Research Article
BibTex RIS Cite

INVESTIGATION OF THE DRYING KINETIC AND MODELLING OF DRYING BEHAVIOR OF THE FENNEL (FOENİCULUM VULGARE)

Year 2020, , 676 - 688, 21.06.2020
https://doi.org/10.15237/gida.GD20044

Abstract

In this study, the effect of different drying techniques and conditions on the drying behaviors of fennels (Foeniculum vulgare) were investigated. For this purpose, the fennels were dried at a tray dryer (1m/s airflow rate, 50-70°C) and microwave oven (460-700W). Drying time of microwave and tray dried fennels ranged between 105-150s and 60-150min, respectively. In order to determine the drying behavior of fennels, experimental data were fitted to five different thin-layer drying models (Lewis, Page, Henderson and Pabis, Two-term exponential, and Logarithmic). The highest R2 and lowest RMSE and χ2 values were obtained from Page and logarithmic models for microwave and tray dried samples, respectively. The overall drying process took place in the falling rate period for all drying experiments. Higher effective moisture diffusivity values (4.7061E-07-8.3168E-07 m2/s) were obtained for microwave dried samples. Activation energy values were calculated as 131.3443W/g and 37.5142 kJ/mol for microwave and tray dried samples, respectively.

References

  • Abou El-Soud, N., El-Lithy, N., Mohamed, G., Wahby, M.S., Yossif, M., Morsy, F., Shaffie, N. (2011). Antidiabetic activities of Foeniculum vulgare Mill.essential oil in streptozotocin-induced diabetic rats. Maced J Med Sci, 4, 139–146.
  • Akdoğan, A., Çalışkan Koç, G., Dirim, S.N. (2017). Mathematical Modeling on Thin Layer Microwave Drying of Corn Husk and Investigation of Powder Properties. Bulg Chem Commun, 49, 986 – 993.
  • Atta-Aly, M. (2001). Fennel swollen base yield and quality as affected by variety and source of nitrogen fertilizer. Sci Hortic (Amsterdam), 88, 191–202.
  • Benhamou, A., Idlimam, A., Lamharrar, A., Benyoucef, B., Kouhila, M., Abou, U., Belkaïd, B., Tlemcen, A. (2008). Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. Revue des Energies Renouvelables, 11 (1),75 – 85.
  • Bennamoun, L., Kahlerras, L., Michel, F., Courard, L., Salmon, T., Fraikin, L. (2013). Determination of moisture diffusivity during drying of mortar cement: Experimental and modeling study. Int J Energy Eng, 3, 1–6.
  • Dadali, G., Demirhan, E., Özbek, B. (2007). Color Change Kinetics of Spinach Undergoing Microwave Drying. Dry Technol, 25, 1713–1723.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. J Food Eng, 74, 370–375.
  • Erbay, Z., Icier, F. (2009). A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr, 4, 441–464.
  • Inouye, S., Uchida, K., Abe, S. (2006). Vapor activity of 72 essential oils against a Trichophyton mentagrophytes. J Infect Chemother, 12, 210–216.
  • Jebri, M., Desmorieux, H., Maaloul, A., Saadaoui, E., Romdhane, M. (2019). Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality. Heat Mass Transf, 55, 1143–1153.
  • Krokida, M.K., Karathanos, V.T., Maroulis, Z.B., Marinos-Kouris, D. (2003). Drying kinetics of some vegetables. J Food Eng, 59, 391–403.
  • Mahady, G.B., Pendland, S.L., Stoia, A., Hamill, F.A., Fabricant, D., Dietz, B.M., Chadwick, L.R. (2005). In Vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phyther Res, 19, 988–991.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. J Food Eng, 44, 71–78.
  • Mohsenzadeh, M. (2007). Evaluation of Antibacterial Activity of Selected Iranian Essential Oils Against Staphylococcus aureus and Escherichia coli in Nutrient Broth Medium. Pak J Biol Sci, 10, 3693–3697.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Darvishi, H. (2016). Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. J Saudi Soc Agric Sci, 15, 179–187.
  • Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr Rev Food Sci Food Saf, 15, 599–618.
  • Özbek, B., Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng, 83, 541–549.
  • Ozkan, I.A., Akbudak, B., Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78, 577–583.
  • Parejo, I., Francesc, V., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., Codina, C. (2002). Comparison between the Radical Scavenging Activity and Antioxidant Activity of Six Distilled and Nondistilled Mediterranean Herbs and Aromatic Plants. J Agric Food Chem, 50, 6882–6890.
  • Platts, J. (1991). Microwave Ovens. Peter Pergrinus Ltd. London UK.
  • Roby, M.H.H., Sarhan, M.A., Selim, K.A.-H., Khalel, K.I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crops Prod, 44, 437–445.
  • Rostami, H., Shafiei, S. (2012). Antibacterial and Antifungal Activity of some Medicinal Plants from Iran. J Plant Sci, 7, 55–66.
  • Routray, W., Rayaguru, K. (2011). Microwave drying kinetics and quality characteristics of aromatic Pandanus amaryllifolius leaves. Int Food Res J, 18, 992–999.
  • Ruberto, G., Baratta, M., Deans, S., Dorman, H. (2001). Antioxidant and Antimicrobial Activity of Foeniculum vulgare and Crithmum maritimum Essential Oils. Planta Med, 66, 687–693.
  • Schiffman, R.F. (1986). Food product development for microwave processing. Food Tech, 40(6): 94-98.
  • Singh, G., Maurya, S., de Lampasona, M.P., Catalan, C. (2006). Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control, 17, 745–752.
  • Soysal, Y. (2004). Microwave Drying Characteristics of Parsley. Biosyst Eng, 89, 167–173.
  • Stephen, J.H. (1997). Microwave Enhanced Chemistry (Fundemantals, sample preparetion and Application). American Chemical Society, Washington DC., USA.
  • Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M., Barocelli, E. (2007). Protective effect of Foeniculum vulgare essential oil and anethole in an experimental model of thrombosis. Pharmacol Res, 56, 254–260.
  • Torki-Harchegani, M., Pirbalouti, A.G., Ghanbarian, D. (2018). Influence of Microwave Power on Drying Kinetic, Chemical Composition and Antioxidant Capacity of Peppermint Leaves. J Essent Oil Bear Plants, 21, 430–439.
  • Vega, A., Fito, P., Andrés, A., Lemus, R. (2007). Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng, 79, 1460–1466.
  • Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., Abd ElRazik, K.A., Omer, E.A., Pérez-Alvarez, J.A., Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22, 1715–1722.
  • Zeng, H., Chen, X, Liang, J. (2015). In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol, 64, 93–103.

ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ

Year 2020, , 676 - 688, 21.06.2020
https://doi.org/10.15237/gida.GD20044

Abstract

Bu çalışmanın amacı, arapsaçı otunun (Foeniculum vulgare) farklı kurutma teknikleri ve koşulları altında kuruma davranışının belirlenmesidir. Bu amaçla, arapsaçı otu mikrodalga fırında (460-700 W) ve tepsili kurutucuda (1 m/s hava akış hızı, 50-70 °C) kurutulmuştur. Örneklerin kuruma süreleri mikrodalga fırında 105-150s arasında değişirken, bu süre sıcak havada kurtulan örnekler için 60-150dk arasında değişim göstermiştir. Örneklerin kuruma davranışının beş farklı ince tabaka kurutma modeline (Lewis, Page, Henderson ve Pabis, iki terimli eksponansiyel, logaritmik) uyumluluğu incelenmiştir. Mikrodalga fırında kurutulan örnekler için en yüksek R2, en düşük RMSE ve χ2 değerleri Page modelden elde edilirken, sıcak havada kurutulan örnekler için logaritmik modelden elde edilmiştir. Tüm kurutma denemelerinde kuruma genel olarak azalan hızda kuruma periyodunda gerçekleşmiştir. Mikrodalga fırında kurutulan örnekler için daha yüksek efektif nem difüzyon katsayısı değerleri (4.7061x10-7 - 8.3168 x10-7 m2/s) elde edilmiştir. Aktivasyon enerjisi mikrodalga fırında kurutulan örnekler için 131.3443 W/g, sıcak havada kurutulan örnekler için ise 37.5142 kJ/mol olarak hesaplanmıştır.

References

  • Abou El-Soud, N., El-Lithy, N., Mohamed, G., Wahby, M.S., Yossif, M., Morsy, F., Shaffie, N. (2011). Antidiabetic activities of Foeniculum vulgare Mill.essential oil in streptozotocin-induced diabetic rats. Maced J Med Sci, 4, 139–146.
  • Akdoğan, A., Çalışkan Koç, G., Dirim, S.N. (2017). Mathematical Modeling on Thin Layer Microwave Drying of Corn Husk and Investigation of Powder Properties. Bulg Chem Commun, 49, 986 – 993.
  • Atta-Aly, M. (2001). Fennel swollen base yield and quality as affected by variety and source of nitrogen fertilizer. Sci Hortic (Amsterdam), 88, 191–202.
  • Benhamou, A., Idlimam, A., Lamharrar, A., Benyoucef, B., Kouhila, M., Abou, U., Belkaïd, B., Tlemcen, A. (2008). Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. Revue des Energies Renouvelables, 11 (1),75 – 85.
  • Bennamoun, L., Kahlerras, L., Michel, F., Courard, L., Salmon, T., Fraikin, L. (2013). Determination of moisture diffusivity during drying of mortar cement: Experimental and modeling study. Int J Energy Eng, 3, 1–6.
  • Dadali, G., Demirhan, E., Özbek, B. (2007). Color Change Kinetics of Spinach Undergoing Microwave Drying. Dry Technol, 25, 1713–1723.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. J Food Eng, 74, 370–375.
  • Erbay, Z., Icier, F. (2009). A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr, 4, 441–464.
  • Inouye, S., Uchida, K., Abe, S. (2006). Vapor activity of 72 essential oils against a Trichophyton mentagrophytes. J Infect Chemother, 12, 210–216.
  • Jebri, M., Desmorieux, H., Maaloul, A., Saadaoui, E., Romdhane, M. (2019). Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality. Heat Mass Transf, 55, 1143–1153.
  • Krokida, M.K., Karathanos, V.T., Maroulis, Z.B., Marinos-Kouris, D. (2003). Drying kinetics of some vegetables. J Food Eng, 59, 391–403.
  • Mahady, G.B., Pendland, S.L., Stoia, A., Hamill, F.A., Fabricant, D., Dietz, B.M., Chadwick, L.R. (2005). In Vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phyther Res, 19, 988–991.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. J Food Eng, 44, 71–78.
  • Mohsenzadeh, M. (2007). Evaluation of Antibacterial Activity of Selected Iranian Essential Oils Against Staphylococcus aureus and Escherichia coli in Nutrient Broth Medium. Pak J Biol Sci, 10, 3693–3697.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Darvishi, H. (2016). Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. J Saudi Soc Agric Sci, 15, 179–187.
  • Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr Rev Food Sci Food Saf, 15, 599–618.
  • Özbek, B., Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng, 83, 541–549.
  • Ozkan, I.A., Akbudak, B., Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78, 577–583.
  • Parejo, I., Francesc, V., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., Codina, C. (2002). Comparison between the Radical Scavenging Activity and Antioxidant Activity of Six Distilled and Nondistilled Mediterranean Herbs and Aromatic Plants. J Agric Food Chem, 50, 6882–6890.
  • Platts, J. (1991). Microwave Ovens. Peter Pergrinus Ltd. London UK.
  • Roby, M.H.H., Sarhan, M.A., Selim, K.A.-H., Khalel, K.I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crops Prod, 44, 437–445.
  • Rostami, H., Shafiei, S. (2012). Antibacterial and Antifungal Activity of some Medicinal Plants from Iran. J Plant Sci, 7, 55–66.
  • Routray, W., Rayaguru, K. (2011). Microwave drying kinetics and quality characteristics of aromatic Pandanus amaryllifolius leaves. Int Food Res J, 18, 992–999.
  • Ruberto, G., Baratta, M., Deans, S., Dorman, H. (2001). Antioxidant and Antimicrobial Activity of Foeniculum vulgare and Crithmum maritimum Essential Oils. Planta Med, 66, 687–693.
  • Schiffman, R.F. (1986). Food product development for microwave processing. Food Tech, 40(6): 94-98.
  • Singh, G., Maurya, S., de Lampasona, M.P., Catalan, C. (2006). Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control, 17, 745–752.
  • Soysal, Y. (2004). Microwave Drying Characteristics of Parsley. Biosyst Eng, 89, 167–173.
  • Stephen, J.H. (1997). Microwave Enhanced Chemistry (Fundemantals, sample preparetion and Application). American Chemical Society, Washington DC., USA.
  • Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M., Barocelli, E. (2007). Protective effect of Foeniculum vulgare essential oil and anethole in an experimental model of thrombosis. Pharmacol Res, 56, 254–260.
  • Torki-Harchegani, M., Pirbalouti, A.G., Ghanbarian, D. (2018). Influence of Microwave Power on Drying Kinetic, Chemical Composition and Antioxidant Capacity of Peppermint Leaves. J Essent Oil Bear Plants, 21, 430–439.
  • Vega, A., Fito, P., Andrés, A., Lemus, R. (2007). Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng, 79, 1460–1466.
  • Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., Abd ElRazik, K.A., Omer, E.A., Pérez-Alvarez, J.A., Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22, 1715–1722.
  • Zeng, H., Chen, X, Liang, J. (2015). In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol, 64, 93–103.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Yeliz Tekgül 0000-0002-5227-4754

Gülşah Çalışkan Koç 0000-0002-6542-3093

Publication Date June 21, 2020
Published in Issue Year 2020

Cite

APA Tekgül, Y., & Çalışkan Koç, G. (2020). ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ. Gıda, 45(4), 676-688. https://doi.org/10.15237/gida.GD20044
AMA Tekgül Y, Çalışkan Koç G. ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ. GIDA. June 2020;45(4):676-688. doi:10.15237/gida.GD20044
Chicago Tekgül, Yeliz, and Gülşah Çalışkan Koç. “ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ”. Gıda 45, no. 4 (June 2020): 676-88. https://doi.org/10.15237/gida.GD20044.
EndNote Tekgül Y, Çalışkan Koç G (June 1, 2020) ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ. Gıda 45 4 676–688.
IEEE Y. Tekgül and G. Çalışkan Koç, “ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ”, GIDA, vol. 45, no. 4, pp. 676–688, 2020, doi: 10.15237/gida.GD20044.
ISNAD Tekgül, Yeliz - Çalışkan Koç, Gülşah. “ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ”. Gıda 45/4 (June 2020), 676-688. https://doi.org/10.15237/gida.GD20044.
JAMA Tekgül Y, Çalışkan Koç G. ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ. GIDA. 2020;45:676–688.
MLA Tekgül, Yeliz and Gülşah Çalışkan Koç. “ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ”. Gıda, vol. 45, no. 4, 2020, pp. 676-88, doi:10.15237/gida.GD20044.
Vancouver Tekgül Y, Çalışkan Koç G. ARAPSAÇI OTUNUN (FOENİCULUM VULGARE) KURUMA KİNETİĞİNİN İNCELENMESİ VE KURUMA DAVRANIŞININ MODELLENMESİ. GIDA. 2020;45(4):676-88.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/