Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 40 Sayı: 4, 2471 - 2484, 31.12.2025
https://doi.org/10.17341/gazimmfd.1643116

Öz

Kaynakça

  • 1. Er A.O., Aydınlı O.M., Investigation of mechanical and physical properties of PLA and steel-added PLA filament materials used in melted filament manufacturing method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1285-1302, 2023.
  • 2. Özbay Kısasöz B., Tütük İ., Koç E., Investigation of wear behavior of PA 12 matrix ceramic reinforced composites produced by selective laser sintering method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1029-1036, 2023.
  • 3. Gibson I., Rosen D.W., Stucker B., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York, A.B.D., 2015.
  • 4. Kartal Y., Daş M.T., An overview of the evolution of additive manufacturing in sensor and biomaterial production, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2191-2204, 2023.
  • 5. Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I. et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann., 65 (2), 737-760, 2016.
  • 6. Bandyopadhyay A., Bose S., Additive Manufacturing, Taylor & Francis, CRC Press 2015.
  • 7. Gebhardt A., Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing, Hanser Publishers, 2012.
  • 8. ASM International, ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, 2025.
  • 9. ASM International, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 2024.
  • 10. Viswanathan U.K., Tewari R., Dey G., Precipitation hardening in Monel K500, 17-4 PH stainless steel and 350 Grade Maraging Steel, Trans. Indian Inst. Met., 59, 107-121, 2006.
  • 11. SAE International, AMS 5604: Steel, Corrosion-Resistant, Sheet, Strip, and Plate 16.5Cr - 4.0Ni - 4.0Cu - 0.30Cb Solution Heat Treated, Precipitation Hardenable, 2013.
  • 12. Davis J.R. (Ed.), Stainless Steels, ASM International, 1994.
  • 13. Callister W.D., Materials Science and Engineering: An Introduction, 7. Baskı, John Wiley & Sons, 2007.
  • 14. Hecker S.S., Hecker S.S., Stout M.G., Staudhammer K.P., Smith J.L., Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A, 13 (4), 619-626, 1982.
  • 15. Abbaschian R., Reed-Hill R.E., Physical Metallurgy Principles, 4. Baskı, Cengace Learning, Stamford, USA, 2009.
  • 16. Oberg E. et al., Machinery’s Handbook, 31. Baskı, Industrial Press, Connecticut, USA, 2020.
  • 17. Folkhard E., Welding metallurgy of stainless steels, Springer, Wien, Austria, 2012.
  • 18. Person P., Mohan N.K., Pandey S., Additive Manufacturing: Advanced Materials and Design Techniques, Taylor & Francis, 2023.
  • 19. Jadhav M., Mansoura A., Dehghan S., Barka N. et al., Investigation into the effect of process parameters on density, surface roughness, and mechanical properties of 316L stainless steel fabricated by selective laser melting, Int. J. Adv. Manuf. Technol., 130, 2547-2562, 2024.
  • 20. Gong H., Rafi K., Gu H., Starr T., Stucker B., Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 1 (4), 87-98, 2014.
  • 21. Li C., Liu Z.Y., Fang X.Y., Guo Y.B., Residual Stress in Metal Additive Manufacturing, Procedia CIRP, 71, 348-353, 2018.
  • 22. Trzepiecinski T., Lemu H.G., Effect of computational parameters on springback prediction by numerical simulation, Metals, 7(9), 380, 2017.
  • 23. Thipprakmas S., Phanitwong W., Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique, Mater. Des., 32 (8-9), 4430-4436, 2011.
  • 24. Ahmed G.M.S., Ahmed H., Mohiuddin M.V., Sajid S.M.S., Experimental Evaluation of Springback in Mild Steel and its Validation Using LS-DYNA, Procedia Mater. Sci., 6, 1376, 2014.
  • 25. Garcia-Romeu M.L., Ciurana J., Ferrer I., Springback determination of sheet metals in an air bending process based on an experimental work, J. Mater. Process. Technol., 191, 174-177, 2007.
  • 26. Krinninger M., Opritescu D., Golle R., Volk W., Experimental investigation of the influence of punch velocity on the springback behavior and the flat length in free bending, Procedia CIRP, 41, 1066-1071, 2016.
  • 27. ASTM A564/A564M, Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes, 2021.
  • 28. Li Cong et al., Effect of heat treatment on microstructure and mechanical properties of 17-4PH stainless steel manufactured by laser-powder bed fusion, J. Mater. Res. Technol., 26, 5707-5717, 2023.
  • 29. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009.
  • 30. Aydin, K., et al. Increasing of Deformation Strength: Evaluating of Local Heating on Selective Laser-Melted AlSi10Mg, J. Mater. Eng. Perform, 34, 19895-19901, 2025.
  • 31. Hsu T.-H. et al., Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel, J. Alloys Compd., 803, 30-41, 2019.
  • 32. Weaver J.S. et al., The effects of particle size distribution on the rheological properties of the powder and the mechanical properties of additively manufactured 17-4 PH stainless steel, Addit. Manuf., 39, 101851, 2021.
  • 33. Nalli F., Cortese L., Concli F., Ductile damage assessment of Ti6Al4V, 17-4PH and AlSi10Mg for additive manufacturing, Eng. Fract. Mech., 241, 107395, 2021.
  • 34. Yin D., Gienger, E.B., Croom, B.P. et al. Variability in mechanical properties of additively manufactured 17-4 PH stainless steel produced by multiple vendors: insights for qualification. Int. J. Adv. Manuf. Technol., 128, 3093–3103, 2023.
  • 35. Mower T.M., Long M.J., Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Mater. Sci. Eng., A, 651, 198-213, 2016.
  • 36. Burns D.E. et al., Investigating Additively Manufactured 17-4 PH for Structural Applications, J. Mater. Eng. Perform., 28 (8), 4943-4951, 2019.
  • 37. Huang R. et al., Additive manufacturing of 17-4PH stainless steel: Effect of heat treatment on microstructure evolution and strengthening behavior, Mater. Sci. Eng., A., 908, 146770, 2024.
  • 38. Yadollahi A. et al., Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, Int. J. Fatigue, 94, 218-235, 2017.
  • 39. Yadollahi, A, Shamsaei, N, Thompson, SM, Elwany, A, & Bian, L. Mechanical and Microstructural Properties of Selective Laser Melted 17-4 PH Stainless Steel. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Houston, Texas, USA. November 13–19, 2015. V02AT02A014.
  • 40. Sabooni S. et al., Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Addit. Manuf., 46, 102176, 2021.
  • 41. Do Yoo W. et al., Study on the Microstructure and Mechanical Properties of 17-4 PH Stainless Steel Depending on Heat Treatment and Aging Time, Solid State Phenomena, 118, 15-20, 2006.
  • 42. Stefania C., and Quirico S., On the Lack of Fusion Porosity in L-PBF Processes, Procedia CIRP, 112, 352-357, 2022.
  • 43. Cheng Zhang et al., Characterization of Porosity in Lack of Fusion Pores in Selective Laser Melting Using the Wavefunction, Mater. Res. Express, 10, 016501, 2023.
  • 44. Yifeng Li et al., Effect of Mechanical Properties, Microstructure and Residual Stress on the bending Springback Behavior of High-Strength Al–Mg–Si–Cu Alloy Tubes, J. Mater. Res. Technol., 28, 3609-3618, 2024.
  • 45. Min Zhang et al., Residual Stress Analysis and Its Effect on Springback for Multi-Step Pressbrake Bending, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 237 (12), 1787-1797, 2022.
  • 46. Quang V.D., The Optimization of Rotary Bending Die Process: Criteria for the Metal Sheet Angles and Springback Effects, Engineering, Technology & Applied Science Research, 15 (1), 20553-20558, 2025.
  • 47. Lawrence E. Murr et al., Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, J. Mater. Res. Technol., 1 (3), 167-177, 2012.
  • 48. Rafi, H.K., Pal, D., Patil, N. et al. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting, J. Mater. Eng. Perform, 23, 4421–4428, 2014.
  • 49. Mahmoudi M. et al., Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel, Rapid Prototyping J., 23 (2), 280-294, 2017.
  • 50. LeBrun T. et al., Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel, Mater. Des., 81, 44-53, 2015.
  • 51. Ponnusamy P. et al., A study of tensile behavior of SLM processed 17-4 PH stainless steel, Mater. Today Proc., 45, 4531-4534, 2021.
  • 52. Cong, Z.H., Jia, N., Sun, X. et al., Stress and Strain Partitioning of Ferrite and Martensite During Deformation, Metall. Mater. Trans. A., 40, 1383–1387, 2009.
  • 53. Hideto Kimura, Precipitation Behavior and 2-step Aging of 17-4PH Stainless Steel, Tetsu-to-Hagane, 86 (5), 343-348, 2000.
  • 54. Bing Bai et al., Effect of precipitates on hardening of 17-4PH martensitic stainless steel serviced at 300 °C in nuclear power plant, Ann. Nucl. Energy, 154, 108123, 2021.
  • 55. Kun Li et al., Homogenization timing effect on microstructure and precipitation strengthening of 17–4PH stainless steel fabricated by laser powder bed fusion, Addit. Manuf., 52, 102672, 2022.
  • 56. Sabooni S. et al., Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Addit. Manuf., 46, 102176, 2021.

Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri

Yıl 2025, Cilt: 40 Sayı: 4, 2471 - 2484, 31.12.2025
https://doi.org/10.17341/gazimmfd.1643116

Öz

Bu çalışmada, eklemeli imalat yöntemlerinden Seçici Lazer Ergitme (SLM) teknolojisi kullanılarak üç farklı yapı oryantasyonunda (XY, YZ ve XZ) üretilen 17-4 PH paslanmaz çelik malzemelere uygulanan ısıl işlemin mekanik özelliklere, deformasyon dayanımına ve mikroyapıya etkileri deneysel araştırılmıştır. Sac formda üretilen deney numuneleri çökelme sertleşme ısıl işlemine tabi tutularak 17-4 PH malzeme için Kondisyon A (Kon-A) elde edilmiştir. Deneysel çalışmada üretildiği durumdaki ve Kon-A ısıl işlemli numunelerin bükme ile deformasyona karşı dayanımları 30°, 45° ve 60° açılı V-bükme kalıplarında incelenmiştir. Kon-A numuneler en fazla 45° açı sınırına kadar kırılmadan şekillendirilebilirken, üretildiği durumda olan numuneler 60° açıda deformasyona dayanarak kırılmadan şekillendirilebilmiştir. En yüksek mekanik özelliklerin hem üretildiği durumdaki hem de Kon-A için YZ yapı oryantasyonunda olduğu gözlemlenmiştir. Bu durumun, üretildiği durumdaki numunelerde yüksek oranda bulunan östenitin ısıl işlem prosesi ile martenzite dönüşmesinden kaynaklandığı gözlemlenmiştir. Üretildiği durumda olan numunelerde ortalama 988 MPa maksimum çekme dayanımı ve %12,35 uzama miktarı gözlemlenirken Kon-A numunelerde ise ortalama 1370 MPa akma dayanımı ve %7,5 uzama gözlemlenmiştir. Mekanik özelliklerdeki artışa bağlı olarak geri esneme değerlerinin de Kon-A numunelerde belirgin bir artış gösterdiği tespit edilmiştir.

Kaynakça

  • 1. Er A.O., Aydınlı O.M., Investigation of mechanical and physical properties of PLA and steel-added PLA filament materials used in melted filament manufacturing method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1285-1302, 2023.
  • 2. Özbay Kısasöz B., Tütük İ., Koç E., Investigation of wear behavior of PA 12 matrix ceramic reinforced composites produced by selective laser sintering method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1029-1036, 2023.
  • 3. Gibson I., Rosen D.W., Stucker B., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York, A.B.D., 2015.
  • 4. Kartal Y., Daş M.T., An overview of the evolution of additive manufacturing in sensor and biomaterial production, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2191-2204, 2023.
  • 5. Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I. et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann., 65 (2), 737-760, 2016.
  • 6. Bandyopadhyay A., Bose S., Additive Manufacturing, Taylor & Francis, CRC Press 2015.
  • 7. Gebhardt A., Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing, Hanser Publishers, 2012.
  • 8. ASM International, ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, 2025.
  • 9. ASM International, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 2024.
  • 10. Viswanathan U.K., Tewari R., Dey G., Precipitation hardening in Monel K500, 17-4 PH stainless steel and 350 Grade Maraging Steel, Trans. Indian Inst. Met., 59, 107-121, 2006.
  • 11. SAE International, AMS 5604: Steel, Corrosion-Resistant, Sheet, Strip, and Plate 16.5Cr - 4.0Ni - 4.0Cu - 0.30Cb Solution Heat Treated, Precipitation Hardenable, 2013.
  • 12. Davis J.R. (Ed.), Stainless Steels, ASM International, 1994.
  • 13. Callister W.D., Materials Science and Engineering: An Introduction, 7. Baskı, John Wiley & Sons, 2007.
  • 14. Hecker S.S., Hecker S.S., Stout M.G., Staudhammer K.P., Smith J.L., Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A, 13 (4), 619-626, 1982.
  • 15. Abbaschian R., Reed-Hill R.E., Physical Metallurgy Principles, 4. Baskı, Cengace Learning, Stamford, USA, 2009.
  • 16. Oberg E. et al., Machinery’s Handbook, 31. Baskı, Industrial Press, Connecticut, USA, 2020.
  • 17. Folkhard E., Welding metallurgy of stainless steels, Springer, Wien, Austria, 2012.
  • 18. Person P., Mohan N.K., Pandey S., Additive Manufacturing: Advanced Materials and Design Techniques, Taylor & Francis, 2023.
  • 19. Jadhav M., Mansoura A., Dehghan S., Barka N. et al., Investigation into the effect of process parameters on density, surface roughness, and mechanical properties of 316L stainless steel fabricated by selective laser melting, Int. J. Adv. Manuf. Technol., 130, 2547-2562, 2024.
  • 20. Gong H., Rafi K., Gu H., Starr T., Stucker B., Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 1 (4), 87-98, 2014.
  • 21. Li C., Liu Z.Y., Fang X.Y., Guo Y.B., Residual Stress in Metal Additive Manufacturing, Procedia CIRP, 71, 348-353, 2018.
  • 22. Trzepiecinski T., Lemu H.G., Effect of computational parameters on springback prediction by numerical simulation, Metals, 7(9), 380, 2017.
  • 23. Thipprakmas S., Phanitwong W., Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique, Mater. Des., 32 (8-9), 4430-4436, 2011.
  • 24. Ahmed G.M.S., Ahmed H., Mohiuddin M.V., Sajid S.M.S., Experimental Evaluation of Springback in Mild Steel and its Validation Using LS-DYNA, Procedia Mater. Sci., 6, 1376, 2014.
  • 25. Garcia-Romeu M.L., Ciurana J., Ferrer I., Springback determination of sheet metals in an air bending process based on an experimental work, J. Mater. Process. Technol., 191, 174-177, 2007.
  • 26. Krinninger M., Opritescu D., Golle R., Volk W., Experimental investigation of the influence of punch velocity on the springback behavior and the flat length in free bending, Procedia CIRP, 41, 1066-1071, 2016.
  • 27. ASTM A564/A564M, Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes, 2021.
  • 28. Li Cong et al., Effect of heat treatment on microstructure and mechanical properties of 17-4PH stainless steel manufactured by laser-powder bed fusion, J. Mater. Res. Technol., 26, 5707-5717, 2023.
  • 29. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009.
  • 30. Aydin, K., et al. Increasing of Deformation Strength: Evaluating of Local Heating on Selective Laser-Melted AlSi10Mg, J. Mater. Eng. Perform, 34, 19895-19901, 2025.
  • 31. Hsu T.-H. et al., Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel, J. Alloys Compd., 803, 30-41, 2019.
  • 32. Weaver J.S. et al., The effects of particle size distribution on the rheological properties of the powder and the mechanical properties of additively manufactured 17-4 PH stainless steel, Addit. Manuf., 39, 101851, 2021.
  • 33. Nalli F., Cortese L., Concli F., Ductile damage assessment of Ti6Al4V, 17-4PH and AlSi10Mg for additive manufacturing, Eng. Fract. Mech., 241, 107395, 2021.
  • 34. Yin D., Gienger, E.B., Croom, B.P. et al. Variability in mechanical properties of additively manufactured 17-4 PH stainless steel produced by multiple vendors: insights for qualification. Int. J. Adv. Manuf. Technol., 128, 3093–3103, 2023.
  • 35. Mower T.M., Long M.J., Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Mater. Sci. Eng., A, 651, 198-213, 2016.
  • 36. Burns D.E. et al., Investigating Additively Manufactured 17-4 PH for Structural Applications, J. Mater. Eng. Perform., 28 (8), 4943-4951, 2019.
  • 37. Huang R. et al., Additive manufacturing of 17-4PH stainless steel: Effect of heat treatment on microstructure evolution and strengthening behavior, Mater. Sci. Eng., A., 908, 146770, 2024.
  • 38. Yadollahi A. et al., Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, Int. J. Fatigue, 94, 218-235, 2017.
  • 39. Yadollahi, A, Shamsaei, N, Thompson, SM, Elwany, A, & Bian, L. Mechanical and Microstructural Properties of Selective Laser Melted 17-4 PH Stainless Steel. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Houston, Texas, USA. November 13–19, 2015. V02AT02A014.
  • 40. Sabooni S. et al., Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Addit. Manuf., 46, 102176, 2021.
  • 41. Do Yoo W. et al., Study on the Microstructure and Mechanical Properties of 17-4 PH Stainless Steel Depending on Heat Treatment and Aging Time, Solid State Phenomena, 118, 15-20, 2006.
  • 42. Stefania C., and Quirico S., On the Lack of Fusion Porosity in L-PBF Processes, Procedia CIRP, 112, 352-357, 2022.
  • 43. Cheng Zhang et al., Characterization of Porosity in Lack of Fusion Pores in Selective Laser Melting Using the Wavefunction, Mater. Res. Express, 10, 016501, 2023.
  • 44. Yifeng Li et al., Effect of Mechanical Properties, Microstructure and Residual Stress on the bending Springback Behavior of High-Strength Al–Mg–Si–Cu Alloy Tubes, J. Mater. Res. Technol., 28, 3609-3618, 2024.
  • 45. Min Zhang et al., Residual Stress Analysis and Its Effect on Springback for Multi-Step Pressbrake Bending, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 237 (12), 1787-1797, 2022.
  • 46. Quang V.D., The Optimization of Rotary Bending Die Process: Criteria for the Metal Sheet Angles and Springback Effects, Engineering, Technology & Applied Science Research, 15 (1), 20553-20558, 2025.
  • 47. Lawrence E. Murr et al., Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, J. Mater. Res. Technol., 1 (3), 167-177, 2012.
  • 48. Rafi, H.K., Pal, D., Patil, N. et al. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting, J. Mater. Eng. Perform, 23, 4421–4428, 2014.
  • 49. Mahmoudi M. et al., Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel, Rapid Prototyping J., 23 (2), 280-294, 2017.
  • 50. LeBrun T. et al., Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel, Mater. Des., 81, 44-53, 2015.
  • 51. Ponnusamy P. et al., A study of tensile behavior of SLM processed 17-4 PH stainless steel, Mater. Today Proc., 45, 4531-4534, 2021.
  • 52. Cong, Z.H., Jia, N., Sun, X. et al., Stress and Strain Partitioning of Ferrite and Martensite During Deformation, Metall. Mater. Trans. A., 40, 1383–1387, 2009.
  • 53. Hideto Kimura, Precipitation Behavior and 2-step Aging of 17-4PH Stainless Steel, Tetsu-to-Hagane, 86 (5), 343-348, 2000.
  • 54. Bing Bai et al., Effect of precipitates on hardening of 17-4PH martensitic stainless steel serviced at 300 °C in nuclear power plant, Ann. Nucl. Energy, 154, 108123, 2021.
  • 55. Kun Li et al., Homogenization timing effect on microstructure and precipitation strengthening of 17–4PH stainless steel fabricated by laser powder bed fusion, Addit. Manuf., 52, 102672, 2022.
  • 56. Sabooni S. et al., Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Addit. Manuf., 46, 102176, 2021.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Malzeme Karekterizasyonu, Malzeme Üretim Teknolojileri, Metaller ve Alaşım Malzemeleri , Üretim Metalurjisi, İmalat Süreçleri ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Uğur Sıtkı Türkyılmaz 0000-0002-0941-1338

İbrahim Karaağaç 0000-0001-6727-3650

Mehmet Okan Kabakçi 0000-0003-0086-9294

Barış Çetin 0000-0001-8615-8383

Gönderilme Tarihi 19 Şubat 2025
Kabul Tarihi 25 Haziran 2025
Erken Görünüm Tarihi 17 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 4

Kaynak Göster

APA Türkyılmaz, U. S., Karaağaç, İ., Kabakçi, M. O., Çetin, B. (2025). Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(4), 2471-2484. https://doi.org/10.17341/gazimmfd.1643116
AMA Türkyılmaz US, Karaağaç İ, Kabakçi MO, Çetin B. Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri. GUMMFD. Aralık 2025;40(4):2471-2484. doi:10.17341/gazimmfd.1643116
Chicago Türkyılmaz, Uğur Sıtkı, İbrahim Karaağaç, Mehmet Okan Kabakçi, ve Barış Çetin. “Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 4 (Aralık 2025): 2471-84. https://doi.org/10.17341/gazimmfd.1643116.
EndNote Türkyılmaz US, Karaağaç İ, Kabakçi MO, Çetin B (01 Aralık 2025) Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 4 2471–2484.
IEEE U. S. Türkyılmaz, İ. Karaağaç, M. O. Kabakçi, ve B. Çetin, “Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri”, GUMMFD, c. 40, sy. 4, ss. 2471–2484, 2025, doi: 10.17341/gazimmfd.1643116.
ISNAD Türkyılmaz, Uğur Sıtkı vd. “Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/4 (Aralık2025), 2471-2484. https://doi.org/10.17341/gazimmfd.1643116.
JAMA Türkyılmaz US, Karaağaç İ, Kabakçi MO, Çetin B. Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri. GUMMFD. 2025;40:2471–2484.
MLA Türkyılmaz, Uğur Sıtkı vd. “Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 4, 2025, ss. 2471-84, doi:10.17341/gazimmfd.1643116.
Vancouver Türkyılmaz US, Karaağaç İ, Kabakçi MO, Çetin B. Eklemeli imalat yöntemiyle üretilen 17-4 PH çeliklerde yapı oryantasyonu ve ısıl işlemin etkileri. GUMMFD. 2025;40(4):2471-84.