Review
BibTex RIS Cite

KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME

Year 2021, , 785 - 802, 17.05.2021
https://doi.org/10.15237/gida.GD21022

Abstract

Doğal biyopolimerler, gıda, ambalajlama, tekstil, otomotiv, tıp, ilaç, vb. birçok alanda kullanılan çevre dostu, yeşil polimerlerdir. Doğal biyopolimerlerin farklı teknolojiler kullanılarak modifiye edilmeleriyle fonksiyonellikleri geliştirilebilmektedir. Modifiye edilmiş doğal biyopolimerler, gıda sanayinde enkapsülasyon malzemesi ve yüksek performanslı yenilebilir film, kaplama veya fonksiyonel gıda bileşeni olarak kullanılabilmektedir. Kızılötesi, mikrodalga, ultrases teknolojileri ve kombinasyonları, kendilerine özgü etki mekanizmalarını kullanarak doğal biyopolimerleri degrade ve depolimerize etmekte ve fonksiyonelliklerini olumlu yönde etkilemektedirler. Mikrodalga ve ultrases-mikrodalga teknolojileri kullanılarak ekstraksiyon ve enzimatik hidroliz gibi işlemlerin verimi arttırılabilmekte, işlem süresi kısaltılabilmekte ve elde edilen polimerlerin özellikleri iyileştirilebilmektedir. Bu makalede, kızılötesi, mikrodalga ve ultrases teknolojileri ve kombinasyonlarının etki mekanizmalarından kısaca bahsedilerek bu teknolojiler kullanılarak modifiye edilmiş doğal biyopolimerlerin çeşitli özellikleri derlenmiş, mikrodalga ve ultrases-mikrodalga teknolojilerinin ekstraksiyon, enzimatik hidroliz gibi işlemlerin verimliliği, işlem süresi ve elde edilen polimerlerin özellikleri üzerindeki etkilerine yer verilmiştir.

References

  • Aboud, S.A., Altemimi, A.B., Al-HiIphy, A.R. S., Lee, Y., Cacciola, F. (2019). A comprehensive review on infrared heating applications in food processing. Molecules, 24(22): 4125.
  • Akyüz A.Ö. (2010). Ultrasesin polimerlere etkileri, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İstanbul, Türkiye, 141 s.
  • Amiri A., Sharifian P., Soltanizadeh N. (2018). Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins, Int J Biol Macromol, 111:139-147.
  • Anderson A.K., Guraya H.S. (2006). Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches, Food Chem, 97(2): 318–323.
  • Arifoğlu, N., Öğütçü, M. (2019). Effect of microwave heating on quality parameters of hazelnut, Canola and Corn Oils. Akademik Gıda, 17(1): 23-29.
  • Arzeni C., Martinez K., Zema P., Arias A., Perez O.E., Pilosof A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. J Food Eng, 108(3): 463–472.
  • Balaji, A.B., Pakalapati, H., Khalid, M., Walvekar, R., Siddiqui, H. (2018). Natural and synthetic biocompatible and biodegradable polymers. In: Biodegradable and Biocompatible Polymer Composites, Elsevier, pp. 3-32.
  • Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrason Sonochem, 70: 105293.
  • Bhatia, S. (2016). Natural polymers vs synthetic polymer. In: Natural Polymer Drug Delivery Systems, Springer, pp. 95-118.
  • Camino N.A., Perez O.E., Pilosof A.M.R. (2009). Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound, Food Hydrocoll, 23(4): 1089–1095.
  • Cui, R.B., Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol,107: 491-508.
  • Çengelköy Köz, E. (2019). Farklı ısıtma teknolojileri-nem uygulaması ile modifiye edilmiş nişastaların ve bu nişastalardan elde edilen yenilebilir filmlerin özellikleri, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Polimer Bilimi ve Teknolojisi Anabilim Dalı YL Tezi, (Tez Danışmanı: Semin Özge (Özkoç) Keskin), Kocaeli, Türkiye. 131 s.
  • Dangaran, K., Tomasula, P.M., Qi, P. (2009). Structure and function of protein-based edible films and coatings. In: Edible Films and Coatings for Food Applications, Embuscado M. E. and Huber K. C., (ed.), Springer, pp. 25-56.
  • Desbrières J., Petit C., Reynaud S. (2014). Microwave-assisted modifications of polysaccharides, Pure Appl Chem, 86(11): 1695–1706.
  • Firouz, M.S., Farahmandi, A ., Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason Sonochem, 57: 73-88.
  • Gallo M., Ferrara L., Naviglio D. (2018). Application of ultrasound in food science and technology: A Perspective, Foods, 7(10): 164.
  • Guimaraes, J.T., Silva, E.K., Alvarenga, V.O., Costa, A.L.R., Cunha, R.L., Sant'Ana, A.S., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason Sonochem, 44: 251-260.
  • Guo B., Wu J., Hu X., Luo S., Wang H., Xu S., Huang Z., Liu C. (2020). Effects of controlled far-ınfrared treatment on granular swelling and rheological properties of crop starches, Starch/Stärke, 72(3-4): 1900251.
  • Hassan, S., Imran, M., Ahmad, N., Khan, M. K. (2017). Lipids characterization of ultrasound and microwave processed germinated sorghum. Lıpıds In Health and Dısease, Vol. 16, 125.
  • Hu A., Li L., Zheng J., Lu J., Meng X., Liu Y., Rehman R. (2014). Different-frequency ultrasonic effects on properties and structure of corn starch, J Sci Food Agric, 94(14): 2929-2934.
  • İsmailoğlu, S. Ö., Başman, A. (2015). Effects of ınfrared heat-moisture treatment on the physicochemical properties of corn starch. Starch/Stärke, 67(5-6): 528-539.
  • İsmailoğlu, S. Ö., Başman, A. (2016). Physicochemical properties of ınfrared heat- moisture treated wheat starch, Starch/Stärke, 68(1-2): 67-75.
  • Jambrak, A. R., Herceg Z., Subaric, D., Babic, J., Brncic,M., Brncic, S.R., Bosiljkov, T., Cvek D., Tripalo, B., Gelo, J. (2010). Ultrasound effect on physical properties of corn starch. Carbohydr Polym, 79(1): 91-100.
  • Karrar, E., Sheth, S., Wei, W., Wang, X. (2020). Effect of microwave heating on lipid composition, oxidative stability, color value, chemical properties, and antioxidant activity of gurum (Citrulluslanatus var. Colocynthoide) seed oil. Biocatal Agric Biotechnol, 23,101504.
  • Kasaai M.R. (2013). Input power-mechanism relationship for ultrasonic irradiation: Food and polymer applications, J Nat Sci, 05(08): 14-22.
  • Keskin, S.O. (2003). Effects of different ovens and enzymes on quality parameters of bread. ODTÜ, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı YL Tezi, (Tez Danışmanı: Servet Gülüm Şumnu, Yardımcı Danışman: Serpil Şahin), Ankara, Türkiye. 135 s.
  • Keskin, S.O., Sumnu, G., Sahin, S., (2004a). Bread baking in halogen lamp microwave combination oven. Food Res Int, 37(5):489-495.
  • Keskin, S.O., Sumnu, G., Sahin, S., (2004b). Usage of enzymes in a novel baking process. Nahrung/Food, 48(2):156-160.
  • Keskin S.O., Ozturk, S., Sahin, S., Köksel, H., Sumnu, G., (2005). Halogen lamp microwave combination baking of cookies. Eur Food Res Technol, 220(5-6): 546-551.
  • Kumar, Y., Singh, L., Sharanagat, V. L., Patel, A., Kumar, K., (2020). Effect of microwave treatment (low power and varying time) on potato starch: Microstructure, thermo-functional, pasting and rheological Properties. Int J Biol Macromol, 155: 27–35.
  • Lao, YY., Zhang, M., Chitrakar, B., Bhandari, B., Fan, D.C. (2019). Efficient plant foods processing based on ınfrared heating. Food Rev Int, 35(7): 640-663.
  • Lee, E.H. (2021). A review on applications of ınfrared heating for food processing in comparison to other ındustries, In: Innovative Food Processing Technologies: A Comprehensive Review, Article in press, Knoerzer, K. and Muthukumarappan, K. (chief ed.), Elsevier, pp. 431-455. https://doi.org/10.1016/B978-0-08-100596-5.22670-X
  • Li Y., Hu A., Zheng J., Wang X. (2019). Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power., Int J Biol Macromol, 141: 76–84.
  • Li, Z., Wang, J., Zheng, B., Guo, Z. (2020). Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason Sonochem, 65: 105063.
  • Liu, Z.D., Yang, Y., Liang, H., Bi, L., Gong, B. (2012). Study on technology of ultrasound-microwave assisted improves preparation of porous starch. Mater Manuf Process, Vol. 476-478 pp. 744-750.
  • Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., Xiao, J., Miao, S., Zheng, B. (2017). Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera gaertn.) seeds. Ind Crops Prod, 107: 546-557.
  • Martins, C.P.C., Cavalcanti, R.N., Couto, S.M., Moraes, J., Esmerino, E.A., Silva, M.C., Raices, R.S.L., Gut, J.A.W., Ramaswamy, H.S., Tadini, C.C., Cruz, A.G. (2019). Microwave processing: Current background and effects on the physicochemical and microbiological aspects of dairy products. Compr Rev Food Sci Food Saf, 18(1): 67-83.
  • Ma S., Fan D., Wang L., Lian H., Zhao J., Zhang H., Chen W. (2015). The impact of microwave heating on the granule state and thermal properties of potato starch, Starch/Starke, 67(5-6): 391–398.
  • McKenzie, TG., Karimi, F., Ashokkumar, M., Qiao, GG. (2019). Ultrasound and sonochemistry for radical polymerization: Sound synthesis. Chem Eur J. 25(21): 5372-5388.
  • Mello P.A., Barin J.S., Guarnieri R.A. (2014). Microwave heating, In: Microwave-Assisted Sample Preparation for Trace Element Determination, Elsevier, 59-75.
  • Mizutani Y., Shibata M., Yamada S., Nambu Y., Hirotsuka M., Matsumura Y. (2019). Effects of heat treatment under low moisture conditions on the protein and oil in soybean seeds, Food Chem, 275:577–584.
  • Monroy, Y., Rivero, S., Garcia, M.A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason Sonochem, 42: 795-804.
  • Nadiah, N. I., Uthumporn, U., Syahariza, Z. A. (2015). Effect of Microwave Heating on Potato and Tapioca Starches in Water Suspension. (Vol.5, No. 4, ISSN: 2088-5334).
  • Noman, A., Qixing, J., Xu, Y., Abed, S.M., Obadi, M., Ali, A.H., Bukhaiti, W.Q., Xia, W. (2020). Effects of ultrasonic, microwave, and combined ultrasonic microwave pretreatments on the enzymatic hydrolysis process and protein hydrolysate properties obtained from Chinese sturgeon (Acipenser sinensis). J Food Biochem, 44:e13292.
  • Oyeyinka, S. A., Umaru, E., Olatunde, S. J., Joseph, J. K. (2019). Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Bioscience, 28: 36–41.
  • Patist, A., Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov Food Sci Emerg Technol, 9:147–154.
  • Pop, F. (2018). Effect of microwave heating on quality and fatty acids composition of vegetable oils, Studia UBB Biologia, 63(2):43-52.
  • Prajapat A.L., Gogate P.R. (2015). Depolymerization of guar gum solution using different approaches based on ultrasound and microwave irradiations, Chem Eng Process. 88: 1–9.
  • Qin X.S., Luo S.Z., Cai J., Zhong X.Y., Jiang S.T., Zheng Z., Zhao Y.Y. (2016). Effects of microwave pretreatment and transglutaminase crosslinking on the gelation properties of soybean protein isolate and wheat glüten mixtures, J Sci Food Agric, 96(10): 3559–3566.
  • Rastogi, N.K. (2021). Infrared heating in drying operations, In: Innovative Food Processing Technologies: A Comprehensive Review, Article in press, Knoerzer, K. and Muthukumarappan, K. (chief ed.), Elsevier, pp. 456-476. https://doi.org/10.1016/B978-0-08-100596-5.22671-1
  • Rattanadecho, P., Makul, N. (2016). Microwave-assisted drying: A Review of the State-of-the-Art. Dry Technol, 34(1):1-38.
  • Ren X., Wei X., Ma H., Zhou H., Guo J., Mao S., Hu A. (2015). Effects of a dual-frequency frequency-sweeping ultrasound treatment on the properties and structure of the zein protein. Cereal Chem, 92(2):193–197.
  • Riadh, M.H., Ahmad, S.A.B., Marhaban, M.H., Soh, A.C. (2015). Infrared heating in food drying: An overview. Dry Technol, 33(3):322-335.
  • Semwal, J., Meera, M.S. (2020). Infrared radiation: Impact on physicochemical and functional characteristics of grain starch. Starch, 2000112.
  • Shah, U., Gani, A., Ashwar, B.A., Shah, A., Wani, I.A., Masoodi. F.A. (2016). Effect of infrared and microwave radiations on properties of IndianHorse Chestnut starch. Int J Biol Macromol, 84:166–173.
  • Singh, V., P. Kumar, P., Sanghi, R. (2012). Use of microwave irradiation in the grafting modification of the polysaccharides-A review, Prog Polym Sci, 37(2):340-364.
  • Souza H.K.S., Campiña J.M., Sousa A.M.M., Silva F., Gonçalves M.P. (2013). Ultrasound-assisted preparation of size-controlled chitosan nanoparticles: Characterization and fabrication of transparent biofilms, Food Hydrocoll, 31(2): 227-236.
  • Stevenson, D.G., Biswas, A., Inglett, (2005). G.E. Thermal and pasting properties of microwaved corn starch. Starke, 57(8):347-353.
  • Sumari S., Roesyadi A., Sumarno S. (2013). Effects of ultrasound on the morphology, partıcle sıze, crystallınıty, and crystallıte sıze of cellulose. Scientific Study and Research: Chemistry and Chemical Engineering, 14 (4), pp. 229 – 239.
  • Sun H., Shao X., Jiang R., Ma Z., Wang H. (2018). Effects of ultrasonic/microwave-assisted treatment on the properties of corn distarch phosphate/corn straw cellulose films and structure characterization. J Food Sci Technol, 55(4):1467-1477.
  • Tan, C.P., Man, Y.B.C., Jinap, S., Yusoff, M.S.A. (2001). Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. J Am Oil Chem' Soc, 78(12): 1227-1232.
  • Türk V. (2013). Ultrasonik depolimerizasyon, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı Yüksek Lisans Tezi (Tez Danışmanı: Ali Özhan Akyüz ), Afyon, Türkiye, 62 s.
  • Uraives, P., Choomjaihan, P. (2019). Some physicochemical properties of tapioca starch during infrared heat treatment, In IOP Conference Series: Earth and Environmental Science (Vol. 301, p. 012044). IOP Publishing.
  • Vanga, S.K., Wang, J., Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT-Food Science and Technology, 131: 109708.
  • Vera A., Tapia C., Abugoch L. (2020). Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films, Int J Biol Macromol, 144: 536–543.
  • Verma, D.K., Mahantı, N.K., Thakur, M., Chakraborty, S.K., Srıvastav, P.P. (2020). Microwave heating: Alternative thermal process technology for food application. In: Emerging Thermal and Nonthermal Technologies in Food Processing, pp.25-67.
  • Virkutyte, J. (2015). The use of power ultrasound in biofuel production, bioremediation, and other applications, In: Power Ultrasonics Applications of High-Intensity Ultrasound. pp.1095-1122.
  • Wang, M., Sun, M., Zhang, YY., Chen, Y., Wu, YW., Ouyang, J. (2019). Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chem, 298: 125015.
  • Wang, M., Wu, Y., Liu, Y., Ouyang, J (2020). Effect of ultrasonic and microwave dual-treatment on the physicochemical properties of chestnut starch. Polymers, 12(8):1718.
  • Wang, N., Gao, Y., Wang, P., Xie, T., Xiao,Z. (2016). Effect of microwave modification on mechanical properties and structural characteristics of soy protein ısolate and zein blended film. Czech J Food Sci, 34(2):180–188.
  • Wang Z., Sun X., Lian Z., Wang X., Zhou J., Ma Z. (2013). The effects of ultrasonic/microwave assisted treatment on the Properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Eng, 114(2):183–191.
  • Xiong Y., Li Q., Miao S., Zhang Y., Zheng B., Zhang L. (2019). Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum, Innov Food Sci Emerg Technol, 54: 225–234.
  • Yadav, G., Gupta, N., Sood, M., Anjum, N., Chib, A. (2020). Infrared heating and its application in food processing. J Pharm Innov, 9(2): 142-151.
  • Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll, 69:473-482.
  • Yılmaz Tuncel , N., Tuncel, N.B. (2016). Kızılötesi teknolojisi ve gıda işlemedeki kullanımı. Akademik Gıda, 14(2): 196-203.
  • Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol, 43(1):1-17.

A REVIEW ON VARIOUS PROPERTIES OF NATURAL BIOPOLYMERS MODIFIED BY INFRARED, MICROWAVE, ULTRASOUND TECHNOLOGIES AND THEIR COMBINATIONS

Year 2021, , 785 - 802, 17.05.2021
https://doi.org/10.15237/gida.GD21022

Abstract

Natural biopolymers are environmentally friendly, green polymers, used in various fields, such as food production, food packaging, textile, otomotive, medicine, drug, etc. Modification of natural biopolymers by use of different technologies can improve their functionalities. Modified natural biopolymers can be used as an encapsulation material, an ingredient of high performance edible film, coating or a functional food. Infrared, microwave and ultrasound and their combinations can degrade and depolymerize natural biopolymers and affect their functionalities in a positive manner, according to their specific action mechanisms. Ultrasound and ultrasound-microwave combination technologies can increase extraction and enzymatic hydrolysis yield, decrease process time and improve properties of polymers. In this paper, action mechanisms of infrared, microwave and ultrasound technologies were mentioned briefly, various properties of natural biopolymers modified by those technologies and effects of ultrasound and ultrasound-microwave combination technologies on yield, process time of extraction and enzymatic hydrolysis processes were featured.

References

  • Aboud, S.A., Altemimi, A.B., Al-HiIphy, A.R. S., Lee, Y., Cacciola, F. (2019). A comprehensive review on infrared heating applications in food processing. Molecules, 24(22): 4125.
  • Akyüz A.Ö. (2010). Ultrasesin polimerlere etkileri, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İstanbul, Türkiye, 141 s.
  • Amiri A., Sharifian P., Soltanizadeh N. (2018). Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins, Int J Biol Macromol, 111:139-147.
  • Anderson A.K., Guraya H.S. (2006). Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches, Food Chem, 97(2): 318–323.
  • Arifoğlu, N., Öğütçü, M. (2019). Effect of microwave heating on quality parameters of hazelnut, Canola and Corn Oils. Akademik Gıda, 17(1): 23-29.
  • Arzeni C., Martinez K., Zema P., Arias A., Perez O.E., Pilosof A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. J Food Eng, 108(3): 463–472.
  • Balaji, A.B., Pakalapati, H., Khalid, M., Walvekar, R., Siddiqui, H. (2018). Natural and synthetic biocompatible and biodegradable polymers. In: Biodegradable and Biocompatible Polymer Composites, Elsevier, pp. 3-32.
  • Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrason Sonochem, 70: 105293.
  • Bhatia, S. (2016). Natural polymers vs synthetic polymer. In: Natural Polymer Drug Delivery Systems, Springer, pp. 95-118.
  • Camino N.A., Perez O.E., Pilosof A.M.R. (2009). Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound, Food Hydrocoll, 23(4): 1089–1095.
  • Cui, R.B., Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol,107: 491-508.
  • Çengelköy Köz, E. (2019). Farklı ısıtma teknolojileri-nem uygulaması ile modifiye edilmiş nişastaların ve bu nişastalardan elde edilen yenilebilir filmlerin özellikleri, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Polimer Bilimi ve Teknolojisi Anabilim Dalı YL Tezi, (Tez Danışmanı: Semin Özge (Özkoç) Keskin), Kocaeli, Türkiye. 131 s.
  • Dangaran, K., Tomasula, P.M., Qi, P. (2009). Structure and function of protein-based edible films and coatings. In: Edible Films and Coatings for Food Applications, Embuscado M. E. and Huber K. C., (ed.), Springer, pp. 25-56.
  • Desbrières J., Petit C., Reynaud S. (2014). Microwave-assisted modifications of polysaccharides, Pure Appl Chem, 86(11): 1695–1706.
  • Firouz, M.S., Farahmandi, A ., Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason Sonochem, 57: 73-88.
  • Gallo M., Ferrara L., Naviglio D. (2018). Application of ultrasound in food science and technology: A Perspective, Foods, 7(10): 164.
  • Guimaraes, J.T., Silva, E.K., Alvarenga, V.O., Costa, A.L.R., Cunha, R.L., Sant'Ana, A.S., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason Sonochem, 44: 251-260.
  • Guo B., Wu J., Hu X., Luo S., Wang H., Xu S., Huang Z., Liu C. (2020). Effects of controlled far-ınfrared treatment on granular swelling and rheological properties of crop starches, Starch/Stärke, 72(3-4): 1900251.
  • Hassan, S., Imran, M., Ahmad, N., Khan, M. K. (2017). Lipids characterization of ultrasound and microwave processed germinated sorghum. Lıpıds In Health and Dısease, Vol. 16, 125.
  • Hu A., Li L., Zheng J., Lu J., Meng X., Liu Y., Rehman R. (2014). Different-frequency ultrasonic effects on properties and structure of corn starch, J Sci Food Agric, 94(14): 2929-2934.
  • İsmailoğlu, S. Ö., Başman, A. (2015). Effects of ınfrared heat-moisture treatment on the physicochemical properties of corn starch. Starch/Stärke, 67(5-6): 528-539.
  • İsmailoğlu, S. Ö., Başman, A. (2016). Physicochemical properties of ınfrared heat- moisture treated wheat starch, Starch/Stärke, 68(1-2): 67-75.
  • Jambrak, A. R., Herceg Z., Subaric, D., Babic, J., Brncic,M., Brncic, S.R., Bosiljkov, T., Cvek D., Tripalo, B., Gelo, J. (2010). Ultrasound effect on physical properties of corn starch. Carbohydr Polym, 79(1): 91-100.
  • Karrar, E., Sheth, S., Wei, W., Wang, X. (2020). Effect of microwave heating on lipid composition, oxidative stability, color value, chemical properties, and antioxidant activity of gurum (Citrulluslanatus var. Colocynthoide) seed oil. Biocatal Agric Biotechnol, 23,101504.
  • Kasaai M.R. (2013). Input power-mechanism relationship for ultrasonic irradiation: Food and polymer applications, J Nat Sci, 05(08): 14-22.
  • Keskin, S.O. (2003). Effects of different ovens and enzymes on quality parameters of bread. ODTÜ, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı YL Tezi, (Tez Danışmanı: Servet Gülüm Şumnu, Yardımcı Danışman: Serpil Şahin), Ankara, Türkiye. 135 s.
  • Keskin, S.O., Sumnu, G., Sahin, S., (2004a). Bread baking in halogen lamp microwave combination oven. Food Res Int, 37(5):489-495.
  • Keskin, S.O., Sumnu, G., Sahin, S., (2004b). Usage of enzymes in a novel baking process. Nahrung/Food, 48(2):156-160.
  • Keskin S.O., Ozturk, S., Sahin, S., Köksel, H., Sumnu, G., (2005). Halogen lamp microwave combination baking of cookies. Eur Food Res Technol, 220(5-6): 546-551.
  • Kumar, Y., Singh, L., Sharanagat, V. L., Patel, A., Kumar, K., (2020). Effect of microwave treatment (low power and varying time) on potato starch: Microstructure, thermo-functional, pasting and rheological Properties. Int J Biol Macromol, 155: 27–35.
  • Lao, YY., Zhang, M., Chitrakar, B., Bhandari, B., Fan, D.C. (2019). Efficient plant foods processing based on ınfrared heating. Food Rev Int, 35(7): 640-663.
  • Lee, E.H. (2021). A review on applications of ınfrared heating for food processing in comparison to other ındustries, In: Innovative Food Processing Technologies: A Comprehensive Review, Article in press, Knoerzer, K. and Muthukumarappan, K. (chief ed.), Elsevier, pp. 431-455. https://doi.org/10.1016/B978-0-08-100596-5.22670-X
  • Li Y., Hu A., Zheng J., Wang X. (2019). Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power., Int J Biol Macromol, 141: 76–84.
  • Li, Z., Wang, J., Zheng, B., Guo, Z. (2020). Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason Sonochem, 65: 105063.
  • Liu, Z.D., Yang, Y., Liang, H., Bi, L., Gong, B. (2012). Study on technology of ultrasound-microwave assisted improves preparation of porous starch. Mater Manuf Process, Vol. 476-478 pp. 744-750.
  • Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., Xiao, J., Miao, S., Zheng, B. (2017). Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera gaertn.) seeds. Ind Crops Prod, 107: 546-557.
  • Martins, C.P.C., Cavalcanti, R.N., Couto, S.M., Moraes, J., Esmerino, E.A., Silva, M.C., Raices, R.S.L., Gut, J.A.W., Ramaswamy, H.S., Tadini, C.C., Cruz, A.G. (2019). Microwave processing: Current background and effects on the physicochemical and microbiological aspects of dairy products. Compr Rev Food Sci Food Saf, 18(1): 67-83.
  • Ma S., Fan D., Wang L., Lian H., Zhao J., Zhang H., Chen W. (2015). The impact of microwave heating on the granule state and thermal properties of potato starch, Starch/Starke, 67(5-6): 391–398.
  • McKenzie, TG., Karimi, F., Ashokkumar, M., Qiao, GG. (2019). Ultrasound and sonochemistry for radical polymerization: Sound synthesis. Chem Eur J. 25(21): 5372-5388.
  • Mello P.A., Barin J.S., Guarnieri R.A. (2014). Microwave heating, In: Microwave-Assisted Sample Preparation for Trace Element Determination, Elsevier, 59-75.
  • Mizutani Y., Shibata M., Yamada S., Nambu Y., Hirotsuka M., Matsumura Y. (2019). Effects of heat treatment under low moisture conditions on the protein and oil in soybean seeds, Food Chem, 275:577–584.
  • Monroy, Y., Rivero, S., Garcia, M.A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason Sonochem, 42: 795-804.
  • Nadiah, N. I., Uthumporn, U., Syahariza, Z. A. (2015). Effect of Microwave Heating on Potato and Tapioca Starches in Water Suspension. (Vol.5, No. 4, ISSN: 2088-5334).
  • Noman, A., Qixing, J., Xu, Y., Abed, S.M., Obadi, M., Ali, A.H., Bukhaiti, W.Q., Xia, W. (2020). Effects of ultrasonic, microwave, and combined ultrasonic microwave pretreatments on the enzymatic hydrolysis process and protein hydrolysate properties obtained from Chinese sturgeon (Acipenser sinensis). J Food Biochem, 44:e13292.
  • Oyeyinka, S. A., Umaru, E., Olatunde, S. J., Joseph, J. K. (2019). Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Bioscience, 28: 36–41.
  • Patist, A., Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov Food Sci Emerg Technol, 9:147–154.
  • Pop, F. (2018). Effect of microwave heating on quality and fatty acids composition of vegetable oils, Studia UBB Biologia, 63(2):43-52.
  • Prajapat A.L., Gogate P.R. (2015). Depolymerization of guar gum solution using different approaches based on ultrasound and microwave irradiations, Chem Eng Process. 88: 1–9.
  • Qin X.S., Luo S.Z., Cai J., Zhong X.Y., Jiang S.T., Zheng Z., Zhao Y.Y. (2016). Effects of microwave pretreatment and transglutaminase crosslinking on the gelation properties of soybean protein isolate and wheat glüten mixtures, J Sci Food Agric, 96(10): 3559–3566.
  • Rastogi, N.K. (2021). Infrared heating in drying operations, In: Innovative Food Processing Technologies: A Comprehensive Review, Article in press, Knoerzer, K. and Muthukumarappan, K. (chief ed.), Elsevier, pp. 456-476. https://doi.org/10.1016/B978-0-08-100596-5.22671-1
  • Rattanadecho, P., Makul, N. (2016). Microwave-assisted drying: A Review of the State-of-the-Art. Dry Technol, 34(1):1-38.
  • Ren X., Wei X., Ma H., Zhou H., Guo J., Mao S., Hu A. (2015). Effects of a dual-frequency frequency-sweeping ultrasound treatment on the properties and structure of the zein protein. Cereal Chem, 92(2):193–197.
  • Riadh, M.H., Ahmad, S.A.B., Marhaban, M.H., Soh, A.C. (2015). Infrared heating in food drying: An overview. Dry Technol, 33(3):322-335.
  • Semwal, J., Meera, M.S. (2020). Infrared radiation: Impact on physicochemical and functional characteristics of grain starch. Starch, 2000112.
  • Shah, U., Gani, A., Ashwar, B.A., Shah, A., Wani, I.A., Masoodi. F.A. (2016). Effect of infrared and microwave radiations on properties of IndianHorse Chestnut starch. Int J Biol Macromol, 84:166–173.
  • Singh, V., P. Kumar, P., Sanghi, R. (2012). Use of microwave irradiation in the grafting modification of the polysaccharides-A review, Prog Polym Sci, 37(2):340-364.
  • Souza H.K.S., Campiña J.M., Sousa A.M.M., Silva F., Gonçalves M.P. (2013). Ultrasound-assisted preparation of size-controlled chitosan nanoparticles: Characterization and fabrication of transparent biofilms, Food Hydrocoll, 31(2): 227-236.
  • Stevenson, D.G., Biswas, A., Inglett, (2005). G.E. Thermal and pasting properties of microwaved corn starch. Starke, 57(8):347-353.
  • Sumari S., Roesyadi A., Sumarno S. (2013). Effects of ultrasound on the morphology, partıcle sıze, crystallınıty, and crystallıte sıze of cellulose. Scientific Study and Research: Chemistry and Chemical Engineering, 14 (4), pp. 229 – 239.
  • Sun H., Shao X., Jiang R., Ma Z., Wang H. (2018). Effects of ultrasonic/microwave-assisted treatment on the properties of corn distarch phosphate/corn straw cellulose films and structure characterization. J Food Sci Technol, 55(4):1467-1477.
  • Tan, C.P., Man, Y.B.C., Jinap, S., Yusoff, M.S.A. (2001). Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. J Am Oil Chem' Soc, 78(12): 1227-1232.
  • Türk V. (2013). Ultrasonik depolimerizasyon, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı Yüksek Lisans Tezi (Tez Danışmanı: Ali Özhan Akyüz ), Afyon, Türkiye, 62 s.
  • Uraives, P., Choomjaihan, P. (2019). Some physicochemical properties of tapioca starch during infrared heat treatment, In IOP Conference Series: Earth and Environmental Science (Vol. 301, p. 012044). IOP Publishing.
  • Vanga, S.K., Wang, J., Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT-Food Science and Technology, 131: 109708.
  • Vera A., Tapia C., Abugoch L. (2020). Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films, Int J Biol Macromol, 144: 536–543.
  • Verma, D.K., Mahantı, N.K., Thakur, M., Chakraborty, S.K., Srıvastav, P.P. (2020). Microwave heating: Alternative thermal process technology for food application. In: Emerging Thermal and Nonthermal Technologies in Food Processing, pp.25-67.
  • Virkutyte, J. (2015). The use of power ultrasound in biofuel production, bioremediation, and other applications, In: Power Ultrasonics Applications of High-Intensity Ultrasound. pp.1095-1122.
  • Wang, M., Sun, M., Zhang, YY., Chen, Y., Wu, YW., Ouyang, J. (2019). Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chem, 298: 125015.
  • Wang, M., Wu, Y., Liu, Y., Ouyang, J (2020). Effect of ultrasonic and microwave dual-treatment on the physicochemical properties of chestnut starch. Polymers, 12(8):1718.
  • Wang, N., Gao, Y., Wang, P., Xie, T., Xiao,Z. (2016). Effect of microwave modification on mechanical properties and structural characteristics of soy protein ısolate and zein blended film. Czech J Food Sci, 34(2):180–188.
  • Wang Z., Sun X., Lian Z., Wang X., Zhou J., Ma Z. (2013). The effects of ultrasonic/microwave assisted treatment on the Properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Eng, 114(2):183–191.
  • Xiong Y., Li Q., Miao S., Zhang Y., Zheng B., Zhang L. (2019). Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum, Innov Food Sci Emerg Technol, 54: 225–234.
  • Yadav, G., Gupta, N., Sood, M., Anjum, N., Chib, A. (2020). Infrared heating and its application in food processing. J Pharm Innov, 9(2): 142-151.
  • Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll, 69:473-482.
  • Yılmaz Tuncel , N., Tuncel, N.B. (2016). Kızılötesi teknolojisi ve gıda işlemedeki kullanımı. Akademik Gıda, 14(2): 196-203.
  • Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol, 43(1):1-17.
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Lale Acar 0000-0002-5889-9843

Semin Özge Keskin 0000-0002-4727-1508

Publication Date May 17, 2021
Published in Issue Year 2021

Cite

APA Acar, L., & Keskin, S. Ö. (2021). KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME. Gıda, 46(4), 785-802. https://doi.org/10.15237/gida.GD21022
AMA Acar L, Keskin SÖ. KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME. GIDA. May 2021;46(4):785-802. doi:10.15237/gida.GD21022
Chicago Acar, Lale, and Semin Özge Keskin. “KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Gıda 46, no. 4 (May 2021): 785-802. https://doi.org/10.15237/gida.GD21022.
EndNote Acar L, Keskin SÖ (May 1, 2021) KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME. Gıda 46 4 785–802.
IEEE L. Acar and S. Ö. Keskin, “KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME”, GIDA, vol. 46, no. 4, pp. 785–802, 2021, doi: 10.15237/gida.GD21022.
ISNAD Acar, Lale - Keskin, Semin Özge. “KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Gıda 46/4 (May 2021), 785-802. https://doi.org/10.15237/gida.GD21022.
JAMA Acar L, Keskin SÖ. KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME. GIDA. 2021;46:785–802.
MLA Acar, Lale and Semin Özge Keskin. “KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Gıda, vol. 46, no. 4, 2021, pp. 785-02, doi:10.15237/gida.GD21022.
Vancouver Acar L, Keskin SÖ. KIZILÖTESİ, MİKRODALGA, ULTRASES TEKNOLOJİLERİ VE KOMBİNASYONLARI KULLANILARAK MODİFİYE EDİLMİŞ DOĞAL BİYOPOLİMERLERİN ÇEŞİTLİ ÖZELLİKLERİ ÜZERİNE BİR DERLEME. GIDA. 2021;46(4):785-802.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/