Research Article
BibTex RIS Cite

DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN

Year 2019, Volume: 44 Issue: 4, 654 - 671, 01.08.2019
https://doi.org/10.15237/gida.GD19028

Abstract



The aims of this study are to
observe the effects of different microwave power and amount of samples on the
drying characteristics of red beet puree, to determine the physical properties
of the red beet powders and to calculate the energy efficiency of the drying
process. The drying experiments were conducted at five different microwave
power and thicknesses of the sample. Seven thin-layer drying models were fitted
to the experimental data and Page model which had the highest R
2 and
lowest χ
2 and RMSE for all drying experiments was found to
satisfactorily describe the drying behavior of red beet puree. The total drying
times increased depending on an increasing amount of sample and decreasing
microwave power. The D
eff and Ea values ranged between 1.095E-08 to
3.438E-06 m
2.s-1 and 14.35 to 77.35W.g-1,
respectively. The energy efficiency values of the drying processes are
evaluated in terms of MER and SEC.

References

  • Akdoğan, A., Çalışkan Koç, G., Dirim, S.N. (2017). Mathematical modeling of thin-layer microwave drying of corn husk and investigation of powder properties. Bulg Chem Commun, 49 (4) 986 – 993.
  • Alibas, I. (2007). Energy consumption and colour characteristics of nettle leaves during microwave. vacuum and convective drying. Biosystems Eng, 96(4):495-502.
  • Alibas, I. (2006). Characteristics of chard leaves during microwave. convective. and combined microwave convective drying. Drying Tech, 24(1):1425- 1435.
  • Alibas–Özkan, I., Akbudak, B., Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78:577-583.
  • AOAC. (2000). Official methods of analysis. 17th ed. Gaithersburg. MD. USA: Association of Official Analytical Chemists.
  • Baker, C.G.J., McKenzie, K.A. (2005). Energy Consumption of Industrial Spray Dryers. Drying Technol, 23:365-386.
  • Bazaria, B., Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J Saudi Soc Agric Sci, 14(4); 408-415.
  • Celma, A., Rojas, S., Lopez-Rodríguez, F. (2008). Mathematical modelling of thin-layer infrared drying of wet olive husk. Ch. Eng. and Processing: Process Intensification, 47: 1810-1818.
  • Chua, K.J., Chou, S.K., Ho, J.C., Hawlader, M.N.A. (2002). Heat pump drying: recent developments and future trends. Drying Technol, 20 (8): 1580-1600.
  • Crank, J. (1975). The Mathematics of Diffusion. 2nd ed. Oxford (UK): Clarendon Press.
  • Çalışkan, G., Dirim, S.N. (2013). The effects of the different drying conditions and the amounts of maltodextrin added during the spray drying of sumac extract. Food Bioprod Process, 91 539–548.
  • Dadalı, G., Kılıc-Apar, D., Ozbek, B. (2007a). Estimation of effective moisture diffusivity of okra for microwave drying. Drying Technol, 25:1445–1450.
  • Dadali, G., Demirhan, E., Ozbek, B. (2007b). Microwave Heat Treatment of Spinach: Drying Kinetics and Effective Moisture Diffusivity. Drying Technol, 25: 1703–1712.
  • Demiray, E., Seker, A., Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transfer, 53(5):1817-1827.
  • Demirhan, E., Ozbek, B. (2011). Colour change kinetics of celery leaves undergoing microwave drying. Chem Eng Commun, 198(10):1189-1205.
  • Doymaz, İ. (2004). Convective air drying characteristics of thin layer carrots. J Food Eng, 61: 359–364.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. J Food Eng, 74: 370–375.
  • Erbay, Z., Icier, F. (2009). A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci, 50: 441–464.
  • Ergün, K., Çalışkan, G., Dirim, S.N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transfer, 52:2697-2705.
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63:349-359.
  • Gökhlae, S.,V., Lele, S.S. (2011). Dehydration of Red Beet Root (Beta vulgaris) by Hot Air Drying: Process Optimization and Mathematical Modeling. Food Sci Biotechnol, 20(4): 955-964.
  • Jaya, S., Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. J Food Eng, 79:92-99.
  • Jindarat, W., Rattanadecho, P., Vongpradubchai, S. (2011). Analysis of energy consumption in microwave and convective drying process of multi-layered porous material inside a rectangular wave guide, Exp Thermal Fluid Sci, 35: 728-737.
  • Kaleta, A., Gornicki, K. (2010). Some remarks on evaluationof drying modelsof red beeet particles. Energy Convers Manag, 51: 2967-2978.
  • Koul, V. K., Jain, M.P., Koul, S.,Sharma, V.K., Tikoo, C.L., Jain, S.M. (2002). Spray drying of red beet root juice using different carries. Indian J Ch Tech, 9: 442-445.
  • Lejeune, B., Arvouet- Grand, A., Pourat, A. (1991). Dietary use of red beet cruchable tablets of freeze dried red beet pulp. Drug Dev Ind Pharm, 17(7): 931-934.
  • López, N., Puértolas, E.P., Condón, S., Raso, J., Alvarez, I. (2009). Enhancement of the extraction of betanine from red beet root by pulsed electric fields. J Food Eng, 90:60–66.
  • Marques, L. G., Ferreira, M. C., Freire, J. T. (2007) Freeze-drying of acerola (Malpighia glabra L.). Chem Eng Prog, 46: 451–457.
  • Maskan, M. (2001), Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng, 48:169–175.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. J Food Eng, 44:71–78.
  • Obón, J.M, Castellar, M.R., Alacid, M., Fernández-López, J.A. (2009). Production of a red purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng, 90:471–479.
  • Özbek, B., Dadali G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng, 83:541–549.
  • Pathare, P.B., Opara, L.U., Al-Said, F.A. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Tech, 6(1):36-60.
  • Quek, Y.S., Chok, N.K. and Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chem Eng Prog, 46: 386-392.
  • Sadi, T., Meziane, S. (2015). Mathematical modelling, moisture diffusion and specific energy consumption of thin layer microwave drying of olive pomace. Int Food Res J, 22(2): 494-501.
  • Sharma, G.P., Prasad, S. (2006). Specific energy consumption in microwave drying of garlic cloves. Energy, 31:1921-1926.
  • Singh, S., Gaikwad, G., Omre, P.K., Kumbhar, B.K. (2013). Microwave Convection Drying Characteristics of Beet Root (Beta Vulgaris L.) Using Modeling Equations for Drying. J. Food Process Tech.4-9.
  • Süfer, Ö., Sezer, S., Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices, J Food Process Preserv, 41(6):1-13.
  • Toğrul, H. (2006). Suitable drying model for infrared drying of carrot. J Food Eng, 77: 610-619.
  • Varith, J., Dijkanarukkul, P., Achariyaviriya, A., Achariyaviriya, S. (2007). Combined microwave- hot air drying of peeled longon. J Food Eng, 31:45-46.
  • Wang, Z., Sun, J., Chan, F., Liao, X., Hu, X. (2007a). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng, 80:536–544.
  • Wang, J., Wang, J. S., Yu, Y. (2007b). Microwave drying characteristics and dried quality of pumpkin. Int J Food Sci Tech, 42: 148-156.

KIRMIZI PANCAR PÜRESİNİN (BETA VULGARIS ESCULENTACRUENTA) MİKRODALGA FIRINDA KURUMA KİNETİĞİ

Year 2019, Volume: 44 Issue: 4, 654 - 671, 01.08.2019
https://doi.org/10.15237/gida.GD19028

Abstract

Bu çalışmanın amaçları farklı
mikrodalga güçleri ve ürün miktarlarının kırmızı pancar püresinin kuruma
karakteristiği üzerine etkisinin gözlenmesi, elde edilen kırmızı pancar püresi
tozunun fiziksel özelliklerinin belirlenmesi ve kurutma işleminin verimliliğinin
hesaplanmasıdır. Bu amaçla, kurutma çalışmaları beş farklı mikrodalga gücü ve
ürün kalınlığında gerçekleştirilmiştir. Kırmızı pancar püresinin kuruma
kinetiğinin belirlenmesi için, yedi ince tabaka kuruma modeli deneysel verilere
uyarlanmıştır. 
En yüksek R2
ve en düşük χ
2 ve RMSE değerleriyle Page modelin kırmızı pancar
püresinin kuruma davranışını tanımladığı gözlenmiştir. Kırmızı pancar püresinin
kuruma süresi artan örnek miktarı ve azalan mikrodalga gücüyle artmıştır.
Ayrıca, etkin nem difüzyonu ve aktivasyon enerjisi değerleri sırasıyla
1.095E-08 - 3.438E-06 m
2. s-1 ve 14.35 - 77.35W. g-1
arasında değişmiştir. Kurutma işlemlerinin enerji verimliliğinin belirlenmesi
için nem uzaklaştırma hızı (MER) ve özgün enerji tüketimi (SEC) değerleri
hesaplanmıştır.

References

  • Akdoğan, A., Çalışkan Koç, G., Dirim, S.N. (2017). Mathematical modeling of thin-layer microwave drying of corn husk and investigation of powder properties. Bulg Chem Commun, 49 (4) 986 – 993.
  • Alibas, I. (2007). Energy consumption and colour characteristics of nettle leaves during microwave. vacuum and convective drying. Biosystems Eng, 96(4):495-502.
  • Alibas, I. (2006). Characteristics of chard leaves during microwave. convective. and combined microwave convective drying. Drying Tech, 24(1):1425- 1435.
  • Alibas–Özkan, I., Akbudak, B., Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78:577-583.
  • AOAC. (2000). Official methods of analysis. 17th ed. Gaithersburg. MD. USA: Association of Official Analytical Chemists.
  • Baker, C.G.J., McKenzie, K.A. (2005). Energy Consumption of Industrial Spray Dryers. Drying Technol, 23:365-386.
  • Bazaria, B., Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J Saudi Soc Agric Sci, 14(4); 408-415.
  • Celma, A., Rojas, S., Lopez-Rodríguez, F. (2008). Mathematical modelling of thin-layer infrared drying of wet olive husk. Ch. Eng. and Processing: Process Intensification, 47: 1810-1818.
  • Chua, K.J., Chou, S.K., Ho, J.C., Hawlader, M.N.A. (2002). Heat pump drying: recent developments and future trends. Drying Technol, 20 (8): 1580-1600.
  • Crank, J. (1975). The Mathematics of Diffusion. 2nd ed. Oxford (UK): Clarendon Press.
  • Çalışkan, G., Dirim, S.N. (2013). The effects of the different drying conditions and the amounts of maltodextrin added during the spray drying of sumac extract. Food Bioprod Process, 91 539–548.
  • Dadalı, G., Kılıc-Apar, D., Ozbek, B. (2007a). Estimation of effective moisture diffusivity of okra for microwave drying. Drying Technol, 25:1445–1450.
  • Dadali, G., Demirhan, E., Ozbek, B. (2007b). Microwave Heat Treatment of Spinach: Drying Kinetics and Effective Moisture Diffusivity. Drying Technol, 25: 1703–1712.
  • Demiray, E., Seker, A., Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transfer, 53(5):1817-1827.
  • Demirhan, E., Ozbek, B. (2011). Colour change kinetics of celery leaves undergoing microwave drying. Chem Eng Commun, 198(10):1189-1205.
  • Doymaz, İ. (2004). Convective air drying characteristics of thin layer carrots. J Food Eng, 61: 359–364.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. J Food Eng, 74: 370–375.
  • Erbay, Z., Icier, F. (2009). A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci, 50: 441–464.
  • Ergün, K., Çalışkan, G., Dirim, S.N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transfer, 52:2697-2705.
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63:349-359.
  • Gökhlae, S.,V., Lele, S.S. (2011). Dehydration of Red Beet Root (Beta vulgaris) by Hot Air Drying: Process Optimization and Mathematical Modeling. Food Sci Biotechnol, 20(4): 955-964.
  • Jaya, S., Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. J Food Eng, 79:92-99.
  • Jindarat, W., Rattanadecho, P., Vongpradubchai, S. (2011). Analysis of energy consumption in microwave and convective drying process of multi-layered porous material inside a rectangular wave guide, Exp Thermal Fluid Sci, 35: 728-737.
  • Kaleta, A., Gornicki, K. (2010). Some remarks on evaluationof drying modelsof red beeet particles. Energy Convers Manag, 51: 2967-2978.
  • Koul, V. K., Jain, M.P., Koul, S.,Sharma, V.K., Tikoo, C.L., Jain, S.M. (2002). Spray drying of red beet root juice using different carries. Indian J Ch Tech, 9: 442-445.
  • Lejeune, B., Arvouet- Grand, A., Pourat, A. (1991). Dietary use of red beet cruchable tablets of freeze dried red beet pulp. Drug Dev Ind Pharm, 17(7): 931-934.
  • López, N., Puértolas, E.P., Condón, S., Raso, J., Alvarez, I. (2009). Enhancement of the extraction of betanine from red beet root by pulsed electric fields. J Food Eng, 90:60–66.
  • Marques, L. G., Ferreira, M. C., Freire, J. T. (2007) Freeze-drying of acerola (Malpighia glabra L.). Chem Eng Prog, 46: 451–457.
  • Maskan, M. (2001), Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng, 48:169–175.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. J Food Eng, 44:71–78.
  • Obón, J.M, Castellar, M.R., Alacid, M., Fernández-López, J.A. (2009). Production of a red purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng, 90:471–479.
  • Özbek, B., Dadali G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng, 83:541–549.
  • Pathare, P.B., Opara, L.U., Al-Said, F.A. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Tech, 6(1):36-60.
  • Quek, Y.S., Chok, N.K. and Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chem Eng Prog, 46: 386-392.
  • Sadi, T., Meziane, S. (2015). Mathematical modelling, moisture diffusion and specific energy consumption of thin layer microwave drying of olive pomace. Int Food Res J, 22(2): 494-501.
  • Sharma, G.P., Prasad, S. (2006). Specific energy consumption in microwave drying of garlic cloves. Energy, 31:1921-1926.
  • Singh, S., Gaikwad, G., Omre, P.K., Kumbhar, B.K. (2013). Microwave Convection Drying Characteristics of Beet Root (Beta Vulgaris L.) Using Modeling Equations for Drying. J. Food Process Tech.4-9.
  • Süfer, Ö., Sezer, S., Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices, J Food Process Preserv, 41(6):1-13.
  • Toğrul, H. (2006). Suitable drying model for infrared drying of carrot. J Food Eng, 77: 610-619.
  • Varith, J., Dijkanarukkul, P., Achariyaviriya, A., Achariyaviriya, S. (2007). Combined microwave- hot air drying of peeled longon. J Food Eng, 31:45-46.
  • Wang, Z., Sun, J., Chan, F., Liao, X., Hu, X. (2007a). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng, 80:536–544.
  • Wang, J., Wang, J. S., Yu, Y. (2007b). Microwave drying characteristics and dried quality of pumpkin. Int J Food Sci Tech, 42: 148-156.
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Safiye Nur Dirim 0000-0002-0533-4275

Meryem Talih 0000-0001-7064-9815

Gülşah Çalışkan Koç 0000-0002-6542-3093

Publication Date August 1, 2019
Published in Issue Year 2019 Volume: 44 Issue: 4

Cite

APA Dirim, S. N., Talih, M., & Çalışkan Koç, G. (2019). DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN. Gıda, 44(4), 654-671. https://doi.org/10.15237/gida.GD19028
AMA Dirim SN, Talih M, Çalışkan Koç G. DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN. The Journal of Food. August 2019;44(4):654-671. doi:10.15237/gida.GD19028
Chicago Dirim, Safiye Nur, Meryem Talih, and Gülşah Çalışkan Koç. “DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN”. Gıda 44, no. 4 (August 2019): 654-71. https://doi.org/10.15237/gida.GD19028.
EndNote Dirim SN, Talih M, Çalışkan Koç G (August 1, 2019) DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN. Gıda 44 4 654–671.
IEEE S. N. Dirim, M. Talih, and G. Çalışkan Koç, “DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN”, The Journal of Food, vol. 44, no. 4, pp. 654–671, 2019, doi: 10.15237/gida.GD19028.
ISNAD Dirim, Safiye Nur et al. “DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN”. Gıda 44/4 (August 2019), 654-671. https://doi.org/10.15237/gida.GD19028.
JAMA Dirim SN, Talih M, Çalışkan Koç G. DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN. The Journal of Food. 2019;44:654–671.
MLA Dirim, Safiye Nur et al. “DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN”. Gıda, vol. 44, no. 4, 2019, pp. 654-71, doi:10.15237/gida.GD19028.
Vancouver Dirim SN, Talih M, Çalışkan Koç G. DRYING CHARACTERISTICS OF RED BEET (BETA VULGARIS ESCULENTACRUENTA) PUREE IN A MICROWAVE OVEN. The Journal of Food. 2019;44(4):654-71.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/