Farklı üretim parametreleri kullanılarak 3B yazıcı ile üretilen test numunelerinin sürünme davranışlarının deneysel olarak incelenmesi
Year 2023,
Volume: 38 Issue: 3, 1839 - 1848, 06.01.2023
Oğuz Doğan
,
Muhammed Safa Kamer
Abstract
3 boyutlu (3B) yazdırma teknolojisinin hızla gelişmesiyle birlikte, 3B yazıcılar ile üretilen ürünler daha fazla kullanılır hale gelmiştir. 3B yazıcılar kullanılarak gerçekleştirilen üretimlerde birçok farklı parametre kullanılmaktadır. Bu parametreler ürünün mekanik, fonksiyonel ve görsel özelliklerini doğrudan etkilemektedir. 3B yazıcı ile polimer malzemeler kullanılarak üretilen ürünlerin boyutlarında statik yükleme koşullarında sürünmeden dolayı önemli değişiklikler olmaktadır. Bu nedenle farklı üretim parametrelerinin 3B yazıcı ile üretilen polimer malzemelerin sürünme davranışı üzerine etkilerinin incelenmesi tasarımcılar açısında faydalı olacaktır. Bu çalışmada farklı üretim parametreleri (yazdırma açısı, nozul çapı, katman yüksekliği) ile 3B yazıcıda Polilaktik asit (PLA) malzeme kullanılarak sürünme test numuneleri üretilmiştir. Üretilen test numuneleri için farklı sıcaklık ve yükleme koşulları altında sürünme testleri gerçekleştirilmiştir. Testlerde malzemenin birincil ve ikinci sürünme bölgeleri dikkate alınmıştır. Gerçekleştirilen testler sonucunda, test bölgesi sıcaklığının sürünme üzerinde en etkili parametre olduğu tespit edilmiştir. Ayrıca, yazdırma açısı, katman yüksekliği ve nozul çapı değişiminin de 3B yazıcı ile üretilen polimer malzemenin sürünme davranışına önemli ölçüde etkidiği belirlenmiştir.
Supporting Institution
Kahramanmaraş Sütçü İmam Üniversitesi
Project Number
2020/7 – 17 M
Thanks
Bu çalışmada kullanılan sarf malzemeler Kahramanmaraş Sütçü İmam Üniversitesi tarafından 2020/7 – 17 M numaralı proje kapsamında temin edilmiştir. Değerli katkılarından dolayı Kahramanmaraş Sütçü İmam Üniversitesi’ne teşekkürlerimiz, sunarız.
References
- 1. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites, Part B, 143, 172-196, 2018.
- 2. Yaman U., Fabrication of topologically optimized parts via direct 3d printing, Gazi University Journal of
Science Part C: Design and Technology, 7 (1), 236-244, 2019.
- 3. Dogan O., Kamer M.S., Optimum spur gear design and production with additive manufacturing method, Bitlis Eren University Journal of Science, 10 (3), 1093-1103, 2021.
- 4. Rajpurohit S.R., Dave H.K., Analysis of tensile strength of a fused filament fabricated PLA part using an opensource 3D printer, Int. J. Adv. Manuf. Technol., 101,1525–1536, 2019.
- 5. Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R., Process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Testing, 69, 157 – 166, 2018.
- 6. Kamer M.S., Temiz Ş., Yaykaşlı D.H., Kaya A., Akay O., Comparison of mechanical properties of tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1197-1212, 2022.
- 7. Kamer M.S., Dogan O., Temiz Ş., Yaykaşlı H., Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3d printer, Çukurova University Journal of the Faculty of Engineering, 36 (3) , 835-846, 2021.
- 8. Tezel T., Ozenc M., Kovan V., Impact properties of 3D-printed engineering polymers. Materials Today Communications, 26, 102161, 2021.
- 9. He F., Khan M., Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo-mechanical loads, Polymers, 13, 2021.
- 10. Gulcımen Cakan B., Ensarioglu C., Küçükakarsu V., Tekin İ., Çakır M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1657-1668, 2021.
- 11. Yaman U., Shrinkage compensation of holes via shrinkage of interior structure in FDM process, Int. J.
Adv. Manuf. Technol., 94, 2187–2197, 2018.
- 12. Romeijn T., Singh K., Behrens M., Paul G., Effect of accelerated weathering on the creep behaviour of additively manufactured Polyethylene Terephthalate Glycol (PETG), Journal of Polymer Research, 28 (352), 1-10, 2021.
- 13. Zhang H., Cai L., Golub M., Zhang Y., Yang X., Schlarman K., Zhang J., Tensile, creep, and fatigue behaviors of 3D-printed acrylonitrile butadiene styrene, Journal of Materials Engineering and Performance, 27, 57–62, 2017.
- 14. Pilz G., Guttmann P., Oesterreicher F., Pinter G., Experimental method for creep characterization of polymeric foam materials in media immersion, Mech Time-Depend Mater, 24, 421-433, 2020.
- 15. Xu J., Gruber H., Deng D., Peng R.L., Moverare J.J., Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing, Acta Materialia, 179, 142-157, 2019.
- 16. Tezel T., Kovan V., Topal E.S, Effects of the printing parameters on short-term creep behaviors of three-dimensional printed polymers, Journal of Applied Polymer Science, 136, 47564, 2019.
- 17. Mohamed O.A., Masood, S.H., Bhowmik, J.L., Investigation on the flexural creep stiffness behavior of PC–ABS material processed by fused deposition modeling using response surface definitive screening design, JOM, 69, 498–505, 2016.
- 18. Mohamed O.A., Masood, S.H., Bhowmik, J.L., Influence of processing parameters on creep and recovery behavior of FDM manufactured part using definitive screening design and ann. Rapid Prototyping Journal, 23, 998–1010, 2017.
- 19. Al-Rashid A., Koҫ M., Creep and recovery behavior of continuous fiber-reinforced 3DP composites, Polymers, 13, 1644, 2021.
- 20. ASTM D638-14 Standard test method for tensile properties of plastics; ASTM International: West Conshohocken, PA, 2015.
- 21. Dogan O., Design and manufacturing of creep test device for polymer materials, 13th International Conference On Engineering & Natural Sciences, Burdur, Turkey, 162-168, 2022.
- 22. ASTM D2990-17 Standard test methods for tensile, compressive, and flexural creep and creep- rupture of plastics; ASTM International: West Conshohocken, PA, 2017.
- 23. Hsueh M.H., Lai C.J., Chung C.F., Wang S.H., Huang W.C., Pan C.Y., Zeng Y.S., Hsieh C.H., Effect of printing parameters on the tensile properties of 3d-printed polylactic acid (pla) based on fused deposition modeling, Polymers, 13, 2387, 1-16, 2021.
- 24. Kamer M.S., Temiz Ş., Yaykaşlı H., Kaya A., Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3d printer, Uludağ University Journal of the Faculty of Engineering, 26 (3) , 829-848, 2021.
- 25. Triyono J., Sukanto H., Saputra R.M., Smaradhana D.F., The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material, Open Engineering, 10, 762-768, 2020.
- 26. Ultimaker PLA, Technical datasheet, 2018.
Year 2023,
Volume: 38 Issue: 3, 1839 - 1848, 06.01.2023
Oğuz Doğan
,
Muhammed Safa Kamer
Project Number
2020/7 – 17 M
References
- 1. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites, Part B, 143, 172-196, 2018.
- 2. Yaman U., Fabrication of topologically optimized parts via direct 3d printing, Gazi University Journal of
Science Part C: Design and Technology, 7 (1), 236-244, 2019.
- 3. Dogan O., Kamer M.S., Optimum spur gear design and production with additive manufacturing method, Bitlis Eren University Journal of Science, 10 (3), 1093-1103, 2021.
- 4. Rajpurohit S.R., Dave H.K., Analysis of tensile strength of a fused filament fabricated PLA part using an opensource 3D printer, Int. J. Adv. Manuf. Technol., 101,1525–1536, 2019.
- 5. Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R., Process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Testing, 69, 157 – 166, 2018.
- 6. Kamer M.S., Temiz Ş., Yaykaşlı D.H., Kaya A., Akay O., Comparison of mechanical properties of tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1197-1212, 2022.
- 7. Kamer M.S., Dogan O., Temiz Ş., Yaykaşlı H., Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3d printer, Çukurova University Journal of the Faculty of Engineering, 36 (3) , 835-846, 2021.
- 8. Tezel T., Ozenc M., Kovan V., Impact properties of 3D-printed engineering polymers. Materials Today Communications, 26, 102161, 2021.
- 9. He F., Khan M., Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo-mechanical loads, Polymers, 13, 2021.
- 10. Gulcımen Cakan B., Ensarioglu C., Küçükakarsu V., Tekin İ., Çakır M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1657-1668, 2021.
- 11. Yaman U., Shrinkage compensation of holes via shrinkage of interior structure in FDM process, Int. J.
Adv. Manuf. Technol., 94, 2187–2197, 2018.
- 12. Romeijn T., Singh K., Behrens M., Paul G., Effect of accelerated weathering on the creep behaviour of additively manufactured Polyethylene Terephthalate Glycol (PETG), Journal of Polymer Research, 28 (352), 1-10, 2021.
- 13. Zhang H., Cai L., Golub M., Zhang Y., Yang X., Schlarman K., Zhang J., Tensile, creep, and fatigue behaviors of 3D-printed acrylonitrile butadiene styrene, Journal of Materials Engineering and Performance, 27, 57–62, 2017.
- 14. Pilz G., Guttmann P., Oesterreicher F., Pinter G., Experimental method for creep characterization of polymeric foam materials in media immersion, Mech Time-Depend Mater, 24, 421-433, 2020.
- 15. Xu J., Gruber H., Deng D., Peng R.L., Moverare J.J., Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing, Acta Materialia, 179, 142-157, 2019.
- 16. Tezel T., Kovan V., Topal E.S, Effects of the printing parameters on short-term creep behaviors of three-dimensional printed polymers, Journal of Applied Polymer Science, 136, 47564, 2019.
- 17. Mohamed O.A., Masood, S.H., Bhowmik, J.L., Investigation on the flexural creep stiffness behavior of PC–ABS material processed by fused deposition modeling using response surface definitive screening design, JOM, 69, 498–505, 2016.
- 18. Mohamed O.A., Masood, S.H., Bhowmik, J.L., Influence of processing parameters on creep and recovery behavior of FDM manufactured part using definitive screening design and ann. Rapid Prototyping Journal, 23, 998–1010, 2017.
- 19. Al-Rashid A., Koҫ M., Creep and recovery behavior of continuous fiber-reinforced 3DP composites, Polymers, 13, 1644, 2021.
- 20. ASTM D638-14 Standard test method for tensile properties of plastics; ASTM International: West Conshohocken, PA, 2015.
- 21. Dogan O., Design and manufacturing of creep test device for polymer materials, 13th International Conference On Engineering & Natural Sciences, Burdur, Turkey, 162-168, 2022.
- 22. ASTM D2990-17 Standard test methods for tensile, compressive, and flexural creep and creep- rupture of plastics; ASTM International: West Conshohocken, PA, 2017.
- 23. Hsueh M.H., Lai C.J., Chung C.F., Wang S.H., Huang W.C., Pan C.Y., Zeng Y.S., Hsieh C.H., Effect of printing parameters on the tensile properties of 3d-printed polylactic acid (pla) based on fused deposition modeling, Polymers, 13, 2387, 1-16, 2021.
- 24. Kamer M.S., Temiz Ş., Yaykaşlı H., Kaya A., Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3d printer, Uludağ University Journal of the Faculty of Engineering, 26 (3) , 829-848, 2021.
- 25. Triyono J., Sukanto H., Saputra R.M., Smaradhana D.F., The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material, Open Engineering, 10, 762-768, 2020.
- 26. Ultimaker PLA, Technical datasheet, 2018.