Research Article
BibTex RIS Cite

BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES

Year 2022, Volume: 47 Issue: 6, 1168 - 1179, 15.12.2022
https://doi.org/10.15237/gida.GD22116

Abstract

This study aimed to investigate the effect of different reaction conditions on the digestibility properties of buckwheat starch-myristic acid complex samples produced using different myristic acid concentrations and different reaction temperatures. Response Surface Methodology was used to investigate the effect of reaction temperature (60-90°C) and fatty acid concentrations (0.1-0.8 mmoL/g) on digestibility properties. Resistant starch (RS) contents of samples increased with an increase in reaction temperature. The reaction temperature affected the rapidly digestible starch (RDS) and slowly digestible starch (SDS) content of samples. The highest RS content (32.57%) was obtained using 0.45 mmoL/g myristic acid at 90°C. The F, p (<0.05), and R2 values indicated that the selected models were significant for the digestibility properties of samples. The complex formation of buckwheat starch with myristic acid seems promising to increase the RS content. Buckwheat appears to have the potential as an RS source, although the studies are quite new yet.

Supporting Institution

TÜBİTAK

Project Number

119O031

Thanks

The authors would like to acknowledge the financial support of the Turkish Scientific and Technological Research Council (TUBITAK) (Project Number: 119O031). This work was derived from the first author's doctoral dissertation. She also expresses gratitude to TUBITAK for their support under the 2211-A PhD Scholarship Program for Domestic Priority Areas (2018-2020).

References

  • AACCI. (2000). Approved Methods of the American Association of Cereal Chemists International. AACC International, St Paul.
  • Ai, Y., Hasjim, J., Jane, J.-l. (2013). Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers, 92(1): 120-127, https://doi.org/10.1016/ j.carbpol.2012.08.092.
  • Asare, I. K., Mapengo, C. R., Emmambux, M. N. (2021). In vitro starch digestion and physicochemical properties of maize starch and maize meal modified by heat‐moisture treatment and stearic acid. Starch‐Stärke, 73(3-4): 2000128, https://doi.org/10.1002/star.202000128.
  • Chao, C., Huang, S., Yu, J., Copeland, L., Wang, S., Wang, S. (2020). Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: a dynamic structural analysis. Carbohydrate Polymers: 116464, https://doi.org/10.1016/ j.carbpol.2020.116464.
  • Chen, X., He, X., Fu, X., Zhang, B., Huang, Q. (2017). Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties. International Journal of Biological Macromolecules, 98: 557-564, https://doi.org/ 10.1016/j.ijbiomac.2017.01.105.
  • Chung, H.-J., Liu, Q., Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3): 436-447, https://doi.org/10.1016/ j.carbpol.2008.08.006
  • Dar, M. Z., Deepika, K., Jan, K., Swer, T. L., Kumar, P., Verma, R., . . . Bashir, K. (2018).Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation. International Journal of Biological Macromolecules, 108: 1348-1356, https://doi.org/10.1016/j.ijbiomac.2017.11.067.
  • Du, J., Pan, R., Obadi, M., Li, H., Shao, F., Sun, J., . . . Xu, B. (2022). In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chemistry, 368: 130806, https://doi.org/10.1016/ j.foodchem.2021.130806
  • Emlek, B. O., Özbey, A., Aydemir, L. Y., Kahraman, K. (2022). Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. International Journal of Biological Macromolecules, 207, 978-989. https://doi.org/10.1016/ j.ijbiomac.2022.03.189.
  • Englyst, H. N., Kingman, S. M., Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46: S33-50. Farooq, A. M., Dhital, S., Li, C., Zhang, B., Huang, Q. (2018). Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. International Journal of Biological Macromolecules, 107: 1080-1085, https://doi.org/10.1016/j.ijbiomac.2017.09.089.
  • Gao, J., Kreft, I., Chao, G., Wang, Y., Liu, X., Wang, L., . . . Feng, B. (2016). Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Food Chemistry, 190: 552-558, https://doi.org/ 10.1016/j.foodchem.2015.05.122.
  • Goel, C., Semwal, A. D., Khan, A., Kumar, S., Sharma, G. K. (2020). Physical modification of starch: changes in glycemic index, starch fractions, physicochemical and functional properties of heat-moisture treated buckwheat starch. Journal of Food Science and Technology, 57(8): 2941-2948, https://doi.org/10.1007/s13197-020-04326-4.
  • Hasjim, J., Ai, Y., Jane, J. l. (2013). Novel applications of amylose‐lipid complex as resistant starch type 5. Resistant starch: Sources, applications and health benefits: 79-94, https://doi.org/10.1002/ 9781118528723.ch04.
  • Hasjim, J., Lee, S. O., Hendrich, S., Setiawan, S., Ai, Y., Jane, J. l. (2010). Characterization of a novel resistant‐starch and its effects on postprandial plasma‐glucose and insulin responses. Cereal Chemistry, 87(4): 257-262, https://doi.org/10.1094/CCHEM-87-4-0257.
  • Kahraman, K., Aktas-Akyildiz, E., Ozturk, S., Koksel, H. (2019). Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. Journal of Cereal Science, 90: 102851, https://doi.org/10.1016/j.jcs.2019.102851.
  • Kahraman, K., Koksel, H., Ng, P. K. (2015). Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chemistry, 174: 173-179, https://doi.org/10.1016/ j.foodchem.2014.11.032.
  • Kawai, K., Takato, S., Sasaki, T., Kajiwara, K. (2012). Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocolloids, 27(1): 228-234, https://doi.org/10.1016/ j.foodhyd.2011.07.003.
  • Kim, H. I., Kim, H. R., Choi, S. J., Park, C.-S., Moon, T. W. (2017). Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid. Food Science and Biotechnology, 26(2): 323-329, https://doi.org/10.1007/s10068-017-0044-z
  • Li, X., Gao, X., Lu, J., Mao, X., Wang, Y., Feng, D., . . . Gao, W. (2019). Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. LWT-Food Science and Technology, 101: 130-137, https://doi.org/10.1016/j.lwt.2018.11.032.
  • Liu, H., Guo, X., Li, W., Wang, X., Peng, Q., Wang, M. (2015). Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydrate Polymers, 132: 237-244, https://doi.org/10.1016/j.carbpol.2015.06.071.
  • Liu, H., Wang, L., Cao, R., Fan, H., Wang, M. (2016). In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydrate Polymers, 144: 1-8, https://doi.org/10.1016/ j.carbpol.2016.02.028.
  • Liu, Y., Chen, L., Xu, H., Liang, Y., Zheng, B. (2019). Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization. International Journal of Biological Macromolecules, 134: 856-863, https://doi.org/10.1016/j.ijbiomac.2019.05.083.
  • Marinopoulou, A., Papastergiadis, E., Raphaelides, S. N., Kontominas, M. G. (2016). Structural characterization and thermal properties of amylose-fatty acid complexes prepared at different temperatures. Food Hydrocolloids, 58: 224-234, https://doi.org/10.1016/ j.foodhyd.2016.02.034.
  • Nugent, A. P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30(1): 27-54, https://doi.org/10.1111/nbu.12244.
  • Okumus, B. N., Tacer-Caba, Z., Kahraman, K., Nilufer-Erdil, D. (2018). Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chemistry, 240: 550-558, https://doi.org/ 10.1016/j.foodchem.2017.07.157.
  • Oyeyinka, S. A., Singh, S., Venter, S. L., Amonsou, E. O. (2017). Effect of lipid types on complexation and some physicochemical properties of bambara groundnut starch. Starch‐Stärke, 69(3-4): 1600158, https://doi.org/ 10.1002/star.201600158.
  • Raza, H., Ameer, K., Ren, X., Liang, Q., Chen, X., Chen, H., Ma, H. (2021). Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound. Food Chemistry, 364: 130392, https://doi.org/10.1016/j.foodchem.2021.130392.
  • Reddy, C. K., Choi, S. M., Lee, D.-J., Lim, S.-T. (2018). Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch. Food Chemistry, 244: 136-142, https://doi.org/10.1016/j.foodchem.2017.10.040.
  • Seo, T.-R., Kim, J.-Y., Lim, S.-T. (2015). Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Science and Technology, 64(2): 889-897, https://doi.org/10.1016/j.lwt.2015.06.021.
  • Sharma, A., Yadav, B. S., Ritika. (2008). Resistant starch: physiological roles and food applications. Food Reviews International, 24(2): 193-234, https://doi.org/10.1080/87559120801926237.
  • Sun, S., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C. (2019). Effects of acid hydrolysis on the structure, physicochemical properties and digestibility of starch-myristic acid complexes. LWT-Food Science and Technology, 113: 108274, https://doi.org/ 10.1016/j.lwt.2019.108274.
  • Sun, S., Hua, S., Hong, Y., Gu, Z., Cheng, L., Ban, X., . . . Zhou, J. (2022). Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch–fatty acid complexes. Journal of the Science of Food and Agriculture, 102: 5837–5848, https://doi.org/ 10.1002/jsfa.11933.
  • Sun, S., Jin, Y., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C. (2021). Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocolloids, 110: 106224, https://doi.org/ 10.1016/j.foodhyd.2020.106224.
  • Tang, M. C., Copeland, L. (2007). Analysis of complexes between lipids and wheat starch. Carbohydrate Polymers, 67(1): 80-85, https://doi.org/10.1016/j.carbpol.2006.04.016.
  • Wang, S., Wang, J., Yu, J., Wang, S. (2016). Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: a structural basis. Food Chemistry, 190: 285-292, https://doi.org/ 10.1016/j.foodchem.2015.05.086.
  • Wang, S., Zheng, M., Yu, J., Wang, S., Copeland, L. (2017). Insights into the formation and structures of starch–protein–lipid complexes. Journal of Agricultural and Food Chemistry, 65(9): 1960-1966, https://doi.org/10.1021/ acs.jafc.6b05772
  • Wang, Y.-S., Liu, W.-H., Zhang, X., Chen, H.-H. (2020). Preparation of VII-type normal cornstarch-lauric acid complexes with high yield and stability using a combination treatment of debranching and different complexation temperatures. International Journal of Biological Macromolecules, 154: 456-465, https://doi.org/ 10.1016/j.ijbiomac.2020.03.142.
  • Xiao, Y., Liu, H., Wei, T., Shen, J., Wang, M. (2017). Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT-Food Science and Technology, 86: 285-292, https://doi.org/10.1016/ j.lwt.2017.08.001.
  • Yassaroh, Y., Woortman, A. J., Loos, K. (2021). Physicochemical properties of heat-moisture treated, stearic acid complexed starch: The effect of complexation time and temperature. International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2021.01.124.

KARABUĞDAY NİŞASTASI-MİRİSTİK ASİT KOMPLEKS OLUŞUMU: REAKSİYON SICAKLIĞI VE MİRİSTİK ASİT KONSANTRASYONUNUN SİNDİRİLEBİLİRLİK ÖZELLİKLERİ ÜZERİNE ETKİSİ

Year 2022, Volume: 47 Issue: 6, 1168 - 1179, 15.12.2022
https://doi.org/10.15237/gida.GD22116

Abstract

Bu çalışma, farklı miristik asit konsantrasyonları ve farklı reaksiyon sıcaklıkları kullanılarak üretilen karabuğday nişastası-miristik asit kompleksi örneklerinin sindirilebilirlik özellikleri üzerine farklı reaksiyon koşullarının etkisini araştırmayı amaçlamıştır. Reaksiyon sıcaklığının (60-90°C) ve yağ asidi konsantrasyonlarının (0.1-0.8 mmoL/g) sindirilebilirlik özellikleri üzerindeki etkisini araştırmak için Yanıt Yüzey Metodolojisi kullanılmıştır. Örneklerin enzime dirençli nişasta (EDN) içerikleri reaksiyon sıcaklığındaki artışla artmıştır. Reaksiyon sıcaklığı, örneklerin hızlı ve yavaş sindirilebilir nişasta içeriklerini etkilemiştir. En yüksek EDN içeriği (%32.57) 90°C'de 0.45 mmoL/g miristik asit kullanılarak üretilen örnekte elde edilmiştir. F, p (<0.05) ve R2 değerleri seçilen modellerin numunelerin sindirilebilirlik özellikleri için önemli olduğunu göstermiştir. Karabuğday nişastasının miristik asit ile kompleks oluşturması, EDN içeriğini artırma konusunda umut verici görünmektedir. Karabuğday, çalışmalar henüz oldukça yeni olmasına rağmen, EDN kaynağı olarak önemli bir potansiyele sahip görünmektedir.

Project Number

119O031

References

  • AACCI. (2000). Approved Methods of the American Association of Cereal Chemists International. AACC International, St Paul.
  • Ai, Y., Hasjim, J., Jane, J.-l. (2013). Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers, 92(1): 120-127, https://doi.org/10.1016/ j.carbpol.2012.08.092.
  • Asare, I. K., Mapengo, C. R., Emmambux, M. N. (2021). In vitro starch digestion and physicochemical properties of maize starch and maize meal modified by heat‐moisture treatment and stearic acid. Starch‐Stärke, 73(3-4): 2000128, https://doi.org/10.1002/star.202000128.
  • Chao, C., Huang, S., Yu, J., Copeland, L., Wang, S., Wang, S. (2020). Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: a dynamic structural analysis. Carbohydrate Polymers: 116464, https://doi.org/10.1016/ j.carbpol.2020.116464.
  • Chen, X., He, X., Fu, X., Zhang, B., Huang, Q. (2017). Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties. International Journal of Biological Macromolecules, 98: 557-564, https://doi.org/ 10.1016/j.ijbiomac.2017.01.105.
  • Chung, H.-J., Liu, Q., Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3): 436-447, https://doi.org/10.1016/ j.carbpol.2008.08.006
  • Dar, M. Z., Deepika, K., Jan, K., Swer, T. L., Kumar, P., Verma, R., . . . Bashir, K. (2018).Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation. International Journal of Biological Macromolecules, 108: 1348-1356, https://doi.org/10.1016/j.ijbiomac.2017.11.067.
  • Du, J., Pan, R., Obadi, M., Li, H., Shao, F., Sun, J., . . . Xu, B. (2022). In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chemistry, 368: 130806, https://doi.org/10.1016/ j.foodchem.2021.130806
  • Emlek, B. O., Özbey, A., Aydemir, L. Y., Kahraman, K. (2022). Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. International Journal of Biological Macromolecules, 207, 978-989. https://doi.org/10.1016/ j.ijbiomac.2022.03.189.
  • Englyst, H. N., Kingman, S. M., Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46: S33-50. Farooq, A. M., Dhital, S., Li, C., Zhang, B., Huang, Q. (2018). Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. International Journal of Biological Macromolecules, 107: 1080-1085, https://doi.org/10.1016/j.ijbiomac.2017.09.089.
  • Gao, J., Kreft, I., Chao, G., Wang, Y., Liu, X., Wang, L., . . . Feng, B. (2016). Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Food Chemistry, 190: 552-558, https://doi.org/ 10.1016/j.foodchem.2015.05.122.
  • Goel, C., Semwal, A. D., Khan, A., Kumar, S., Sharma, G. K. (2020). Physical modification of starch: changes in glycemic index, starch fractions, physicochemical and functional properties of heat-moisture treated buckwheat starch. Journal of Food Science and Technology, 57(8): 2941-2948, https://doi.org/10.1007/s13197-020-04326-4.
  • Hasjim, J., Ai, Y., Jane, J. l. (2013). Novel applications of amylose‐lipid complex as resistant starch type 5. Resistant starch: Sources, applications and health benefits: 79-94, https://doi.org/10.1002/ 9781118528723.ch04.
  • Hasjim, J., Lee, S. O., Hendrich, S., Setiawan, S., Ai, Y., Jane, J. l. (2010). Characterization of a novel resistant‐starch and its effects on postprandial plasma‐glucose and insulin responses. Cereal Chemistry, 87(4): 257-262, https://doi.org/10.1094/CCHEM-87-4-0257.
  • Kahraman, K., Aktas-Akyildiz, E., Ozturk, S., Koksel, H. (2019). Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. Journal of Cereal Science, 90: 102851, https://doi.org/10.1016/j.jcs.2019.102851.
  • Kahraman, K., Koksel, H., Ng, P. K. (2015). Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chemistry, 174: 173-179, https://doi.org/10.1016/ j.foodchem.2014.11.032.
  • Kawai, K., Takato, S., Sasaki, T., Kajiwara, K. (2012). Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocolloids, 27(1): 228-234, https://doi.org/10.1016/ j.foodhyd.2011.07.003.
  • Kim, H. I., Kim, H. R., Choi, S. J., Park, C.-S., Moon, T. W. (2017). Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid. Food Science and Biotechnology, 26(2): 323-329, https://doi.org/10.1007/s10068-017-0044-z
  • Li, X., Gao, X., Lu, J., Mao, X., Wang, Y., Feng, D., . . . Gao, W. (2019). Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. LWT-Food Science and Technology, 101: 130-137, https://doi.org/10.1016/j.lwt.2018.11.032.
  • Liu, H., Guo, X., Li, W., Wang, X., Peng, Q., Wang, M. (2015). Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydrate Polymers, 132: 237-244, https://doi.org/10.1016/j.carbpol.2015.06.071.
  • Liu, H., Wang, L., Cao, R., Fan, H., Wang, M. (2016). In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydrate Polymers, 144: 1-8, https://doi.org/10.1016/ j.carbpol.2016.02.028.
  • Liu, Y., Chen, L., Xu, H., Liang, Y., Zheng, B. (2019). Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization. International Journal of Biological Macromolecules, 134: 856-863, https://doi.org/10.1016/j.ijbiomac.2019.05.083.
  • Marinopoulou, A., Papastergiadis, E., Raphaelides, S. N., Kontominas, M. G. (2016). Structural characterization and thermal properties of amylose-fatty acid complexes prepared at different temperatures. Food Hydrocolloids, 58: 224-234, https://doi.org/10.1016/ j.foodhyd.2016.02.034.
  • Nugent, A. P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30(1): 27-54, https://doi.org/10.1111/nbu.12244.
  • Okumus, B. N., Tacer-Caba, Z., Kahraman, K., Nilufer-Erdil, D. (2018). Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chemistry, 240: 550-558, https://doi.org/ 10.1016/j.foodchem.2017.07.157.
  • Oyeyinka, S. A., Singh, S., Venter, S. L., Amonsou, E. O. (2017). Effect of lipid types on complexation and some physicochemical properties of bambara groundnut starch. Starch‐Stärke, 69(3-4): 1600158, https://doi.org/ 10.1002/star.201600158.
  • Raza, H., Ameer, K., Ren, X., Liang, Q., Chen, X., Chen, H., Ma, H. (2021). Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound. Food Chemistry, 364: 130392, https://doi.org/10.1016/j.foodchem.2021.130392.
  • Reddy, C. K., Choi, S. M., Lee, D.-J., Lim, S.-T. (2018). Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch. Food Chemistry, 244: 136-142, https://doi.org/10.1016/j.foodchem.2017.10.040.
  • Seo, T.-R., Kim, J.-Y., Lim, S.-T. (2015). Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Science and Technology, 64(2): 889-897, https://doi.org/10.1016/j.lwt.2015.06.021.
  • Sharma, A., Yadav, B. S., Ritika. (2008). Resistant starch: physiological roles and food applications. Food Reviews International, 24(2): 193-234, https://doi.org/10.1080/87559120801926237.
  • Sun, S., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C. (2019). Effects of acid hydrolysis on the structure, physicochemical properties and digestibility of starch-myristic acid complexes. LWT-Food Science and Technology, 113: 108274, https://doi.org/ 10.1016/j.lwt.2019.108274.
  • Sun, S., Hua, S., Hong, Y., Gu, Z., Cheng, L., Ban, X., . . . Zhou, J. (2022). Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch–fatty acid complexes. Journal of the Science of Food and Agriculture, 102: 5837–5848, https://doi.org/ 10.1002/jsfa.11933.
  • Sun, S., Jin, Y., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C. (2021). Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocolloids, 110: 106224, https://doi.org/ 10.1016/j.foodhyd.2020.106224.
  • Tang, M. C., Copeland, L. (2007). Analysis of complexes between lipids and wheat starch. Carbohydrate Polymers, 67(1): 80-85, https://doi.org/10.1016/j.carbpol.2006.04.016.
  • Wang, S., Wang, J., Yu, J., Wang, S. (2016). Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: a structural basis. Food Chemistry, 190: 285-292, https://doi.org/ 10.1016/j.foodchem.2015.05.086.
  • Wang, S., Zheng, M., Yu, J., Wang, S., Copeland, L. (2017). Insights into the formation and structures of starch–protein–lipid complexes. Journal of Agricultural and Food Chemistry, 65(9): 1960-1966, https://doi.org/10.1021/ acs.jafc.6b05772
  • Wang, Y.-S., Liu, W.-H., Zhang, X., Chen, H.-H. (2020). Preparation of VII-type normal cornstarch-lauric acid complexes with high yield and stability using a combination treatment of debranching and different complexation temperatures. International Journal of Biological Macromolecules, 154: 456-465, https://doi.org/ 10.1016/j.ijbiomac.2020.03.142.
  • Xiao, Y., Liu, H., Wei, T., Shen, J., Wang, M. (2017). Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT-Food Science and Technology, 86: 285-292, https://doi.org/10.1016/ j.lwt.2017.08.001.
  • Yassaroh, Y., Woortman, A. J., Loos, K. (2021). Physicochemical properties of heat-moisture treated, stearic acid complexed starch: The effect of complexation time and temperature. International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2021.01.124.
There are 39 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Betül Oskaybas 0000-0002-0238-8948

Ayşe Özbey 0000-0003-3210-4077

Levent Yurdaer Aydemir 0000-0003-0372-1172

Kevser Kahraman 0000-0002-2786-3944

Project Number 119O031
Early Pub Date October 19, 2022
Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 47 Issue: 6

Cite

APA Oskaybas, B., Özbey, A., Aydemir, L. Y., Kahraman, K. (2022). BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. Gıda, 47(6), 1168-1179. https://doi.org/10.15237/gida.GD22116
AMA Oskaybas B, Özbey A, Aydemir LY, Kahraman K. BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. The Journal of Food. December 2022;47(6):1168-1179. doi:10.15237/gida.GD22116
Chicago Oskaybas, Betül, Ayşe Özbey, Levent Yurdaer Aydemir, and Kevser Kahraman. “BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES”. Gıda 47, no. 6 (December 2022): 1168-79. https://doi.org/10.15237/gida.GD22116.
EndNote Oskaybas B, Özbey A, Aydemir LY, Kahraman K (December 1, 2022) BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. Gıda 47 6 1168–1179.
IEEE B. Oskaybas, A. Özbey, L. Y. Aydemir, and K. Kahraman, “BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES”, The Journal of Food, vol. 47, no. 6, pp. 1168–1179, 2022, doi: 10.15237/gida.GD22116.
ISNAD Oskaybas, Betül et al. “BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES”. Gıda 47/6 (December 2022), 1168-1179. https://doi.org/10.15237/gida.GD22116.
JAMA Oskaybas B, Özbey A, Aydemir LY, Kahraman K. BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. The Journal of Food. 2022;47:1168–1179.
MLA Oskaybas, Betül et al. “BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES”. Gıda, vol. 47, no. 6, 2022, pp. 1168-79, doi:10.15237/gida.GD22116.
Vancouver Oskaybas B, Özbey A, Aydemir LY, Kahraman K. BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. The Journal of Food. 2022;47(6):1168-79.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/