Research Article
BibTex RIS Cite

Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi

Year 2023, Volume: 38 Issue: 3, 1453 - 1466, 06.01.2023

Abstract

Bu çalışmada kabin boyutları 2500 mm uzunlukta, 2059 mm yükseklik, 920 mm derinlikte olan açık dikey tip soğutucu teşhir dolabının (ADSTD) enerji verimliliğini arttırmak üzere faz değiştiren malzeme (FDM) uygulaması yapılmıştır. TS EN ISO 23953-2 standartlarına göre test edilen FDM uygulaması yapılan dolabın, hava giriş ve çıkış sıcaklıkları, kompresör defrost periyodu ve devreye girme (on), devreden çıkma (off) durumları, paket sıcaklıkları ve enerji tüketimi incelenmiştir. Test verileri üç boyutlu hesaplamalı akışkanlar dinamiği yöntemi kullanılarak doğrulanmıştır. Bu sonuçlara göre, belirtilen kabin boyutlarında soğutucu teşhir dolaplarına uygulanan FDM’nin, geleneksel dolaba göre enerji verimliliğini % 5,10 arttırdığı görülmüştür.

References

  • 1. DEFRA. The Validity of Food Miles as an Indicator of Sustainable Development. 2005.
  • 2. Faramarzi, R., Efficient Display Case Refrigeration, ASHRAE Journal , 41(11), 46–54, 1999.
  • 3. Ge Y.T., Tassou S.A., Simulation of the performance of single jet air curtains for vertical refrigerated display cabinets, Appl Therm Eng, 21, 201–19, 2001.
  • 4. Ge Y.T., Cropper R., Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A, Appl Energy, 85, 694–707, 2008.
  • 5. Ge Y.T., Tassou S.A., The impact of geometric structure and flow arrangement on the performance of CO2 evaporators in multi-deck medium temperature display cabinets, Int J Refrig, 35, 142–9, 2012.
  • 6. Alzuwaid F.A., Ge Y.T., Tassou S.A., Raeisi A., Gowreesunker L., The novel use of phase change materials in a refrigerated display cabinet: an experimental investigation, Appl Therm Eng, 75, 770–8, 2015.
  • 7. Alzuwaid F.A., Ge, Y.T., Tassou, S.A., Sun J., The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation, Applied Energy, 180, 76–85, 2016.
  • 8. Alzuwaid F., The Novel of Ue of Phase Change Materials in Refrigerated Display Cabinets for Energy Conservation, doktora tezi, Brunel University London, Department of Mechanical, Aerospace and Civil Engineering, 2016.
  • 9. Lu W., Tassou S.A., Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications, Appl Energy, 112, 1376–82, 2013.
  • 10. Lu Y.L., Zhang W.H., Yuan P., Xue M.D., Qua Z.G., Tao W.Q., Experimental study of heat transfer intensification by using a novel combined shelf in food refrigerated display cabinets. Applied Thermal Engineering, 30, 85–91, 2010.
  • 11. XueHong W., WeiPing L., Yanling W., ZhiJuan C., ChunXu W, Chang D., Experimental investigation of the performance of cool storage shelf for vertical open refrigerated display cabinet. International Journal of Heat and Mass Transfer, 110, 789–795, 2017.
  • 12. Jouhara H., Nonnou T., Ghazal H., Kayyalı R.,Tassou S.A., Lester S., Temperature and energy performance of open refrigerated display cabinets using heat pipe shelves, Energy procedia, 123, 273-280, 2017.
  • 13. Antony M., Forster Raj S., Sekha J., Investigation of energy and exergy performance on a small-scale refrigeration system with PCMs inserted between coil and wall of the evaporator cabin, Journal of Thermal Analysis and Calorimetry, 136, 355–365, 2018.
  • 14. Wang F., Maidment G., Missenden J., et al., A novel superconductive food display cabinet, Institute of Refrigeration (IOR),2005.
  • 15. Marques A.C., Davies G.F., Maidment G.G., Evans J.A., Wood I.D., Novel design and performance enhancement of domestic refrigerators with thermal storage, Applied Thermal Engineering, 63, 511-519, 2014.
  • 16. Chenga W., Meia B., Liub Y.,Huanga Y.,Yuana X., A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation, Energy, 36, 2011.
  • 17. Cheng W., Ding M., Yuan X., Han B., Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator, Energy Conversion and Management, 132, 180–188, 2017.
  • 18. Elarem R., Mellouli S., Abhilash E., Jemni A., Performance analysis of a household refrigerator integrating a PCM heat exchanger, Applied Thermal Engineering, 125, 1320–1333, 2017.
  • 19. Gin B., Mohammed M.F., Effect of door opening and defrost cycle on a freezer with phase change panels, Energy Conversion and Management, 51, 2698–2706, 2010.
  • 20. Wang F., Maidment G., Missenden J., Tozer R., The novel use of phase change materials in refrigeration plant. Part 3: PCM for control and energy savings, Applied Termal Engineering, 27, 2911-2918, 2007.
  • 21. Oró E., Gracia A., Castell A., Farid M.M., Cabeza L.F., Review on phase change materials (PCMs) for cold thermal energy storage applications, Applied Energy, 99, 513–533, 2012.
  • 22. Liu Z., Zhao D., Wang Q, Chi Y., Zhang L., Performance study on air-cooled household refrigerator with cold storage phase change materials., International Journal of Refrigeration 79, 130–142, 2017.
  • 23. Azzouza K., Leducqa D., Gobinb D., Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation, International journal of refrigeration 32, 1634 – 1644, 2009.
  • 24. TS EN ISO 23953-2 Standards Refrigerated display cabinets - Part 2: Classification, requirements and test conditions, 2007. 25. Imran M., Khan H., Conventional Refrigeration Systems Using Phase Change Material: A Review, International Journal of Air-Conditioning and Refrigeration, 24(2), 16, 2016.
  • 26. Joybaria M.M., Haghighata F., Moffat J., Sra P. Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art review, Energy and Buildings, 106, 111–124, 2015.
  • 27. Tassou S.A., Ge Y., Hadawey A., Marriott D., Energy consumption and conservation in food retailing, Appl Therm Eng, 31, 147–56, 2011.
  • 28. Sharma A., Tyagi V.V., Chen C.R., Buddhi D., Review on thermal energy storage with phase change materials and applications, Renew.Sustain. Energy Rev., 13, 318–345, 2009.
  • 29. Farid M., Khudhair M., Razack K., Al-Hallaj S., A review onphase change energy storage: materials and applications, Energy Convers. Manage., 45, 1597–1615, 2004.
  • 30. Water-thermal properties. http://www.Engineeringtoolbox.com/waterthermal-properties-d_162.html.
  • 31. Onyejekwe D., Cold storage using eutectic mixture of NaCl/H2O: An application to photovoltaic compressor vapors freezers, Solar Wind Technol., 6, 11–18, 1989.
  • 32. Khan M. I. H., Afroz H. M. M., An experimental investigation of the e®ects of Phase Change Material on Coefficient of performance (COP) of a household refrigerator, Proc. Int. Conf. on Mechanical Engineering and Renewable Energy (ICMERE2011), Chittagong, Bangladesh, 22–24, 2011.
  • 33. Tsamos M.K., Mroue H., Sun J., Tassaou A.S., Nicholls N., Smith G., Energy Savings Potential in Using Cold-shelves Innovation for Multi-desk Open Front Refrigerated Cabinets, 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2018, Paphos, Cyprus or Multi-deck Open Front Refrigerated Cabinets, Energy Procedia, 161, 292-299, 2019.
  • 34. Smale, N., Moureh, J., Cortella G., A review of numerical models of airflow in refrigerated food applications, Int. J. Refrig., 29, 911–930, 2006.
  • 35. Hoang M., Verboven P., Baerdemaeker J.D., Nicolaï B., Analysis of the air flow in a cold store by means of computational fluid dynamics, Int. J. Refrig., 23, 127–140, 2000.
  • 36. Nahor H., Hoang M., Verboven P., Baelmans M., Nicolaı B., CFD model of the airflow, heat and mass transfer in cool stores, Int. J. Refrig., 28, 368–380, 2005.
Year 2023, Volume: 38 Issue: 3, 1453 - 1466, 06.01.2023

Abstract

References

  • 1. DEFRA. The Validity of Food Miles as an Indicator of Sustainable Development. 2005.
  • 2. Faramarzi, R., Efficient Display Case Refrigeration, ASHRAE Journal , 41(11), 46–54, 1999.
  • 3. Ge Y.T., Tassou S.A., Simulation of the performance of single jet air curtains for vertical refrigerated display cabinets, Appl Therm Eng, 21, 201–19, 2001.
  • 4. Ge Y.T., Cropper R., Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A, Appl Energy, 85, 694–707, 2008.
  • 5. Ge Y.T., Tassou S.A., The impact of geometric structure and flow arrangement on the performance of CO2 evaporators in multi-deck medium temperature display cabinets, Int J Refrig, 35, 142–9, 2012.
  • 6. Alzuwaid F.A., Ge Y.T., Tassou S.A., Raeisi A., Gowreesunker L., The novel use of phase change materials in a refrigerated display cabinet: an experimental investigation, Appl Therm Eng, 75, 770–8, 2015.
  • 7. Alzuwaid F.A., Ge, Y.T., Tassou, S.A., Sun J., The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation, Applied Energy, 180, 76–85, 2016.
  • 8. Alzuwaid F., The Novel of Ue of Phase Change Materials in Refrigerated Display Cabinets for Energy Conservation, doktora tezi, Brunel University London, Department of Mechanical, Aerospace and Civil Engineering, 2016.
  • 9. Lu W., Tassou S.A., Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications, Appl Energy, 112, 1376–82, 2013.
  • 10. Lu Y.L., Zhang W.H., Yuan P., Xue M.D., Qua Z.G., Tao W.Q., Experimental study of heat transfer intensification by using a novel combined shelf in food refrigerated display cabinets. Applied Thermal Engineering, 30, 85–91, 2010.
  • 11. XueHong W., WeiPing L., Yanling W., ZhiJuan C., ChunXu W, Chang D., Experimental investigation of the performance of cool storage shelf for vertical open refrigerated display cabinet. International Journal of Heat and Mass Transfer, 110, 789–795, 2017.
  • 12. Jouhara H., Nonnou T., Ghazal H., Kayyalı R.,Tassou S.A., Lester S., Temperature and energy performance of open refrigerated display cabinets using heat pipe shelves, Energy procedia, 123, 273-280, 2017.
  • 13. Antony M., Forster Raj S., Sekha J., Investigation of energy and exergy performance on a small-scale refrigeration system with PCMs inserted between coil and wall of the evaporator cabin, Journal of Thermal Analysis and Calorimetry, 136, 355–365, 2018.
  • 14. Wang F., Maidment G., Missenden J., et al., A novel superconductive food display cabinet, Institute of Refrigeration (IOR),2005.
  • 15. Marques A.C., Davies G.F., Maidment G.G., Evans J.A., Wood I.D., Novel design and performance enhancement of domestic refrigerators with thermal storage, Applied Thermal Engineering, 63, 511-519, 2014.
  • 16. Chenga W., Meia B., Liub Y.,Huanga Y.,Yuana X., A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation, Energy, 36, 2011.
  • 17. Cheng W., Ding M., Yuan X., Han B., Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator, Energy Conversion and Management, 132, 180–188, 2017.
  • 18. Elarem R., Mellouli S., Abhilash E., Jemni A., Performance analysis of a household refrigerator integrating a PCM heat exchanger, Applied Thermal Engineering, 125, 1320–1333, 2017.
  • 19. Gin B., Mohammed M.F., Effect of door opening and defrost cycle on a freezer with phase change panels, Energy Conversion and Management, 51, 2698–2706, 2010.
  • 20. Wang F., Maidment G., Missenden J., Tozer R., The novel use of phase change materials in refrigeration plant. Part 3: PCM for control and energy savings, Applied Termal Engineering, 27, 2911-2918, 2007.
  • 21. Oró E., Gracia A., Castell A., Farid M.M., Cabeza L.F., Review on phase change materials (PCMs) for cold thermal energy storage applications, Applied Energy, 99, 513–533, 2012.
  • 22. Liu Z., Zhao D., Wang Q, Chi Y., Zhang L., Performance study on air-cooled household refrigerator with cold storage phase change materials., International Journal of Refrigeration 79, 130–142, 2017.
  • 23. Azzouza K., Leducqa D., Gobinb D., Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation, International journal of refrigeration 32, 1634 – 1644, 2009.
  • 24. TS EN ISO 23953-2 Standards Refrigerated display cabinets - Part 2: Classification, requirements and test conditions, 2007. 25. Imran M., Khan H., Conventional Refrigeration Systems Using Phase Change Material: A Review, International Journal of Air-Conditioning and Refrigeration, 24(2), 16, 2016.
  • 26. Joybaria M.M., Haghighata F., Moffat J., Sra P. Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art review, Energy and Buildings, 106, 111–124, 2015.
  • 27. Tassou S.A., Ge Y., Hadawey A., Marriott D., Energy consumption and conservation in food retailing, Appl Therm Eng, 31, 147–56, 2011.
  • 28. Sharma A., Tyagi V.V., Chen C.R., Buddhi D., Review on thermal energy storage with phase change materials and applications, Renew.Sustain. Energy Rev., 13, 318–345, 2009.
  • 29. Farid M., Khudhair M., Razack K., Al-Hallaj S., A review onphase change energy storage: materials and applications, Energy Convers. Manage., 45, 1597–1615, 2004.
  • 30. Water-thermal properties. http://www.Engineeringtoolbox.com/waterthermal-properties-d_162.html.
  • 31. Onyejekwe D., Cold storage using eutectic mixture of NaCl/H2O: An application to photovoltaic compressor vapors freezers, Solar Wind Technol., 6, 11–18, 1989.
  • 32. Khan M. I. H., Afroz H. M. M., An experimental investigation of the e®ects of Phase Change Material on Coefficient of performance (COP) of a household refrigerator, Proc. Int. Conf. on Mechanical Engineering and Renewable Energy (ICMERE2011), Chittagong, Bangladesh, 22–24, 2011.
  • 33. Tsamos M.K., Mroue H., Sun J., Tassaou A.S., Nicholls N., Smith G., Energy Savings Potential in Using Cold-shelves Innovation for Multi-desk Open Front Refrigerated Cabinets, 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2018, Paphos, Cyprus or Multi-deck Open Front Refrigerated Cabinets, Energy Procedia, 161, 292-299, 2019.
  • 34. Smale, N., Moureh, J., Cortella G., A review of numerical models of airflow in refrigerated food applications, Int. J. Refrig., 29, 911–930, 2006.
  • 35. Hoang M., Verboven P., Baerdemaeker J.D., Nicolaï B., Analysis of the air flow in a cold store by means of computational fluid dynamics, Int. J. Refrig., 23, 127–140, 2000.
  • 36. Nahor H., Hoang M., Verboven P., Baelmans M., Nicolaı B., CFD model of the airflow, heat and mass transfer in cool stores, Int. J. Refrig., 28, 368–380, 2005.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ayşe Burcu Çelik 0000-0002-6948-8281

Erhan Pulat 0000-0003-2866-6093

Kemal Furkan Sökmen 0000-0001-8647-4861

Çağrı Balkan This is me 0000-0002-9170-2512

Salih Coşkun 0000-0001-6278-8444

Publication Date January 6, 2023
Submission Date August 18, 2021
Acceptance Date June 21, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Çelik, A. B., Pulat, E., Sökmen, K. F., Balkan, Ç., et al. (2023). Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1453-1466.
AMA Çelik AB, Pulat E, Sökmen KF, Balkan Ç, Coşkun S. Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi. GUMMFD. January 2023;38(3):1453-1466.
Chicago Çelik, Ayşe Burcu, Erhan Pulat, Kemal Furkan Sökmen, Çağrı Balkan, and Salih Coşkun. “Açık Dikey Tip soğutucu teşhir dolabın Faz değiştiren Malzeme kullanılarak Enerji verimliliğinin sayısal Ve Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1453-66.
EndNote Çelik AB, Pulat E, Sökmen KF, Balkan Ç, Coşkun S (January 1, 2023) Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1453–1466.
IEEE A. B. Çelik, E. Pulat, K. F. Sökmen, Ç. Balkan, and S. Coşkun, “Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi”, GUMMFD, vol. 38, no. 3, pp. 1453–1466, 2023.
ISNAD Çelik, Ayşe Burcu et al. “Açık Dikey Tip soğutucu teşhir dolabın Faz değiştiren Malzeme kullanılarak Enerji verimliliğinin sayısal Ve Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1453-1466.
JAMA Çelik AB, Pulat E, Sökmen KF, Balkan Ç, Coşkun S. Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi. GUMMFD. 2023;38:1453–1466.
MLA Çelik, Ayşe Burcu et al. “Açık Dikey Tip soğutucu teşhir dolabın Faz değiştiren Malzeme kullanılarak Enerji verimliliğinin sayısal Ve Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1453-66.
Vancouver Çelik AB, Pulat E, Sökmen KF, Balkan Ç, Coşkun S. Açık dikey tip soğutucu teşhir dolabın faz değiştiren malzeme kullanılarak enerji verimliliğinin sayısal ve deneysel olarak incelenmesi. GUMMFD. 2023;38(3):1453-66.