BibTex RIS Cite

HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ

Year 2015, Volume: 40 Issue: 4, 233 - 240, 01.08.2015

Abstract

Hyaluronik asit (HA) β-1,3 ve β-1,4 glikozidik bağı ile bağlanmış D-glukuronik asit ve N-asetilglukozaminbirimlerinin tekrarlanmasıyla oluşan bir polimerdir. Yüksek viskoelastisite, nem tutma kapasitesi vebiyouyumluluk özelliklerine sahip olmasından dolayı gıda, tıp, kozmetik ve nutrasötik alanlarındakullanılmaktadır. Geleneksel olarak horoz ibiğinden ekstraksiyonla üretilmektedir. Ancak 1980lerdensonra streptokok suşlar kullanılarak fermantasyonla üretimine başlanmış ve günümüzde de rekombinantsistemlerle yüksek moleküler ağırlığa sahip HA üretimi denenmektedir. HA'nın son zamanlarda gıdatakviyesi olarak kullanımı oldukça dikkat çekmektedir. Bu çalışmada HA, HA üretim yöntemleri vefermantasyon teknolojisi ile HA üretiminde karşılaşılan genel problemler ile ilgili bilgilere yer verilmiştir

References

  • Liu L., Liu Y., Li J., Du G., Chen J. 2011. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories 10:99.
  • Kuo C. K., Li W. J., Tuan R. S. 2013. Chapter II.6.8 - Cartilage and Ligament Tissue Engineering: Biomaterials, Cellular Interactions, and Regenerative Strategies. Biomaterials Science (Third Edition) An Introduction to Material in Medicine, Edited by: Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons, Academic Press, UK, pp. 1214-1236.
  • Prestwich G. D., Atzet S. 2013. Chapter I.2.7 - Engineered Natural Materials. Biomaterials Science (Third Edition) An Introduction to Material in Medicine, Edited by: Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons, Academic Press, UK, pp. 195-209.
  • Gomes M., Azevedo H., Malafaya P., Silva S., Oliveira J., Silva G., Mano R. S. J., Reis R. 2013. 16 – Natural Polymers in Tissue Engineering Applications. Handbook of Biopolymers and Biodegradable Plastics (A volume in Plastics Design Library), Edited by Sine Ebnesajjad, William Andrew, UK, pp. 385-425.
  • DeRosa T. F. 2013. Next Generation of International Chemical Additives. Elsevier, UK, 565 p. 6. Su Z., Ma H., Wu Z., Zeng H., Li Z., Wang Y., Liu G., Xu B., Lin Y., Zhang P., Wei X. 2014. Enhancement of skin wound healingwith decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Materials Science and Engineering C 44:440-448.
  • Vasi A. M., Popa M. I.,Butnaru M., Dodi G., Verestiuc L. 2014. Chemical functionalization of hyaluronic acid for drug delivery applications. Material Science and Engineering C 38: 177-185. 11. Ilgin P., Avci G., Silan C., Ekici S., Aktas N., Ayyala R. S., John V. T., Sahiner N. 2010. Colloidal drug cariies from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications. Carbohydrate Polymers 82: 997-1003.
  • Nath S. D., Abueva C., Kim B., Lee B. T. 2015. Chitosan–hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydrate Polymers 115: 160-169.
  • Uccello-Barretta G., Nazzi S., Zambito Y., Di Colo G., Balzano F., Sansò M. 2010. Synergistic interaction between TS-polysaccharide and hyaluronic acid: Implications in the formulation of eye drops. International Journal of Pharmaceutics 395: 122-131.
  • Fernández-Ronco M. P., Kluge J., Krieg J., Rodríguez-Rojo S., Andreatta B., Luginbuehl R. Mazzotti M. 2014. Improving the wear resistance of UHMWPE implants by in situ precipitation of hyaluronic acid using supercritical fluid technology. The Journal of Supercritical Fluids 95: 204-213.
  • Pitarresi G., Palumbo F. S., Calascibetta F., Fiorica C., Stefano M. D., Giammona 2013. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal of Pharmaceutics 449: 84-94.
  • Yan S., Zhang Q., Wang J., Liu Y., Lu S., Li M., Kaplan D. L. 2013. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia 9: 6771-6782. 20. Zhang J., Ma X., Fan D., Zhu C., Deng J., Hui J., Ma P. 2014. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Materials Science and Engineering C 43: 547-554.
  • Li J., He Y., Sun W., Luo Y., Cai H., Pan Y., Shen M., Xia J., Shi X. 2014. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35: 3666-3677.
  • Segari W. A. O., Radwan D. A. E. K., Hamid M. A. A. E. 2014. The effect of adding hyaluronic acid to calcium phosphate on periapical tissue healing following periradicular surgery in dogs. Tanta Dental Journal 11: 122-129.
  • Qassemyar Q., Gianfermi M. 2014. Supermicrosurgery and hyaluronic acid: Experimental feasability study of a new method. Annales de Chirurgie Plastique Esthétique Article in Press. Doi: 10.1016/j.anplas.2014.08.015.
  • Price R. D., Berry M. G., Navsaria H. A. 2007. Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive and Aesthetic Surgery 60: 1110-1119.
  • Özer, E. A., Güven, A. 2008. Fonksiyonel Gıdalar ve Nutrasötikler. Türkiye 10. Gıda Kongresi, 21-23 Mayıs, Erzurum, Türkiye, 1119-1120.
  • Başaran, A. A. 2008. Nutrasötikler. Türkiye Klinikleri J Med Sci, 28: 146-149
  • EFSA 2009. Scientific Opinion on the substantiation of health claims related to hyaluronic acid and maintenance of joints (ID 1572, 1731, 1932, 3132) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA Journal, 7(9):1266
  • Chong B. F., Blank L. M., Mclaughlin R., Nielsen L. K. 2005. Microbial hyaluronic acid production. Applied Microbiology and Biotechnology 66: 341-351. 29. Hasegawa S., Nagatsuru M., Shibutani M., Yamamoto S., Hasebe S. 1999. Productivity of Concentrated Hyaluronic Acid Using a Maxblend® Fermentor. Journal of Bioscience and Bioengineering 88 (1): 68-71.
  • Khanmohammadi M., Khoshfetrat A. B., Eskandarnezhad S., Sani N. F., Ebrahimi S. 2014. Sequential optimization strategy for hyaluronic acid extraction from eggshell and its partial characterization. Journal of Industrial and Engineering Chemistry 20: 4371-4376.
  • Yu H., Stephanopoulos G. 2008. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metabolic Engineering 10: 24-32. 32. Jeong E., Shim W. Y., Kim J. H. 2014. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology 185: 28-36.
  • Jia Y., Zhu J., Chen X., Tang D., Su D., Yao W., Gao X. 2013. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology 132: 427-431.
  • Izawa N., Hanamizu T., Sone T., Chiba K. 2010. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk. Journal of Bioscience and Bioengineering 109(4): 356-360.
  • Izawa N., Serata M., Sone T., Omasa T., Ohtake H. 2011. Hyaluronic acid production by recombinant Streptococcus thermophilus. Journal of Bioscience and Bioengineering 111(6): 665-670.
  • Chien L. J., Lee C. K. 2007. Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology 77: 339-346. 37. Anon 2014. http://www.biopharma.novozymes. com/en/information-centre/brochures-and- datasheets/Documents/Hyasis_A3_foldout_ FINAL_Web.pdf (Accessed 27.10.2014)
  • Huang W. C., Chen S. J., Chen T. L. 2006. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochemical Engineering Journal 32: 239-243.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2009. Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess and Biosystems Engineering 32: 755-763.
  • Lai Z. W., Rahim R. A., Ariff A. B., Mohamad R. 2012. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. Journal of Bioscience and Bioengineering 114(3): 286-291.
  • Huang W. C., Chen, S. J., Chen T. L. 2008. Production of hyaluronic acid by repeated batch fermentation. Biochemical Engineering Journal 40: 460-464.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2008. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus. Food Chemistry 110: 923–926.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2008. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresource Technology,99: 8532–8536.
  • Patil K. P., Kamalja K. K., Chaudhari B. L. 2011. Optimization of medium components for hyaluronic acid production by Streptococcus zooepidemicus MTCC 3523 using a statistical approach. Carbohydrate Polymers 86: 1573-1577. 45. Zhang J., Ding X., Yang L., Kong Z. 2006. A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Applied Microbiology and Biotechnology 72: 168-172.
  • Liu L., Wang M., Du G., Chen J. 2008. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Letters in Applied Microbiology 46: 383–388.
  • Im J. H., Song J. M., Kang J. H., Kang D. J. 2009. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach. Journal of Industrial Microbiology and Biotechnology 36: 1337-1344.
  • Chen S. J., Chen J. L., Huang W. C., Chen H. L. 2009. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean Journal of Chemical Engineering 26(2): 428-432.
  • Pires A. M. B., Santana M. H. A. 2010. Metabolic effects of the ınitial glucose concentration on microbial production of hyaluronic acid. Applied Biochemistry and Biotechnology 162: 1751-1761. 50. Pires A. M. B., Eguchi S. Y., Santana M. H. A. 2010. The influence of mineral ions on the microbial production and molecular weight of hyaluronic acid. Applied Biochemistry and Biotechnology 162: 2125-2135.
  • Pires A. M. B., Macedo A. C., Eguchi S. Y., Santana M. H. A. 2010. Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology 101: 6506-6509.
  • Badle S. S., Jayaraman G., Ramachandran K. B. 2014. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresource Technology 163: 222-227.
  • Jagannath S., Ramachandran K. B. 2010. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal 48: 148-158.
  • Chen W. Y., Marcellin E., Hung J., Nielsen L. K. 2009. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. The Journal Of Biological Chemistry 284(27): 18007-18014.
  • Armstrong D. C., Johns M. R. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Applied and Environmental Microbiology 63(7): 2759-2764.
  • Zhou H., Ni J., Huang W., Zhang J. 2006. Separation of hyaluronic acid from fermentation broth by tangential flow microfiltration and ultrafiltration. Separation and Purification Technology 52: 29-38.
  • Ünlüer Ö. B., Ersöz A., Denizli A., Demirel R., Say R. 2013. Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel. Journal of Chromatography B 934: 46-52.

HYALURONIC ACID and PRODUCTION BY FERMENTATION

Year 2015, Volume: 40 Issue: 4, 233 - 240, 01.08.2015

Abstract

Hyaluronic acid (HA) is a polymer composed of units of N-acetyl glucosamine and D-glucuronic acidlinked by β-1,3 and β-1,4 glycosidic bond. Due to the fact that it has desirable viscoelasticity, moisturecapacity, and biocompatibility, HA is used for several applications in food, medicine, cosmetics, andnutraceuticals. HA is traditionally extracted from rooster combs, but since 1980s it has been producedby fermentation with streptococcal strains, and recombinant systems have been also tried to producedHA with high molecular weight lately. It has been recently gained attention for food supplement. Themain purpose of this study is to present a review about HA, application fields, HA production systems,and problems of HA fermentation

References

  • Liu L., Liu Y., Li J., Du G., Chen J. 2011. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories 10:99.
  • Kuo C. K., Li W. J., Tuan R. S. 2013. Chapter II.6.8 - Cartilage and Ligament Tissue Engineering: Biomaterials, Cellular Interactions, and Regenerative Strategies. Biomaterials Science (Third Edition) An Introduction to Material in Medicine, Edited by: Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons, Academic Press, UK, pp. 1214-1236.
  • Prestwich G. D., Atzet S. 2013. Chapter I.2.7 - Engineered Natural Materials. Biomaterials Science (Third Edition) An Introduction to Material in Medicine, Edited by: Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons, Academic Press, UK, pp. 195-209.
  • Gomes M., Azevedo H., Malafaya P., Silva S., Oliveira J., Silva G., Mano R. S. J., Reis R. 2013. 16 – Natural Polymers in Tissue Engineering Applications. Handbook of Biopolymers and Biodegradable Plastics (A volume in Plastics Design Library), Edited by Sine Ebnesajjad, William Andrew, UK, pp. 385-425.
  • DeRosa T. F. 2013. Next Generation of International Chemical Additives. Elsevier, UK, 565 p. 6. Su Z., Ma H., Wu Z., Zeng H., Li Z., Wang Y., Liu G., Xu B., Lin Y., Zhang P., Wei X. 2014. Enhancement of skin wound healingwith decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Materials Science and Engineering C 44:440-448.
  • Vasi A. M., Popa M. I.,Butnaru M., Dodi G., Verestiuc L. 2014. Chemical functionalization of hyaluronic acid for drug delivery applications. Material Science and Engineering C 38: 177-185. 11. Ilgin P., Avci G., Silan C., Ekici S., Aktas N., Ayyala R. S., John V. T., Sahiner N. 2010. Colloidal drug cariies from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications. Carbohydrate Polymers 82: 997-1003.
  • Nath S. D., Abueva C., Kim B., Lee B. T. 2015. Chitosan–hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydrate Polymers 115: 160-169.
  • Uccello-Barretta G., Nazzi S., Zambito Y., Di Colo G., Balzano F., Sansò M. 2010. Synergistic interaction between TS-polysaccharide and hyaluronic acid: Implications in the formulation of eye drops. International Journal of Pharmaceutics 395: 122-131.
  • Fernández-Ronco M. P., Kluge J., Krieg J., Rodríguez-Rojo S., Andreatta B., Luginbuehl R. Mazzotti M. 2014. Improving the wear resistance of UHMWPE implants by in situ precipitation of hyaluronic acid using supercritical fluid technology. The Journal of Supercritical Fluids 95: 204-213.
  • Pitarresi G., Palumbo F. S., Calascibetta F., Fiorica C., Stefano M. D., Giammona 2013. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal of Pharmaceutics 449: 84-94.
  • Yan S., Zhang Q., Wang J., Liu Y., Lu S., Li M., Kaplan D. L. 2013. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia 9: 6771-6782. 20. Zhang J., Ma X., Fan D., Zhu C., Deng J., Hui J., Ma P. 2014. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Materials Science and Engineering C 43: 547-554.
  • Li J., He Y., Sun W., Luo Y., Cai H., Pan Y., Shen M., Xia J., Shi X. 2014. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35: 3666-3677.
  • Segari W. A. O., Radwan D. A. E. K., Hamid M. A. A. E. 2014. The effect of adding hyaluronic acid to calcium phosphate on periapical tissue healing following periradicular surgery in dogs. Tanta Dental Journal 11: 122-129.
  • Qassemyar Q., Gianfermi M. 2014. Supermicrosurgery and hyaluronic acid: Experimental feasability study of a new method. Annales de Chirurgie Plastique Esthétique Article in Press. Doi: 10.1016/j.anplas.2014.08.015.
  • Price R. D., Berry M. G., Navsaria H. A. 2007. Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive and Aesthetic Surgery 60: 1110-1119.
  • Özer, E. A., Güven, A. 2008. Fonksiyonel Gıdalar ve Nutrasötikler. Türkiye 10. Gıda Kongresi, 21-23 Mayıs, Erzurum, Türkiye, 1119-1120.
  • Başaran, A. A. 2008. Nutrasötikler. Türkiye Klinikleri J Med Sci, 28: 146-149
  • EFSA 2009. Scientific Opinion on the substantiation of health claims related to hyaluronic acid and maintenance of joints (ID 1572, 1731, 1932, 3132) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA Journal, 7(9):1266
  • Chong B. F., Blank L. M., Mclaughlin R., Nielsen L. K. 2005. Microbial hyaluronic acid production. Applied Microbiology and Biotechnology 66: 341-351. 29. Hasegawa S., Nagatsuru M., Shibutani M., Yamamoto S., Hasebe S. 1999. Productivity of Concentrated Hyaluronic Acid Using a Maxblend® Fermentor. Journal of Bioscience and Bioengineering 88 (1): 68-71.
  • Khanmohammadi M., Khoshfetrat A. B., Eskandarnezhad S., Sani N. F., Ebrahimi S. 2014. Sequential optimization strategy for hyaluronic acid extraction from eggshell and its partial characterization. Journal of Industrial and Engineering Chemistry 20: 4371-4376.
  • Yu H., Stephanopoulos G. 2008. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metabolic Engineering 10: 24-32. 32. Jeong E., Shim W. Y., Kim J. H. 2014. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology 185: 28-36.
  • Jia Y., Zhu J., Chen X., Tang D., Su D., Yao W., Gao X. 2013. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology 132: 427-431.
  • Izawa N., Hanamizu T., Sone T., Chiba K. 2010. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk. Journal of Bioscience and Bioengineering 109(4): 356-360.
  • Izawa N., Serata M., Sone T., Omasa T., Ohtake H. 2011. Hyaluronic acid production by recombinant Streptococcus thermophilus. Journal of Bioscience and Bioengineering 111(6): 665-670.
  • Chien L. J., Lee C. K. 2007. Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology 77: 339-346. 37. Anon 2014. http://www.biopharma.novozymes. com/en/information-centre/brochures-and- datasheets/Documents/Hyasis_A3_foldout_ FINAL_Web.pdf (Accessed 27.10.2014)
  • Huang W. C., Chen S. J., Chen T. L. 2006. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochemical Engineering Journal 32: 239-243.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2009. Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess and Biosystems Engineering 32: 755-763.
  • Lai Z. W., Rahim R. A., Ariff A. B., Mohamad R. 2012. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. Journal of Bioscience and Bioengineering 114(3): 286-291.
  • Huang W. C., Chen, S. J., Chen T. L. 2008. Production of hyaluronic acid by repeated batch fermentation. Biochemical Engineering Journal 40: 460-464.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2008. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus. Food Chemistry 110: 923–926.
  • Liu L., Du G., Chen J., Wang M., Sun J. 2008. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresource Technology,99: 8532–8536.
  • Patil K. P., Kamalja K. K., Chaudhari B. L. 2011. Optimization of medium components for hyaluronic acid production by Streptococcus zooepidemicus MTCC 3523 using a statistical approach. Carbohydrate Polymers 86: 1573-1577. 45. Zhang J., Ding X., Yang L., Kong Z. 2006. A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Applied Microbiology and Biotechnology 72: 168-172.
  • Liu L., Wang M., Du G., Chen J. 2008. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Letters in Applied Microbiology 46: 383–388.
  • Im J. H., Song J. M., Kang J. H., Kang D. J. 2009. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach. Journal of Industrial Microbiology and Biotechnology 36: 1337-1344.
  • Chen S. J., Chen J. L., Huang W. C., Chen H. L. 2009. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean Journal of Chemical Engineering 26(2): 428-432.
  • Pires A. M. B., Santana M. H. A. 2010. Metabolic effects of the ınitial glucose concentration on microbial production of hyaluronic acid. Applied Biochemistry and Biotechnology 162: 1751-1761. 50. Pires A. M. B., Eguchi S. Y., Santana M. H. A. 2010. The influence of mineral ions on the microbial production and molecular weight of hyaluronic acid. Applied Biochemistry and Biotechnology 162: 2125-2135.
  • Pires A. M. B., Macedo A. C., Eguchi S. Y., Santana M. H. A. 2010. Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology 101: 6506-6509.
  • Badle S. S., Jayaraman G., Ramachandran K. B. 2014. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresource Technology 163: 222-227.
  • Jagannath S., Ramachandran K. B. 2010. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal 48: 148-158.
  • Chen W. Y., Marcellin E., Hung J., Nielsen L. K. 2009. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. The Journal Of Biological Chemistry 284(27): 18007-18014.
  • Armstrong D. C., Johns M. R. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Applied and Environmental Microbiology 63(7): 2759-2764.
  • Zhou H., Ni J., Huang W., Zhang J. 2006. Separation of hyaluronic acid from fermentation broth by tangential flow microfiltration and ultrafiltration. Separation and Purification Technology 52: 29-38.
  • Ünlüer Ö. B., Ersöz A., Denizli A., Demirel R., Say R. 2013. Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel. Journal of Chromatography B 934: 46-52.
There are 43 citations in total.

Details

Other ID JA47UA68NE
Journal Section Research Article
Authors

Ercan Yatmaz This is me

İrfan Turhan This is me

Publication Date August 1, 2015
Published in Issue Year 2015 Volume: 40 Issue: 4

Cite

APA Yatmaz, E., & Turhan, İ. (2015). HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ. Gıda, 40(4), 233-240.
AMA Yatmaz E, Turhan İ. HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ. The Journal of Food. August 2015;40(4):233-240.
Chicago Yatmaz, Ercan, and İrfan Turhan. “HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ”. Gıda 40, no. 4 (August 2015): 233-40.
EndNote Yatmaz E, Turhan İ (August 1, 2015) HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ. Gıda 40 4 233–240.
IEEE E. Yatmaz and İ. Turhan, “HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ”, The Journal of Food, vol. 40, no. 4, pp. 233–240, 2015.
ISNAD Yatmaz, Ercan - Turhan, İrfan. “HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ”. Gıda 40/4 (August 2015), 233-240.
JAMA Yatmaz E, Turhan İ. HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ. The Journal of Food. 2015;40:233–240.
MLA Yatmaz, Ercan and İrfan Turhan. “HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ”. Gıda, vol. 40, no. 4, 2015, pp. 233-40.
Vancouver Yatmaz E, Turhan İ. HYALURONİK ASİT VE FERMANTASYONLA ÜRETİLMESİ. The Journal of Food. 2015;40(4):233-40.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/