Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı

Yıl 2020, , 255 - 274, 25.10.2019
https://doi.org/10.17341/gazimmfd.460109

Öz

Bu çalışmada doğal gürültü tomografisi yöntemi
kullanılarak İzmir İç Körfezi 3-B üst kabuk hız yapısının ortaya konması
hedeflenmiştir. Çalışmada İzmirNET’e bağlı 17 istasyondan elde edilen 1 yıl
uzunluğunda doğal gürültü verileri kullanılmıştır. Yeterli sinyal/gürültü
oranına sahip verilerden yola çıkılarak çoklu süzgeç tekniği yardımıyla
dispersiyon eğrilerinden Rayleigh dalgası grup hızları elde edilmiştir.
Sonuçlar farklı periyot aralıkları için haritalanmıştır. Daha sonra 2, 4 ve 6
saniyelik periyotlara ait lokal dispersiyon eğrileri çıkartılarak ters çözüm
yardımıyla grup hızından kayma dalgası hızları elde edilmiştir. Körfez içi ve
yakın çevresinde bulunan çökel birimlere bağlı düşük hızlı alanlar, grup hızı
ve kayma dalgası hızı haritalarında 3 km derinliğe kadar net bir şekilde
gözlenmiştir. Bununla birlikte düşey yönlü derinlik kesitlerinde körfezin iç
kısmında sadece düşük değil yüksek hızlı alanların da varlığı saptanmıştır. Yöntem,
doğal gürültü tomografisi tekniği kullanılarak depremlere ihtiyaç duymadan
kabuk ve üst manto hakkında hassas ve yüksek çözünürlüklü görüntü sağlayabilir.
İleride geniş-bant veri seti kullanılarak 
Ege Bölgesine, Türkiye’ye veya yakın
coğrafyamızda yer alan bir bölgeye uygulanabilir.

Kaynakça

  • [1] Yang, Y., Ritzwoller, M.H., Levshin, A.L., Shapiro, N.M., Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int, 168(1), 259-274, 2007.
  • [2] Delph, J.R., Biryol, C.B., Beck, S.L., Zandt, G., Ward, K.M., Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey, Geophys. J. Int., 202(1), 261-276, 2015.
  • [3] Shirzad, T., Shomali, Z.H., Shallow crustal structure of the Tehran basin in Iran resolved by ambient noise tomography, Geophys. J. Int. 196(2), 1162-1176, 2014.
  • [4] Herrmann, R.B., Computer programs in seismology: an evolving tool for instruction and research, Seism. Res. Lett., 84(6), 1081-1088, 2013.
  • [5] Witek, M., van der Lee, S., Kang, T.S., Rayleigh wave group velocity distributions for East Asia using ambient seismic noise, Geophys. Res. Lett., 41(22), 8045-8052, 2014.
  • [6] Choi, J., Kang, T.S., Baag, C.E., Three-dimensional surface wave tomography for the upper crustal velocity structure of southern Korea using seismic noise correlations, Geosci. J., 13(4), 423-432, 2009.
  • [7] Tezel T., Erduran M., Alptekin Ö., Crustal shear wave velocity structure of Turkey by surface wave dispersion analysis, Ann. Geophys., 50 (2), 177-190, 2007.
  • [8] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P., Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, 488(1-4), 22-30, 2010.
  • [9] Gok, E., Chávez-García, F. J., Polat, O., Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Phys. Earth Planet. Inter., 229, 88-97, 2014.
  • [10] Yilmazer, S., Alacali M., Distribution of hot water resources and potentials of Izmir province, Proceedings World Geothermal Congress, Antalya, Turkey, 1-5, 24-29 Nisan 2005.
  • [11] Polat,O.,Ceken, U., Uran, T.,Gok, E., Yılmaz, N., Beyhan, M., Koc, N., Arslan, B., Yilmaz, D., Utku, M., IzmirNet: A strong-motion network in metropolitan Izmir, Western Anatolia, Turkey, Seism. Res. Lett., 80(5), 831-838, 2009.
  • [12] Kaypak, B., Three-dimensional Vp and Vp/Vs structure of theupper crust in the Erzincan Basin (eastern Turkey), J. Geophys. Res., 113, 1-20, 2008.
  • [13] Kaypak, B., Gokkaya, G., 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey, J. Volcanol. Geotherm. Res., 211-212, 47-60, 2012.
  • [14] Salah, M. K., Sahin, S., Destici, C., Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes, J. Seismol., 11(4), 415-432, 2007.
  • [15] Salah, M. K., Şahin, Ş., Topatan, U., Crustal velocity and Vp/Vs structures beneath central Anatolia from local seismic tomography, Arab. J. Geosci., 7(10), 4101-4118, 2014.
  • [16] Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239-1260, 2007.
  • [17] Yao, H., van Der Hilst, R.D., de Hoop, M.V., Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-1.Phase velocity maps, Geophys. J. Int., 166(2), 732-744, 2006.
  • [18] Calò, M., Kinnaert, X., Dorbath, C., Procedure to construct three-dimensional models of geothermal areas using seismic noise cross-correlations: application to the Soultz-sous-Forêts enchanced geothermal site, Geophys. J. Int., 194(3), 1893-1899, 2013.
  • [19] Fallahi, M.J., Obermann, A., Lupi, M., Karyono, K., Mazzini, A., The plumbing system feeding the Lusi eruption revealed by ambient noise tomography, J. Geophys. Res.: Sol EA, 122(10), 1-14, 2017.
  • [20] Sammarco, C., Cornwell, D.G., Rawlinson, N., Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic, Tectonophysics, 721, 1-11, 2017.
  • [21] Rawlinson, N., Sambridge, M., The fast marching method: and effective tool for tomographic imaging and tracking multiple phases in complex layered media, Explor. Geophys., 36(4), 341-350, 2005.
  • [22] Sethian J.A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93(4), 1591-1595, 1996.
  • [23] Özer Ç., Polat, O., 3-D crustal velocity structure of Izmir and surroundings, J. Fac. Eng. Archit. Gaz., 32(3), 733-747, 2017.
  • [24] Özer Ç., Polat, O., Determination of 1-D (One-Dimensional) Seismic Velocity Structure of Izmir and Surroundings, Dokuz Eylul University-Journal of Science and Engineering, 19(55), 147-168, 2017 (Turkish with English abstract).
  • [25] Ildem, F., The Tectonic Setting of Izmir Bay and Its Surroundings and Their Relations with the Geothermal Systems, MSc Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Izmir, 2005 (Turkish with English abstract).
  • [26] Özer, Ç., Investigation of crustal structure using local earthquake tomography in Aegean Region of Turkey, PhD Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, İzmir, 2017.
  • [27] Onay, Ş., Geophysical Investigations About Active Tectonics of the Izmir Inner Bay, PhD Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Izmir, 2012 (Turkish with English abstract).
  • [28] Wessel P., Smith W.H.F., GMT Version 5.1-Generic mapping tools graphics, Laboratory for Satellite Altimetry, NOAA/NESDIS/NODC, 123 p. 20047
  • [29] Goldstein, P., Dodge, D., Firpo, M., Minner, L., SAC2000: Signal processing and analysis tools for seismologist and engineers, invited contributionto “The IASPEI International handbook of earthquake and engineering seismology”, Edited by Lee, W. H. K., Kanamori, H., Jennings, P. C., Kisslinger, C., Academic Press, London, United Kingdom, 2003.
Yıl 2020, , 255 - 274, 25.10.2019
https://doi.org/10.17341/gazimmfd.460109

Öz

Kaynakça

  • [1] Yang, Y., Ritzwoller, M.H., Levshin, A.L., Shapiro, N.M., Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int, 168(1), 259-274, 2007.
  • [2] Delph, J.R., Biryol, C.B., Beck, S.L., Zandt, G., Ward, K.M., Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey, Geophys. J. Int., 202(1), 261-276, 2015.
  • [3] Shirzad, T., Shomali, Z.H., Shallow crustal structure of the Tehran basin in Iran resolved by ambient noise tomography, Geophys. J. Int. 196(2), 1162-1176, 2014.
  • [4] Herrmann, R.B., Computer programs in seismology: an evolving tool for instruction and research, Seism. Res. Lett., 84(6), 1081-1088, 2013.
  • [5] Witek, M., van der Lee, S., Kang, T.S., Rayleigh wave group velocity distributions for East Asia using ambient seismic noise, Geophys. Res. Lett., 41(22), 8045-8052, 2014.
  • [6] Choi, J., Kang, T.S., Baag, C.E., Three-dimensional surface wave tomography for the upper crustal velocity structure of southern Korea using seismic noise correlations, Geosci. J., 13(4), 423-432, 2009.
  • [7] Tezel T., Erduran M., Alptekin Ö., Crustal shear wave velocity structure of Turkey by surface wave dispersion analysis, Ann. Geophys., 50 (2), 177-190, 2007.
  • [8] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P., Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, 488(1-4), 22-30, 2010.
  • [9] Gok, E., Chávez-García, F. J., Polat, O., Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey, Phys. Earth Planet. Inter., 229, 88-97, 2014.
  • [10] Yilmazer, S., Alacali M., Distribution of hot water resources and potentials of Izmir province, Proceedings World Geothermal Congress, Antalya, Turkey, 1-5, 24-29 Nisan 2005.
  • [11] Polat,O.,Ceken, U., Uran, T.,Gok, E., Yılmaz, N., Beyhan, M., Koc, N., Arslan, B., Yilmaz, D., Utku, M., IzmirNet: A strong-motion network in metropolitan Izmir, Western Anatolia, Turkey, Seism. Res. Lett., 80(5), 831-838, 2009.
  • [12] Kaypak, B., Three-dimensional Vp and Vp/Vs structure of theupper crust in the Erzincan Basin (eastern Turkey), J. Geophys. Res., 113, 1-20, 2008.
  • [13] Kaypak, B., Gokkaya, G., 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey, J. Volcanol. Geotherm. Res., 211-212, 47-60, 2012.
  • [14] Salah, M. K., Sahin, S., Destici, C., Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes, J. Seismol., 11(4), 415-432, 2007.
  • [15] Salah, M. K., Şahin, Ş., Topatan, U., Crustal velocity and Vp/Vs structures beneath central Anatolia from local seismic tomography, Arab. J. Geosci., 7(10), 4101-4118, 2014.
  • [16] Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239-1260, 2007.
  • [17] Yao, H., van Der Hilst, R.D., de Hoop, M.V., Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-1.Phase velocity maps, Geophys. J. Int., 166(2), 732-744, 2006.
  • [18] Calò, M., Kinnaert, X., Dorbath, C., Procedure to construct three-dimensional models of geothermal areas using seismic noise cross-correlations: application to the Soultz-sous-Forêts enchanced geothermal site, Geophys. J. Int., 194(3), 1893-1899, 2013.
  • [19] Fallahi, M.J., Obermann, A., Lupi, M., Karyono, K., Mazzini, A., The plumbing system feeding the Lusi eruption revealed by ambient noise tomography, J. Geophys. Res.: Sol EA, 122(10), 1-14, 2017.
  • [20] Sammarco, C., Cornwell, D.G., Rawlinson, N., Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic, Tectonophysics, 721, 1-11, 2017.
  • [21] Rawlinson, N., Sambridge, M., The fast marching method: and effective tool for tomographic imaging and tracking multiple phases in complex layered media, Explor. Geophys., 36(4), 341-350, 2005.
  • [22] Sethian J.A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93(4), 1591-1595, 1996.
  • [23] Özer Ç., Polat, O., 3-D crustal velocity structure of Izmir and surroundings, J. Fac. Eng. Archit. Gaz., 32(3), 733-747, 2017.
  • [24] Özer Ç., Polat, O., Determination of 1-D (One-Dimensional) Seismic Velocity Structure of Izmir and Surroundings, Dokuz Eylul University-Journal of Science and Engineering, 19(55), 147-168, 2017 (Turkish with English abstract).
  • [25] Ildem, F., The Tectonic Setting of Izmir Bay and Its Surroundings and Their Relations with the Geothermal Systems, MSc Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Izmir, 2005 (Turkish with English abstract).
  • [26] Özer, Ç., Investigation of crustal structure using local earthquake tomography in Aegean Region of Turkey, PhD Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, İzmir, 2017.
  • [27] Onay, Ş., Geophysical Investigations About Active Tectonics of the Izmir Inner Bay, PhD Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Izmir, 2012 (Turkish with English abstract).
  • [28] Wessel P., Smith W.H.F., GMT Version 5.1-Generic mapping tools graphics, Laboratory for Satellite Altimetry, NOAA/NESDIS/NODC, 123 p. 20047
  • [29] Goldstein, P., Dodge, D., Firpo, M., Minner, L., SAC2000: Signal processing and analysis tools for seismologist and engineers, invited contributionto “The IASPEI International handbook of earthquake and engineering seismology”, Edited by Lee, W. H. K., Kanamori, H., Jennings, P. C., Kisslinger, C., Academic Press, London, United Kingdom, 2003.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Emre Mulumulu 0000-0001-8145-081X

Çağlar Özer Bu kişi benim 0000-0001-5401-2013

Elçin Gök 0000-0002-2643-1453

Francisco J. Chavez-garcia Bu kişi benim

Orhan Polat 0000-0001-9490-6839

Yayımlanma Tarihi 25 Ekim 2019
Gönderilme Tarihi 14 Eylül 2018
Kabul Tarihi 23 Nisan 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Mulumulu, E., Özer, Ç., Gök, E., Chavez-garcia, F. J., vd. (2019). Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 255-274. https://doi.org/10.17341/gazimmfd.460109
AMA Mulumulu E, Özer Ç, Gök E, Chavez-garcia FJ, Polat O. Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı. GUMMFD. Ekim 2019;35(1):255-274. doi:10.17341/gazimmfd.460109
Chicago Mulumulu, Emre, Çağlar Özer, Elçin Gök, Francisco J. Chavez-garcia, ve Orhan Polat. “Doğal gürültü Tomografisinden İzmir İç Körfezi’nin 3-B üst Kabuk hız yapısı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 1 (Ekim 2019): 255-74. https://doi.org/10.17341/gazimmfd.460109.
EndNote Mulumulu E, Özer Ç, Gök E, Chavez-garcia FJ, Polat O (01 Ekim 2019) Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 255–274.
IEEE E. Mulumulu, Ç. Özer, E. Gök, F. J. Chavez-garcia, ve O. Polat, “Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı”, GUMMFD, c. 35, sy. 1, ss. 255–274, 2019, doi: 10.17341/gazimmfd.460109.
ISNAD Mulumulu, Emre vd. “Doğal gürültü Tomografisinden İzmir İç Körfezi’nin 3-B üst Kabuk hız yapısı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (Ekim 2019), 255-274. https://doi.org/10.17341/gazimmfd.460109.
JAMA Mulumulu E, Özer Ç, Gök E, Chavez-garcia FJ, Polat O. Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı. GUMMFD. 2019;35:255–274.
MLA Mulumulu, Emre vd. “Doğal gürültü Tomografisinden İzmir İç Körfezi’nin 3-B üst Kabuk hız yapısı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 1, 2019, ss. 255-74, doi:10.17341/gazimmfd.460109.
Vancouver Mulumulu E, Özer Ç, Gök E, Chavez-garcia FJ, Polat O. Doğal gürültü tomografisinden İzmir İç Körfezi’nin 3-B üst kabuk hız yapısı. GUMMFD. 2019;35(1):255-74.