Biochemistry, 59(1), 65–68. doi:10.1271/bbb.59.65
  • 18. Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering, 85(6), 598–603. doi:10.1016/S0922-338X(98)80012-3
  • 19. Maréchal, Y., & Chanzy, H. (2000). The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry. Journal of Molecular Structure, 523(1-3), 183–196. doi:10.1016/S0022-2860(99)00389-0
  • 20. Nelson, M.L., O’Connor, R. T. (1964). Bands, Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part 1. Spectra of Lattice Types I, II; III and Of Amorphous Cellulose. 8, (Journal of Applied Polymer Science), 1311–1324.
  • 21. Park, J.K., Park, Y.H., Jung, J. Y. (2003). Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated From Rotten Apple, (Biotechnol. Bioproc), 83–88.
Year 2017, Volume: 29 Issue: 2, 31 - 36, 01.10.2017

Abstract

References

  • 1. Czaja, W., Romanovicz, D. and Brown, R. M. (2004). Structural Investigations of Microbial Cellulose produced in Stationary and Agitated Culture, Cellulose, 11.
  • 2. Dazzo, F. B., Napoli, C., Dazzo, F., & Hubbell, D. (1975). Production of cellulose microfibrils in Rhizobium Production of Cellulose Microfibrils by Rhizobium1, (September 2016).
  • 3. Gupta, B. S. H. S. G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple, 1823–1828. doi:10.1007/s11274-010-0363-1
  • 4. Phisalaphong, M., & Jatupaiboon, N. (2008). Biosynthesis and characterization of bacteria cellulose – chitosan film, 74, 482–488. doi:10.1016/j.carbpol.2008.04.004
  • 5. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial Cellulose : Fermentative Production and Applications, 47(2), 107–124.
  • 6. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A. A., & Mandala, I. (2016). Food Hydrocolloids Bacterial cellulose as stabilizer of o / w emulsions. Food hydrocolloids, 53, 225–232. doi:10.1016/j.foodhyd.2014.12.003
  • 7. Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335. doi:10.1016/j.carbpol.2008.11.009
  • 8. Zeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506–513. doi:10.1016/j.carbpol.2011.02.034
  • 9. Chen, L. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism, (October). doi:10.1016/j.biortech.2012.10.029
  • 10. Guo, X., Cavka, A., Jönsson, L. J., & Hong, F. (2013). Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production, 1–14.
  • 11. Li, Z., Wang, L., Hua, J., Jia, S., Zhang, J., & Liu, H. (2015). Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115–119. doi:10.1016/j.carbpol.2014.11.061
  • 12. Shoda, S. O. B. M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor, 45–51. doi:10.1007/s00253-004-1723-2
  • 13. Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. doi:10.1016/j.carbpol.2014.10.008 14. Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Italian Oral Surgery, 2, 113–119. doi:10.1016/j.aaspro.2014.11.017
  • 15. Krystynowicz, A., Czaja, W., Jezierska, A. W.-, Gonc, M., Mis´kiewicz, A.-, Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(July), 189–195. doi:10.1038/sj.jim.7000303
  • 16. Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40(2), 137–143. doi:10.1016/S0144-8617(99)00050-8
  • 17. Watanabe, K., & Yamanaka, S. (1995). Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions. Bioscience, Biotechnology, and Biochemistry, 59(1), 65–68. doi:10.1271/bbb.59.65
  • 18. Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering, 85(6), 598–603. doi:10.1016/S0922-338X(98)80012-3
  • 19. Maréchal, Y., & Chanzy, H. (2000). The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry. Journal of Molecular Structure, 523(1-3), 183–196. doi:10.1016/S0022-2860(99)00389-0
  • 20. Nelson, M.L., O’Connor, R. T. (1964). Bands, Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part 1. Spectra of Lattice Types I, II; III and Of Amorphous Cellulose. 8, (Journal of Applied Polymer Science), 1311–1324.
  • 21. Park, J.K., Park, Y.H., Jung, J. Y. (2003). Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated From Rotten Apple, (Biotechnol. Bioproc), 83–88.
There are 20 citations in total.

Details

Journal Section MBD
Authors

Y. Emre Öz This is me

Mehmet Kalender

Publication Date October 1, 2017
Submission Date January 22, 2017
Published in Issue Year 2017 Volume: 29 Issue: 2

Cite

APA Öz, Y. E., & Kalender, M. (2017). Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 31-36.
AMA Öz YE, Kalender M. Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. October 2017;29(2):31-36.
Chicago Öz, Y. Emre, and Mehmet Kalender. “Şeker Pancarı Melası Kullanılarak Gluconacetobacter Xylinum NRRL B-759 Ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 2 (October 2017): 31-36.
EndNote Öz YE, Kalender M (October 1, 2017) Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29 2 31–36.
IEEE Y. E. Öz and M. Kalender, “Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 2, pp. 31–36, 2017.
ISNAD Öz, Y. Emre - Kalender, Mehmet. “Şeker Pancarı Melası Kullanılarak Gluconacetobacter Xylinum NRRL B-759 Ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29/2 (October 2017), 31-36.
JAMA Öz YE, Kalender M. Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29:31–36.
MLA Öz, Y. Emre and Mehmet Kalender. “Şeker Pancarı Melası Kullanılarak Gluconacetobacter Xylinum NRRL B-759 Ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 2, 2017, pp. 31-36.
Vancouver Öz YE, Kalender M. Şeker Pancarı Melası Kullanılarak Gluconacetobacter xylinum NRRL B-759 ile Bakteriyel Selüloz Üretimi Üzerine Etanolün Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29(2):31-6.