Review
BibTex RIS Cite

PRODUCTION OF ACTIVE CARBON FROM FOOD WASTES AND THE APPLICATIONS OF ACTIVE CARBON IN FOOD INDUSTRY

Year 2020, Volume: 45 Issue: 2, 217 - 229, 15.01.2020
https://doi.org/10.15237/gida.GD19127

Abstract

Activated carbon is an excellent physicochemical adsorbent with high porous volumes (0.5-1.5 cm3/g) and large surface areas (500-2000 m2/g). It has been used in medicine, environment, chemistry, energy, metallurgy, textile and food in separation, purification, removal and recovery processes. It can be produced from various biomass wastes with high carbon and low inorganic material content that is recyclable. In the food industry, it is used as color, odor and taste regulator in beverages, color bleaching in sugar-syrup, shelf-life control in climacteric fruits and vegetables, adsorption of organics or removal of non-nutrient toxic substances, treatments of frying oil and drinking water. Their novel applications in food industry include the aerobic digestion, modified atmospheres, purification, novel antimicrobial agent production, volatile organic component removal, aroma recovery studies, electrochemical food sensors and electromagnetic materials for the efficient separation and purification. 

References

  • Anonymous (2002). Activated Carbon Processing, National Organic Standards Board Technical Advisory Panel Review Compiled by OMRI for the USDA National Organic Program, 1-23.
  • Akyıldız, H. (2007). H3PO4 Aktivasyonu ile zeytin çekirdeğinden aktif karbon üretimi, Yıldız Teknik Üniversitesi,Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 115 s.
  • Ali, B. H., Alza'abi, M., Ramkumar, A., Al-Lawati, I., Waly, M. I., Beegam, S. (2014). The effect of activated charcoal on adenine-induced chronic renal failure in rats. Food and Chemical Toxicology, 65, 321-328. doi:10.1016/j.fct.2013.12.038.
  • Alvarez-Pugliese, C.E., Acuña-Bedoya,J., Vivas-Galarza,S., Prado-Arce,A., Marriaga-abrales,N. (2019). Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes. Diamond & Related Materials, 93, 193–199. doi:10.1016.
  • Ayyalusamy, S., Mishra, S., Suryanarayanan,V.(2018). Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate. Scientific Reports, 8(13151), 1-9. doi:10.1038/s41598-018-31627-8.
  • Bayat, M., Alighardashi,A., Sadeghasadi,A. (2018). Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environmental Technology & Innovation, 12, 148-159. doi:10.1016/j.eti.2018.08.008.
  • Behr, M., Cocco, E., Lenouvel, A., Guignard, C., Evers, D. (2013). Technical Brief Earthy and Fresh Mushroom Off-Flavors in Wine: Optimized Remedial Treatments. American Journal of Enology and Viticulture, 64(4), 545-549. doi:10.5344/ajev.2013.13061.
  • Bernal, M., Ruiz M.O., Geanta, R.M. ,Benito,J.M., Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal, 283, 313-332. doi:10.1016/j.cej.2015.07.047.
  • Nobre, C., Teixeira, J.A., Rodriguez, L.R. (2012). Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column, New Biotechnology, 29(3), 395-401. doi:10.1016/j.nbt.2011.11.006.
  • Capson-Tojo, G., Moscoviz,R., Ruiz,D., Santa-Catalina,G., Trably,E., Rouez, M., Crest,M., Steyer, J., Bernet, N. (2018). Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste, Bioresource Technology, 260, 157-168. doi:10.1016/j.biortech.2018.03.097.
  • Cullum, P. (2007). Evaluating the performance of different powdered activated carbons for taste and odour reduction. 32nd Annual Qld Water Industry Operations Workshop Walter Pierce Pavilion, Showgrounds Complex, Rockhampton, 38-44.
  • Christica, I.S., Muchlisya, M., Julia, R. (2018). Activated carbon utilization from corn cob (Zea mays) as a heavy metal adsorbent in ındustrial waste, Asian Journal of Pharmaceutical Research and Development, 6(5), 01-04.
  • Danish,M., Ahmad,T., Majeed,S., Ahmad, M., Ziyang, L., Pin, Z., Iqubal, S.M.S. (2018). Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresource Technology Reports, 3 ,127-137.
  • Dermanlı, Y. (2006). Gıda fabrikasyon atıklarından aktif karbon üretimi ve soya yağını ağartma performansının incelenmesi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 52 s.
  • Derylo-Marczewska, A., Blachnio,M., Marczewski, A.W., Seczkowska,M. ,Tarasiuk,B. (2019). Phenoxyacid pesticide adsorption on activated carbon e Equilibrium and kinetics. Chemosphere, 214, 349-360. doi:10.1016/j.chemosphere.2018.09.088.
  • Dhall, R. K. (2013). Ethylene in Post-harvest Quality Management of Horticultural Crops: A Review. Research & Reviews: A Journal of Crop Science and Technology, 2(2), 9-24, ISSN: 2319-3395.
  • Diaz, E., Ordonez, S., Vega, A., Coca, J. (2005). Comparison of adsorption properties of a chemically activated and a steam-activated carbon, using inverse gas chromatography. Microporous and Mesoporous Materials, 82, 173-181. doi:10.1016/j.micromeso.2005.03.010.
  • Farooq, M., Bell,A., Almustapha,M.N., Andresen,J.M. (2017). Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe, 46, 33-40. doi:10.1016/j.anaerobe.2017.05.003.
  • Anonymous (2010). World Health Organization,(WHO) Expert Committee on Food Additives, Compendium of food additive specifications: seventy-third [73rd] report, WHO Technical Report Series, Rome, ISBN 978-92-5-106662-1, ISSN 1817-7077.
  • Fadhil, A.B., Ahmed,A.I., Salih, H.A. (2017). Production of liquid fuels and activated carbons from fish wate. Fuel, 187, 435-445.
  • Gamal, M. E., Mousa H.A., Naas, M.H., Zachharia, R., Judd,S. (2018). Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology, 197, 345–359. doi:10.1016/j.seppur.2018.01.015.
  • Gerçel, Ö., Seydioğlu, G. (2015). Kiraz çekirdeğinden granül aktif karbon üretimi. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 16(2), 189-193, DOI: 10.18038/btd-a.93727.
  • Güneysu, S. (2003). Prina'nın aktif karbon olarak değerlendirilmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul Türkiye, 69s.
  • Mudoga, H.L., Yücel, H., Kincal, N.S. (2008). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 99, 3528-3533. doi:10.1016/j.biortech.2007.07.058.
  • Achaerandio, I., Lopez, C.G.F., Ozmak, M. (2002). Continuous vinegar decolorization with exchange resins. Journal of Food Engineering, 51, 311-317. İzkeçeli, M. (2010). Kestane kabuklarından sentetik aktif karbon hazırlanması ve metilen mavisi gideriminde kullanılması. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 73 s.
  • Arroyo-Gómez, J.J., Villarroel.-Rocha, D., de Freitas-Araújo, K.C., Martínez-Huitle, C.A., Sapag, K. (2018). Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffein. Journal of Electroanalytical Chemistry, 822, 171-176. doi:10.1016/j.jelechem.2018.05.028.
  • Jusoh, A., Hartini,W.J.H., Ali,N., Endut,A. (2011). Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresource Technology, 102, 5312-5318. doi:10.1016/j.biortech.2010.12.074.
  • Kobayashi, K., Tanaka, M., Tanabe, S., Yatsukawa,Y.,Tanaka,M. (2018). Distinguishing glutamic acid in foodstuffs and monosodium glutamate used as seasoning by stable carbon and nitrogen isotope ratios. Heliyon, 4, 1-17. doi:10.1016/j.heliyon.2018.e00800.
  • Kuhn, R. C., Filho, F.M. (2010). Purification of fructooligosaccharides in an activated charcoal fixed bed column. New Biotechnology, 27(6), 863-869. doi:10.1016/j.nbt.2010.05.008.
  • Lamichhane, S., Krishna, K.C. B., Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336-353. doi:10.1016/j.chemosphere.2016.01.036.
  • Lemley, A., Wagenet, L, Kneen, B. (1995). Activated Carbon Treatment of Drinking Water. Water Treatment Notes, 1-6.
  • Lisanti, M. T., Gambuti, A., Genovese, A., Piombino, P.,Moio, L. (2017). Treatment by fining agents of red wine affected by phenolic off-odour. European Food Research and Technology, 243(3), 501-510. doi:10.1007/s00217-016-2763-4.
  • Liu, Y., Huo,Z.,Song,Z.,Zhang,C., Ren,D.,Zhong, H.Jin,F. (2019). Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. Journal of the Taiwan Institute of Chemical Engineers, 96, 575-587. doi:10.1016/j.jtice.2018.11.017.
  • Mahesh, M., Arivizhivendhan, K. V., Maharaja, P., Boopathy, R., Hamsavathani, V., Sekaran, G. (2016). Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, 133, 43-54. doi:10.1016/j.molcatb.2016.07.012.
  • Maes, J., Meulenaer,B., Heerwynghels,P., Greyt,W., Eppe, G., Pauw, E., Huyghebaert,A. (2005). Removal of Dioxins and PCB from Fish Oil by Activated Carbon and Its Influence on the Nutritional Quality of the Oil. Journal of the American Oil Chemists' Society, 82(8), 593-597.
  • Menderez-Diaz, J. A., Gullon, M. (2006). Types of carbon adsorbents and their production. Interface science and technology, 7, 1-48.
  • Mussatto, S. I., Roberto, I.C. (2001). Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters, 23, 1681-1684. doi:10.1023/A:1012492028646.
  • Mohd, N.I., Gopal, K., Raoov, M., Mohamad, S., Yahaya, N., Lim, V., Zain, N.N.M. (2019). Evaluation of a magnetic activated charcoal modified with non-ionic silicone surfactant as a new magnetic solid phase extraction sorbent with triazine herbicides as model compounds in selected milk and rice samples. Talanta, 196, 217-225. doi:10.1016/j.talanta.2018.12.043.
  • Naka, K., Watarai,S., Inoue,T.K., Kodama,Y., Oguma, K., Yasuda, T., Kodama, H. (2000). Adsorption Effect of Activated Charcoal on Enterohemorrhagic Escherichia coli. Public Health, 281-285.
  • Nasehi S.M., A. S., Sarshar M. (2012). Removal of dark colored compounds from date syrup using activated carbon: A kinetic study. Journal of Food Engineering, 111, 490-495. doi:10.1016/j.jfoodeng.2012.02.037.
  • Ogungbenro, A. E., Quang,D.V., Ali, K., Mohammad, R.M., Zahra, A. (2017). Activated carbon from date seeds for CO2 capture applications. Energy Procedia, 114, 2313-2321. doi:10.1016/j.egypro.2017.03.1370.
  • Ogungbenro, A. E., Quang,D.V., Ali, K., Mohammad, R.M., Zahra, A. (2018). Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering, 6, 4245-4252. doi:10.1016/j.jece.2018.06.030.
  • Olgun, B., Erdem, A., Asiltürk,M., Doğan, G. (2017). Nanopartikül Tutturulmuş Aktif Karbon ile Ortam Havasında Uçucu Organik Bileşik Gideriminin Değerlendirilmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım 2017, Antalya, Türkiye, 830-841.
  • Ou, S., Luo,Y., Xue, F. ,HUang,C., Zhang, N., Liu, Z. (2007). Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. Journal of Food Engineering, 78, 1298-1304. doi:10.1016/j.jfoodeng.2005.12.037
  • Ozmak, M. (2010). Biyokütle Atıklarından Aktif Karbon Üretimi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, Ankara,Türkiye, 185s.
  • Ozsoy, H. D., Leeuwen, J.H. (2010). Removal of color from fruit candy waste by activated carbon adsorption. Journal of Food Engineering, 101, 106-112. doi:10.1016/j.jfoodeng.2010.06.018.
  • Qadeer, R., Rehan, A.H. (2002). A Study of the Adsorption of Phenol by Activated Carbon from Aqueous Solutions. Turk J Chem, 26, 357-361.
  • Quintela, S., Villaran, M. C., Armentia,I.L., Elejalde, E. (2013). Ochratoxin A removal in wine: A review. Food Control, 30, 439-445. doi:10.1016/j.foodcont.2012.08.014.
  • Reichardt, C., Utgennannt, S., Stahmann,K., Klepel, O. (2018). Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochemical Engineering Journal, 138, 63-73. doi:10.1016/j.bej.2018.07.003.
  • Ridal, J., Brownlee, B., McKenna, G., Levac, N. (2001). Removal of Taste and Odour Compounds by Conventional Granular Activated Carbon Filtration. Water Quality Research Journal, 36(1). doi:10.2166/wqrj.2001.003.
  • Preis, S., Klauson, D., Gregor, A., (2013). Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. Journal of Environmental Management, 114, 125-138. doi:10.1016/j.jenvman.2012.10.042.
  • Lakshmi, S.D., Avti., P. K., Hegde, G., (2018). Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. Nano-Structures & Nano-Objects, 16, 306-321. doi:10.1016/j.nanoso.2018.08.001.
  • Safarik, I., Horska,K., Pospiskova,K., Safarikova, M. (2012). Magnetically Responsive Activated Carbons for Bio- and Environmental Applications. International Review of Chemical Engineering (I.RE.CH.E.), 4(3), 346-352.
  • Saffarionpour, S., Ottens,M. (2017). Recent Advances in Techniques for Flavor Recovery in Liquid Food Processing. Food Eng Rev. doi:10.1007/s12393-017-9172-8.
  • Smith, A.W. J., Poulston, S., Rowsell, L., Terry, L. A., Anderson, J. A. (2009). A New Palladium-Based Ethylene Scavenger to Control Ethylene-Induced Ripening of Climacteric Fruit. Platinum Metals Rev., 53(3), 112-122. doi:10.1595/ 147106709x462742.
  • Soto, M. L., Moure,A., Dominguez,H., Parajo,J.C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 105, 1-27. doi:10.1016/j.jfoodeng.2011.02.010.
  • Srinivasan, R., Sorial, G.A. (2011). Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. Journal of Environmental Sciences, 23(1). doi:10.1016/S1001-0742(10)60367-1.
  • Suo, F., Liu, X., Li,C., Yuan, M., Zhang, B., Wang, J., Ma, Y., Lai, Z., Ji, M. (2019). Mesoporous activated carbon fromstarch for superior rapid pesticides removal. International Journal of BiologicalMacromolecules, 121, 806-813. doi:10.1016/j.ijbiomac.2018.10.132.
  • Sühnholz, S., Kopinke, F., Weiner, B. (2018). Hydrothermal treatment for regeneration of activated carbon loaded with organicmicropollutants. Science of the Total Environment, 644, 854–861. doi:10.1016/j.scitotenv.2018.06.395.
  • Tubia, I., Prasad, K., Perez-Lorenzo, E., Abadin, C., Zumarraga, M., Oyanguren, I., Barbero, F., Paredes, J., Arana, S. (2018). Beverage spoilage yeast detection methods and control technologies: A review of Brettanomyces. International Journal of Food Microbiology, 283, 65-76. doi:10.1016/j.ijfoodmicro.2018.06.020.
  • Türkmen, Ş.N., (2015). Çeşitli meyve kabuklarından biyochar üretim yöntemlerinin geliştirilmesi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 81 s.
  • Udomkun, P., Innawong, B., Siasakul,C., Okafor, C. (2018). Utilization of mixed adsorbents to extend frying oil life cycle in poultry processing. Food Chemistry, 284, 225-229. doi:10.1016/j.foodchem.2017.12.070.
  • Wang, F., Liang,J., Wang,W. Fu,D., Xiao,W. (2017). A new and efficient method for purification of poly-γ- glutamic acid from high-viscosity fermentation broth. Tropical Journal of Pharmaceutical Research, 16(6), 1267-1275. doi:10.4314/tjpr.v16i6.9.
  • Yağmur, E., Turkoğlu, S., Banford, A., Aktaş, Z. (2017). The relative performance of microwave regenerated activated carbons on the removal of phenolic pollutants. Journal of Cleaner Production, 149, 1109-1117. doi:10.1016/j.jclepro.2017.02.188.
  • Yangui, A., Abderrabba, M. (2018). Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chemistry, 262, 102-109. doi:10.1016/j.foodchem.2018.04.091.

GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI

Year 2020, Volume: 45 Issue: 2, 217 - 229, 15.01.2020
https://doi.org/10.15237/gida.GD19127

Abstract

Aktif karbonlar, yüksek gözenek hacimleri (0,5-1,5 cm3/g) ve geniş yüzey alanları (500-2000 m2/g) ile hem fiziksel hem de kimyasal olarak mükemmel adsorban malzemeler olarak tanımlanmaktadır. Aktif karbonlar ayırma, saflaştırma, uzaklaştırma ve geri kazanım süreçlerinde, tıp, çevre, kimya, enerji, metalurji, tekstil ve gıda gibi alanlarda kullanılmaktadır. Aktif karbonların, karbon içeriği yüksek, inorganik madde içeriği düşük çeşitli biyokütle atıklarından üretilebilmesi ve rejenerasyonla tekrar kullanılabilmesi avantaj sağlamaktadır. Gıda endüstrisinde aktif karbon; içecek endüstrisinde renk, koku ve tat düzenleyici, şeker-şurup endüstrisinde renk ağartıcı, klimakterik meyve ve sebzelerde raf ömrü kontrolü, organik madde adsorplama veya besinsel olmayan toksik madde uzaklaştırma, kızartma yağı ve içme suyu arıtımı gibi uygulamalarda kullanılmaktadır. Aktif karbonların gıda endüstrisindeki güncel uygulamaları ise; aerobik sindirim prosesleri, modifiye atmosfer uygulamaları, saflaştırma, yeni nesil antimikrobiyal ajan üretimi, uçucu organik bileşen uzaklaştırma ve aroma geri kazanımı çalışmalarıdır. Ayrıca, yüksek verimli ayırma ve saflaştırma için elektrokimyasal gıda sensörleri ve elektromanyetik aktif karbonlar üretilmektedir.

References

  • Anonymous (2002). Activated Carbon Processing, National Organic Standards Board Technical Advisory Panel Review Compiled by OMRI for the USDA National Organic Program, 1-23.
  • Akyıldız, H. (2007). H3PO4 Aktivasyonu ile zeytin çekirdeğinden aktif karbon üretimi, Yıldız Teknik Üniversitesi,Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 115 s.
  • Ali, B. H., Alza'abi, M., Ramkumar, A., Al-Lawati, I., Waly, M. I., Beegam, S. (2014). The effect of activated charcoal on adenine-induced chronic renal failure in rats. Food and Chemical Toxicology, 65, 321-328. doi:10.1016/j.fct.2013.12.038.
  • Alvarez-Pugliese, C.E., Acuña-Bedoya,J., Vivas-Galarza,S., Prado-Arce,A., Marriaga-abrales,N. (2019). Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes. Diamond & Related Materials, 93, 193–199. doi:10.1016.
  • Ayyalusamy, S., Mishra, S., Suryanarayanan,V.(2018). Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate. Scientific Reports, 8(13151), 1-9. doi:10.1038/s41598-018-31627-8.
  • Bayat, M., Alighardashi,A., Sadeghasadi,A. (2018). Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environmental Technology & Innovation, 12, 148-159. doi:10.1016/j.eti.2018.08.008.
  • Behr, M., Cocco, E., Lenouvel, A., Guignard, C., Evers, D. (2013). Technical Brief Earthy and Fresh Mushroom Off-Flavors in Wine: Optimized Remedial Treatments. American Journal of Enology and Viticulture, 64(4), 545-549. doi:10.5344/ajev.2013.13061.
  • Bernal, M., Ruiz M.O., Geanta, R.M. ,Benito,J.M., Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal, 283, 313-332. doi:10.1016/j.cej.2015.07.047.
  • Nobre, C., Teixeira, J.A., Rodriguez, L.R. (2012). Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column, New Biotechnology, 29(3), 395-401. doi:10.1016/j.nbt.2011.11.006.
  • Capson-Tojo, G., Moscoviz,R., Ruiz,D., Santa-Catalina,G., Trably,E., Rouez, M., Crest,M., Steyer, J., Bernet, N. (2018). Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste, Bioresource Technology, 260, 157-168. doi:10.1016/j.biortech.2018.03.097.
  • Cullum, P. (2007). Evaluating the performance of different powdered activated carbons for taste and odour reduction. 32nd Annual Qld Water Industry Operations Workshop Walter Pierce Pavilion, Showgrounds Complex, Rockhampton, 38-44.
  • Christica, I.S., Muchlisya, M., Julia, R. (2018). Activated carbon utilization from corn cob (Zea mays) as a heavy metal adsorbent in ındustrial waste, Asian Journal of Pharmaceutical Research and Development, 6(5), 01-04.
  • Danish,M., Ahmad,T., Majeed,S., Ahmad, M., Ziyang, L., Pin, Z., Iqubal, S.M.S. (2018). Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresource Technology Reports, 3 ,127-137.
  • Dermanlı, Y. (2006). Gıda fabrikasyon atıklarından aktif karbon üretimi ve soya yağını ağartma performansının incelenmesi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 52 s.
  • Derylo-Marczewska, A., Blachnio,M., Marczewski, A.W., Seczkowska,M. ,Tarasiuk,B. (2019). Phenoxyacid pesticide adsorption on activated carbon e Equilibrium and kinetics. Chemosphere, 214, 349-360. doi:10.1016/j.chemosphere.2018.09.088.
  • Dhall, R. K. (2013). Ethylene in Post-harvest Quality Management of Horticultural Crops: A Review. Research & Reviews: A Journal of Crop Science and Technology, 2(2), 9-24, ISSN: 2319-3395.
  • Diaz, E., Ordonez, S., Vega, A., Coca, J. (2005). Comparison of adsorption properties of a chemically activated and a steam-activated carbon, using inverse gas chromatography. Microporous and Mesoporous Materials, 82, 173-181. doi:10.1016/j.micromeso.2005.03.010.
  • Farooq, M., Bell,A., Almustapha,M.N., Andresen,J.M. (2017). Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe, 46, 33-40. doi:10.1016/j.anaerobe.2017.05.003.
  • Anonymous (2010). World Health Organization,(WHO) Expert Committee on Food Additives, Compendium of food additive specifications: seventy-third [73rd] report, WHO Technical Report Series, Rome, ISBN 978-92-5-106662-1, ISSN 1817-7077.
  • Fadhil, A.B., Ahmed,A.I., Salih, H.A. (2017). Production of liquid fuels and activated carbons from fish wate. Fuel, 187, 435-445.
  • Gamal, M. E., Mousa H.A., Naas, M.H., Zachharia, R., Judd,S. (2018). Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology, 197, 345–359. doi:10.1016/j.seppur.2018.01.015.
  • Gerçel, Ö., Seydioğlu, G. (2015). Kiraz çekirdeğinden granül aktif karbon üretimi. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 16(2), 189-193, DOI: 10.18038/btd-a.93727.
  • Güneysu, S. (2003). Prina'nın aktif karbon olarak değerlendirilmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul Türkiye, 69s.
  • Mudoga, H.L., Yücel, H., Kincal, N.S. (2008). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 99, 3528-3533. doi:10.1016/j.biortech.2007.07.058.
  • Achaerandio, I., Lopez, C.G.F., Ozmak, M. (2002). Continuous vinegar decolorization with exchange resins. Journal of Food Engineering, 51, 311-317. İzkeçeli, M. (2010). Kestane kabuklarından sentetik aktif karbon hazırlanması ve metilen mavisi gideriminde kullanılması. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 73 s.
  • Arroyo-Gómez, J.J., Villarroel.-Rocha, D., de Freitas-Araújo, K.C., Martínez-Huitle, C.A., Sapag, K. (2018). Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffein. Journal of Electroanalytical Chemistry, 822, 171-176. doi:10.1016/j.jelechem.2018.05.028.
  • Jusoh, A., Hartini,W.J.H., Ali,N., Endut,A. (2011). Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresource Technology, 102, 5312-5318. doi:10.1016/j.biortech.2010.12.074.
  • Kobayashi, K., Tanaka, M., Tanabe, S., Yatsukawa,Y.,Tanaka,M. (2018). Distinguishing glutamic acid in foodstuffs and monosodium glutamate used as seasoning by stable carbon and nitrogen isotope ratios. Heliyon, 4, 1-17. doi:10.1016/j.heliyon.2018.e00800.
  • Kuhn, R. C., Filho, F.M. (2010). Purification of fructooligosaccharides in an activated charcoal fixed bed column. New Biotechnology, 27(6), 863-869. doi:10.1016/j.nbt.2010.05.008.
  • Lamichhane, S., Krishna, K.C. B., Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336-353. doi:10.1016/j.chemosphere.2016.01.036.
  • Lemley, A., Wagenet, L, Kneen, B. (1995). Activated Carbon Treatment of Drinking Water. Water Treatment Notes, 1-6.
  • Lisanti, M. T., Gambuti, A., Genovese, A., Piombino, P.,Moio, L. (2017). Treatment by fining agents of red wine affected by phenolic off-odour. European Food Research and Technology, 243(3), 501-510. doi:10.1007/s00217-016-2763-4.
  • Liu, Y., Huo,Z.,Song,Z.,Zhang,C., Ren,D.,Zhong, H.Jin,F. (2019). Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. Journal of the Taiwan Institute of Chemical Engineers, 96, 575-587. doi:10.1016/j.jtice.2018.11.017.
  • Mahesh, M., Arivizhivendhan, K. V., Maharaja, P., Boopathy, R., Hamsavathani, V., Sekaran, G. (2016). Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, 133, 43-54. doi:10.1016/j.molcatb.2016.07.012.
  • Maes, J., Meulenaer,B., Heerwynghels,P., Greyt,W., Eppe, G., Pauw, E., Huyghebaert,A. (2005). Removal of Dioxins and PCB from Fish Oil by Activated Carbon and Its Influence on the Nutritional Quality of the Oil. Journal of the American Oil Chemists' Society, 82(8), 593-597.
  • Menderez-Diaz, J. A., Gullon, M. (2006). Types of carbon adsorbents and their production. Interface science and technology, 7, 1-48.
  • Mussatto, S. I., Roberto, I.C. (2001). Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters, 23, 1681-1684. doi:10.1023/A:1012492028646.
  • Mohd, N.I., Gopal, K., Raoov, M., Mohamad, S., Yahaya, N., Lim, V., Zain, N.N.M. (2019). Evaluation of a magnetic activated charcoal modified with non-ionic silicone surfactant as a new magnetic solid phase extraction sorbent with triazine herbicides as model compounds in selected milk and rice samples. Talanta, 196, 217-225. doi:10.1016/j.talanta.2018.12.043.
  • Naka, K., Watarai,S., Inoue,T.K., Kodama,Y., Oguma, K., Yasuda, T., Kodama, H. (2000). Adsorption Effect of Activated Charcoal on Enterohemorrhagic Escherichia coli. Public Health, 281-285.
  • Nasehi S.M., A. S., Sarshar M. (2012). Removal of dark colored compounds from date syrup using activated carbon: A kinetic study. Journal of Food Engineering, 111, 490-495. doi:10.1016/j.jfoodeng.2012.02.037.
  • Ogungbenro, A. E., Quang,D.V., Ali, K., Mohammad, R.M., Zahra, A. (2017). Activated carbon from date seeds for CO2 capture applications. Energy Procedia, 114, 2313-2321. doi:10.1016/j.egypro.2017.03.1370.
  • Ogungbenro, A. E., Quang,D.V., Ali, K., Mohammad, R.M., Zahra, A. (2018). Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering, 6, 4245-4252. doi:10.1016/j.jece.2018.06.030.
  • Olgun, B., Erdem, A., Asiltürk,M., Doğan, G. (2017). Nanopartikül Tutturulmuş Aktif Karbon ile Ortam Havasında Uçucu Organik Bileşik Gideriminin Değerlendirilmesi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 1-3 Kasım 2017, Antalya, Türkiye, 830-841.
  • Ou, S., Luo,Y., Xue, F. ,HUang,C., Zhang, N., Liu, Z. (2007). Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. Journal of Food Engineering, 78, 1298-1304. doi:10.1016/j.jfoodeng.2005.12.037
  • Ozmak, M. (2010). Biyokütle Atıklarından Aktif Karbon Üretimi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, Ankara,Türkiye, 185s.
  • Ozsoy, H. D., Leeuwen, J.H. (2010). Removal of color from fruit candy waste by activated carbon adsorption. Journal of Food Engineering, 101, 106-112. doi:10.1016/j.jfoodeng.2010.06.018.
  • Qadeer, R., Rehan, A.H. (2002). A Study of the Adsorption of Phenol by Activated Carbon from Aqueous Solutions. Turk J Chem, 26, 357-361.
  • Quintela, S., Villaran, M. C., Armentia,I.L., Elejalde, E. (2013). Ochratoxin A removal in wine: A review. Food Control, 30, 439-445. doi:10.1016/j.foodcont.2012.08.014.
  • Reichardt, C., Utgennannt, S., Stahmann,K., Klepel, O. (2018). Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochemical Engineering Journal, 138, 63-73. doi:10.1016/j.bej.2018.07.003.
  • Ridal, J., Brownlee, B., McKenna, G., Levac, N. (2001). Removal of Taste and Odour Compounds by Conventional Granular Activated Carbon Filtration. Water Quality Research Journal, 36(1). doi:10.2166/wqrj.2001.003.
  • Preis, S., Klauson, D., Gregor, A., (2013). Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. Journal of Environmental Management, 114, 125-138. doi:10.1016/j.jenvman.2012.10.042.
  • Lakshmi, S.D., Avti., P. K., Hegde, G., (2018). Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. Nano-Structures & Nano-Objects, 16, 306-321. doi:10.1016/j.nanoso.2018.08.001.
  • Safarik, I., Horska,K., Pospiskova,K., Safarikova, M. (2012). Magnetically Responsive Activated Carbons for Bio- and Environmental Applications. International Review of Chemical Engineering (I.RE.CH.E.), 4(3), 346-352.
  • Saffarionpour, S., Ottens,M. (2017). Recent Advances in Techniques for Flavor Recovery in Liquid Food Processing. Food Eng Rev. doi:10.1007/s12393-017-9172-8.
  • Smith, A.W. J., Poulston, S., Rowsell, L., Terry, L. A., Anderson, J. A. (2009). A New Palladium-Based Ethylene Scavenger to Control Ethylene-Induced Ripening of Climacteric Fruit. Platinum Metals Rev., 53(3), 112-122. doi:10.1595/ 147106709x462742.
  • Soto, M. L., Moure,A., Dominguez,H., Parajo,J.C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 105, 1-27. doi:10.1016/j.jfoodeng.2011.02.010.
  • Srinivasan, R., Sorial, G.A. (2011). Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. Journal of Environmental Sciences, 23(1). doi:10.1016/S1001-0742(10)60367-1.
  • Suo, F., Liu, X., Li,C., Yuan, M., Zhang, B., Wang, J., Ma, Y., Lai, Z., Ji, M. (2019). Mesoporous activated carbon fromstarch for superior rapid pesticides removal. International Journal of BiologicalMacromolecules, 121, 806-813. doi:10.1016/j.ijbiomac.2018.10.132.
  • Sühnholz, S., Kopinke, F., Weiner, B. (2018). Hydrothermal treatment for regeneration of activated carbon loaded with organicmicropollutants. Science of the Total Environment, 644, 854–861. doi:10.1016/j.scitotenv.2018.06.395.
  • Tubia, I., Prasad, K., Perez-Lorenzo, E., Abadin, C., Zumarraga, M., Oyanguren, I., Barbero, F., Paredes, J., Arana, S. (2018). Beverage spoilage yeast detection methods and control technologies: A review of Brettanomyces. International Journal of Food Microbiology, 283, 65-76. doi:10.1016/j.ijfoodmicro.2018.06.020.
  • Türkmen, Ş.N., (2015). Çeşitli meyve kabuklarından biyochar üretim yöntemlerinin geliştirilmesi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul, Türkiye, 81 s.
  • Udomkun, P., Innawong, B., Siasakul,C., Okafor, C. (2018). Utilization of mixed adsorbents to extend frying oil life cycle in poultry processing. Food Chemistry, 284, 225-229. doi:10.1016/j.foodchem.2017.12.070.
  • Wang, F., Liang,J., Wang,W. Fu,D., Xiao,W. (2017). A new and efficient method for purification of poly-γ- glutamic acid from high-viscosity fermentation broth. Tropical Journal of Pharmaceutical Research, 16(6), 1267-1275. doi:10.4314/tjpr.v16i6.9.
  • Yağmur, E., Turkoğlu, S., Banford, A., Aktaş, Z. (2017). The relative performance of microwave regenerated activated carbons on the removal of phenolic pollutants. Journal of Cleaner Production, 149, 1109-1117. doi:10.1016/j.jclepro.2017.02.188.
  • Yangui, A., Abderrabba, M. (2018). Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chemistry, 262, 102-109. doi:10.1016/j.foodchem.2018.04.091.
There are 65 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Eda Ülkeryıldız Balçık This is me

Mehmet Torun

Hilal Şahin Nadeem

Publication Date January 15, 2020
Published in Issue Year 2020 Volume: 45 Issue: 2

Cite

APA Ülkeryıldız Balçık, E., Torun, M., & Şahin Nadeem, H. (2020). GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI. Gıda, 45(2), 217-229. https://doi.org/10.15237/gida.GD19127
AMA Ülkeryıldız Balçık E, Torun M, Şahin Nadeem H. GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI. The Journal of Food. January 2020;45(2):217-229. doi:10.15237/gida.GD19127
Chicago Ülkeryıldız Balçık, Eda, Mehmet Torun, and Hilal Şahin Nadeem. “GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI”. Gıda 45, no. 2 (January 2020): 217-29. https://doi.org/10.15237/gida.GD19127.
EndNote Ülkeryıldız Balçık E, Torun M, Şahin Nadeem H (January 1, 2020) GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI. Gıda 45 2 217–229.
IEEE E. Ülkeryıldız Balçık, M. Torun, and H. Şahin Nadeem, “GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI”, The Journal of Food, vol. 45, no. 2, pp. 217–229, 2020, doi: 10.15237/gida.GD19127.
ISNAD Ülkeryıldız Balçık, Eda et al. “GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI”. Gıda 45/2 (January 2020), 217-229. https://doi.org/10.15237/gida.GD19127.
JAMA Ülkeryıldız Balçık E, Torun M, Şahin Nadeem H. GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI. The Journal of Food. 2020;45:217–229.
MLA Ülkeryıldız Balçık, Eda et al. “GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI”. Gıda, vol. 45, no. 2, 2020, pp. 217-29, doi:10.15237/gida.GD19127.
Vancouver Ülkeryıldız Balçık E, Torun M, Şahin Nadeem H. GIDA ATIKLARINDAN AKTİF KARBON ÜRETİMİ VE AKTİF KARBONUN GIDA ENDÜSTRİSİNDE UYGULAMALARI. The Journal of Food. 2020;45(2):217-29.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/