Review
BibTex RIS Cite

PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI

Year 2025, Volume: 50 Issue: 5, 929 - 945, 15.10.2025
https://doi.org/10.15237/gida.GD25119

Abstract

Mikroenkapsülasyon; katı, sıvı veya gaz formundaki aktif bir maddenin bir veya birden fazla kaplama materyali ile kaplanmasını sağlayan teknolojidir. Bu teknoloji sayesinde mikroorganizmalar çevresel stres faktörlerine karşı korunabilir, canlılıklarını daha uzun süre sürdürebilir ve hedeflenen bölgelerde kontrollü olarak salınabilir. Günümüzde, tüketici tercihlerindeki değişim ve sağlık odaklı gıda taleplerinin artmasıyla birlikte, probiyotiklerin çeşitli gıda matrislerine entegrasyonu yaygınlaşmıştır. Bununla birlikte, patojen mikroorganizmalara karşı biyolojik ajan olarak kullanılan bakteriyofajların da gıdalarda ve gıda ambalajlarında kullanımı, güncel araştırma konuları arasında yer almaktadır. Bu bağlamda, probiyotikler ve starter kültürler gibi faydalı mikroorganizmaların yanı sıra, fajların da gıdalarda kontrollü kullanımı ve mikrobiyal stabilitenin sağlanması, gıda endüstrisi açısından büyük önem taşımaktadır. Bu mikroorganizmaların gıda içerisinde ve sindirim sistemi boyunca canlılıklarının korunması; ürünlerin aroma, tekstür ve raf ömrü gibi duyusal ve fiziksel özelliklerinin geliştirilmesi; fonksiyonel bileşenlerin stabilitesinin sağlanması ve farklı metabolitlerle kombinasyonlarıyla yeni ürünlerin geliştirilmesi mikroenkapsülasyon teknikleri ile mümkün olmaktadır. Bu derlemenin amacı fajlar, probiyotikler ve starter kültürlerin mikroenkapsülasyon teknikleri ile korunmasını ve bu teknolojinin gıda endüstrisindeki uygulamalarını inceleyerek, potansiyel faydalarını ortaya koymaktır.

References

  • Acar Soykut, E., Tayyarcan, E. K., Evran, Ş., Boyacı, İ. H., Çakır, İ., Khaaladi, M., Fattouch, S. (2019). Microencapsulation of phages to analyze their demeanor in physiological conditions. Folia microbiologica, 64(6), 751-763. https://doi.org/ 10.1007/s12223-019-00688-1
  • Agriopoulou, S., Tarapoulouzi, M., Varzakas, T., Jafari, S. M. (2023). Application of encapsulation strategies for probiotics: from individual loading to co-encapsulation. Microorganisms, 11(12), 2896.https://doi.org/10.3390/microorganisms11122896
  • Agudelo-Chaparro, J., Ciro-Velásquez, H. J., Sepúlveda-Valencia, J. U., Pérez-Monterroza, E. J. (2022). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose. Food Science and Technology International,28(6), 476-488. https://doi.org/ 10.1177/10820132211020621
  • Anal, A. K., Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food Science and Technology, 18(5), 240-251. https://doi.org/10.1016/j.tifs.2007.01.004
  • Anany, H., Chou, Y., Cucic, S., Derda, R., Evoy, S., Griffiths, M. W. (2017). From bits and pieces to whole phage to nanomachines: pathogen detection using bacteriophages. Annual Review of Food Science and Technology, 8(1), 305-329.https://doi.org/10.1146/annurev-food-041715-033235
  • Arslan-Tontul, S., Erbas, M., Gorgulu, A. (2019). The use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840-849. https://doi.org/10.1007/s12602-018-9467-y
  • Barro, N. P. R., da Silva, L. M., Fischer, B., Cansian, R. L., Junges, A., Mignoni, M., Valduga, E. (2024). Survival of encapsulated and free probiotic cells Lactobacillus helveticus under different simulated conditions and in white chocolate. Journal of Food Measurement and Characterization, 18(6), 4807-4819. https://doi.org/10.1007/s11694-024-02535-5
  • Bhutto, R. A., Mahar, H., Khanal, S., Wang, M., Iqbal, S., Fan, Y., Yi, J. (2025). Recent trends in co-encapsulation of probiotics with prebiotics and their applications in the food industry. Trends in Food Science and Technology, 156, 104829.https://doi.org/10.1016/j.tifs.2024.104829
  • Browning, L. W., Wang, H., Taylor, J. W., Wilde, P., Rodriguez-Garcia, M., Holland, L. A. M., Knowles, T. P. (2025). Digestibility and enteric release achieved with microencapsulates made from emulsion-templated plant proteins. Sustainable Food Technology, 3(3), 689-699. 10.1039/D4FB00375F
  • Calderón-Oliver, M., Ponce-Alquicira, E. (2022). The role of microencapsulation in food application. Molecules, 27(5), 1499. https://doi.org/10.3390/molecules27051499
  • Călinoiu, L. F., Ştefănescu, B. E., Pop, I. D., Muntean, L., Vodnar, D. C. (2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194.https://doi.org/10.3390/coatings9030194
  • Cence, K., Vendruscolo, M. J. D., da Silva, L. M., Colet, R., Junges, A., Steffens, C., Zemi, J., Valduga, E. (2025). Impact of microencapsulated starter culture on the quality characteristics of Italian-type salami during storage. Journal of Food Measurement and Characterization, 19(3), 1913-1928.https://doi.org/10.1007/s11694-024-03083-8
  • Chahar, M., Rana, A., Gupta, V. K., Singh, A., Singh, N. (2025). Application of a novel lytic phage to control enterotoxigenic Escherichia coli in dairy food matrices. International Journal of Food Microbiology, 426, 110924. https://doi.org/ 10.1016/j.ijfoodmicro.2024.110924
  • Chandrasekaran, P., Weiskirchen, S., Weiskirchen, R. (2024). Effects of probiotics on gut microbiota: an overview. International Journal of Molecular Sciences, 25(11), 6022. https://doi.org/10.3390/ijms25116022
  • Chávez, R., Fierro, F., Rico, R. O. G., Laich, F. (2012). Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products. In Mycofactories (pp. 73-98). Bentham Science Publishers. https://doi.org/ 10.2174/97816080522331110101
  • Choi, I., Lee, J. S., Han, J. (2023). Maltodextrin-trehalose miscible system-based bacteriophage encapsulation: Studies of plasticizing effect on encapsulated phage activity and food application as an antimicrobial agent. Food Control, 146, 109550. https://doi.org/10.1016/ j.foodcont.2022.109550
  • Choińska-Pulit, A., Mituła, P., Śliwka, P., Łaba, W., Skaradzińska, A. (2015). Bacteriophage encapsulation: Trends and potential applications. Trends in Food Science and Technology, 45(2), 212-221. https://doi.org/10.1016/j.tifs.2015.07.001
  • Cui, H., Yuan, L., Lin, L. (2017). Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157: H7 in beef. Carbohydrate Polymers, 177, 156-164.https://doi.org/10.1016/j.carbpol.2017.08.137
  • Çakır, İ. (2006). Mikroenkapsülasyon tekniğinin probiyotik gıda üretiminde kullanımı. Türkiye 9. Gıda Kongresi; 24-26 Mayıs 2006, Bolu, Türkiye.
  • D’Herelle, F. (1917). An invisible microbe that is antagonistic to the dysentery bacillus. CR Acad Sci,165, 373-375.
  • da Silva Gomes, A., Costa, K. S., Salomao, B. D. C. M. (2024). Antagonism and survival of probiotics encapsulated in functional yogurt-like fermented vegetable beverage. Food Bioscience, 61, 104728. https://doi.org/10.1016/j.fbio.2024.104728
  • de Deus, C., Duque-Soto, C., Rueda-Robles, A., Martinez-Baena, D., Borras-Linares, I., Quirantes-Piné, R.,…, Lozano-Sánchez, J. (2024). Stability of probiotics through encapsulation: Comparative analysis of current methods and solutions. Food Research International, 197, 115183. https://doi.org/10.1016/j.foodres.2024.115183
  • de Melo, A. M., Barbi, R. C. T., Chaves Almeida, F. L., de Souza, W. F. C., de Melo Cavalcante, A. M., de Souza, H. J. B., Botrel, D. A., Borges, S. V., Costa, R. G., Quirino, M. R., de Sousa, S. (2022). Effect of microencapsulation on chemical composition and antimicrobial, antioxidant and cytotoxic properties of lemongrass (cymbopogon flexuosus) essential oil. Food Technology and Biotechnology, 60(3), 386-395. https://doi.org/10.17113/ftb.60.03.22.7470
  • De Prisco, A., van Valenberg, H. J., Fogliano, V., Mauriello, G. (2017). Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food and Bioprocess Technology, 10(10), 1767-1777. https://doi.org/10.1007/s11947-017-1946-8
  • Duc, H. M., Son, H. M., Yi, H. P. S., Sato, J., Ngan, P. H., Masuda, Y., Honjoh, K., Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices. Food Research International, 131, 108977. https://doi.org/ 10.1016/j.foodres.2020.108977
  • Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P. J., Brouns, S. J. (2022). Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiology Reviews, 46(1), fuab048. https://doi.org/10.1093/femsre/fuab048
  • Emon, D. D., Islam, M. S., Mazumder, M. A. R., Aziz, M. G., Rahman, M. S. (2025). Recent applications of microencapsulation techniques for delivery of functional ingredient in food products: a comprehensive review. Food Chemistry Advances, 6, 100923. https://doi.org/10.1016/ j.focha.2025.100923
  • Encu, Ş. B., Yıldırım, A., Akbaş, S., Çakır, İ., Soykut, E. A. (2024). Taze dilimlenmiş meyvelerde Salmonella Typhimurium’un fajlarla biyokontrolü. Gıda, 49(2), 370-384. https://doi.org/10.15237/gida.GD24010
  • Fanger, G. O. (1974). Microencapsulation: a brief history and introduction. Microencapsulation: Processes and Applications, 1-20.
  • FAO/WHO (2006) Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina, 1-4 October 2001 [and] Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 30 April-1 May 2002. FAO Food and Nutrition Paper 85, Food and Agriculture Organization of the United Nations, World Health Organization, Rome.
  • Fijan, S., Kocbek, P., Steyer, A., Vodičar, P. M., Strauss, M. (2022). The antimicrobial effect of various single-strain and multi-strain probiotics, dietary supplements or other beneficial microbes against common clinical wound pathogens. Microorganisms, 10(12), 2518. https://doi.org/10.3390/microorganisms10122518
  • Frakolaki, G., Giannou, V., Kekos, D., Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 61(9), 1515-1536. https://doi.org/10.1080/10408398.2020.1761773
  • García-Díez, J., Saraiva, C. (2021). Use of starter cultures in foods from animal origin to improve their safety. International Journal of Environmental Research and Public Health, 18(5), 2544. https://doi.org/10.3390/ijerph18052544
  • Giordano, I., Maresca, D., Mauriello, G. (2023). Microencapsulation and sonication: A multiple physical approach to attenuate the probiotic Lacticaseibacillus casei ATCC 393. Heliyon, 9(12).10.1016/j.heliyon.2023.e23144
  • Gullifa, G., Risoluti, R., Mazzoni, C., Barone, L., Papa, E., Battistini, A., Fraguas, R. M., Materazzi, S. (2023). Microencapsulation by a spray drying approach to produce innovative probiotics-based products extending the shelf-life in non-refrigerated conditions. Molecules, 28(2), 860. https://doi.org/10.3390/molecules28020860
  • Hassan, H., Gomaa, A., Subirade, M., Kheadr, E., St-Gelais, D., Fliss, I. (2020). Novel design for alginate/resistant starch microcapsules controlling nisin release. International Journal of Biological Macromolecules, 153, 1186-1192. https://doi.org/10.1016/j.ijbiomac.2019.10.248
  • Hernández‐Arteaga, A. M., Mendoza‐Corvis, F., Salgado‐Behaine, J., Gontijo, M., Batalha, L. S., Perez, G., Sierra, O. P., Soto Lopez, M. E. (2025). Application of conservation strategies for bacteriophages used in the biocontrol of pathogenic microorganisms in food. Journal of Food Safety, 45(1), e70014. https://doi.org/10.1111/jfs.70014
  • Jan, T., Negi, R., Sharma, B., Kumar, S., Singh, S., Rai, A. K., Shreaz, S., Rustagi, S., Chaudhary, N., Kaur, T., Kour, D., Sheikh, M. A., Kumar, K., Yadav, A. N., Ahmed, N. (2024). Next generation probiotics for human health: An emerging perspective. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e35980
  • Jayalalitha, V., Elango, A., Pugazhenthi, T. R., Balasundaram, B., Priyadharsini, R. (2025). Exploring the Biopreservation Strategies in Dairy. Journal of Biology and Nature, 17(2), 35-46. https://doi.org/10.56557/joban/2025/v17i29439
  • Jiang, Y., Luo, Z., Xiang, F., Liu, Y., Yan, J., Wang, J. (2024). Fabrication and Encapsulation of Soy Peptide Nanoparticles Using Ultrasound Followed by Spray Drying. Foods, 13(23), 3967. https://doi.org/10.3390/foods13233967
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. https://doi.org/10.3109/02652040903131301
  • Kamwa, R., Khurajog, B., Muangsin, N., Pupa, P., Hampson, D. J., Prapasarakul, N. (2024). Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens. Animal Bioscience, 37(8), 1440. 10.5713/ab.23.0446
  • Kawacka, I., Olejnik-Schmidt, A., Schmidt, M., Sip, A. (2020). Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms, 8(11), 1764.
  • Khan, A., Joshi, H. (2025). Isolation and Characterization of Stress-Tolerant Bacteriophages for Effective Biocontrol of Foodborne Pathogen. Food and Bioprocess Technology, 1-15. https://doi.org/10.1007/s11947-025-03885-8
  • Koh, W. Y., Lim, X. X., Tan, T. C., Kobun, R., Rasti, B. (2022). Encapsulated probiotics: Potential techniques and coating materials for non-dairy food applications. Applied Sciences, 12(19), 10005.https://doi.org/10.3390/app121910005
  • Kowsalya, M., Sudha, K. G., Ali, S., Velmurugan, T., Rajeshkumar, M. P. (2023). Sustainability and controlled release behavior of microencapsulated Lactobacillus plantarum PRK7 and its application in probiotic yogurt production. Food Bioscience, 52, 102430. https://doi.org/10.1016/ j.fbio.2023.102430
  • Kurhan, Ş., Çakir, İ. (2017, November). Lactic acid bacteria mediated apoptosis induction: Natural way of colon cancer cells’ inhibition. In Proceedings (Vol. 1, No. 10, p. 1041). MDPI. https://doi.org/10.3390/proceedings1101041
  • Lalarukh, Hussain, S. M., Ali, S., Yilmaz, E., Zahoor, A. F., Javid, A., Alshehri, M. A., Shahzad, M. M., Naeem, A., Mahrukh. (2025). Microencapsulation: An Innovative Technology in Modern Science. Polymers for Advanced Technologies, 36(1), e70066. https://doi.org/10.1002/pat.70066
  • Laurujisawat, P., Dumrongchai, T., Rodklongtan, A., Chitprasert, P. (2025). Spray‐Dried Microencapsulation of Probiotics With Genipin‐Crosslinked Whey Protein Isolate for Enhanced Stability in Fortified Instant Cereal Drinks. Journal of Food Science, 90(5), e70257. https://doi.org/10.1111/1750-3841.70257
  • Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15(2), 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  • Li, J., Li, Y., Ding, Y., Huang, C., Zhang, Y., Wang, J., Wang, X. (2021). Characterization of a novel Siphoviridae Salmonella bacteriophage T156 and its microencapsulation application in food matrix. Food Research International, 140, 110004.https://doi.org/10.1016/j.foodres.2020.110004
  • Lu, J., Ge, Y., Zhu, X., Ma, Y., Chiou, B. S., Liu, F. (2025). Enhancing the stability of spray‐dried vitamin A acetate: the role of synergistic wall materials in microencapsulation. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.14257
  • Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, 152, 1125-1134. https://doi.org/ 10.1016/j.ijbiomac.2019.10.201
  • Maia, M. S., Domingos, M. M., de São José, J. F. B. (2023). Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices. Microorganisms, 11(5), 1335. https://doi.org/10.3390/microorganisms11051335
  • Marcial-Coba, M. S., Saaby, L., Knøchel, S., Nielsen, D. S. (2019). Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei. FEMS Microbiology Letters, 366(2), fny290.https://doi.org/10.1093/femsle/fny290
  • Mardani, M., Siahtiri, S., Besati, M., Baghani, M., Baniassadi, M., Nejad, A. M. (2024). Microencapsulation of natural products using spray drying; an overview. Journal of Microencapsulation, 41(7), 649-678. https://doi.org/10.1080/02652048.2024.2389136
  • Martellet, M. C., Majolo, F., Cima, L., Goettert, M. I., de Souza, C. F. V. (2023). Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. Food Bioscience, 52, 102474. https://doi.org/10.1016/j.fbio.2023.102474
  • Martins, P. M. M., Batista, N. N., Naves, J. A. O., Dias, D. R., Schwan, R. F. (2023). Use of microencapsulated starter cultures by spray drying in coffee under self-induced anaerobiosis fermentation (SIAF). Food Research International, 172, 113189. https://doi.org/10.1016/j.foodres.2023.113189
  • Mazár, J., Albert, K., Kovács, Z., Koris, A., Nath, A., Bánvölgyi, S. (2025). Advances in spray-drying and freeze-drying Technologies for the Microencapsulation of instant tea and herbal powders: The role of wall materials. Foods, 14(3), 486. https://doi.org/10.3390/foods14030486
  • Melo, L. D., Oliveira, H., Pires, D. P., Dabrowska, K., Azeredo, J. (2020). Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 46(1), 78-99. https://doi.org/10.1080/1040841X.2020.1729695
  • Mis-Solval, K. E., Jiang, N., Yuan, M., Joo, K. H., Cavender, G. A. (2019). The effect of the ultra-high-pressure homogenization of protein encapsulants on the survivability of probiotic cultures after spray drying. Foods, 8(12), 689.https://doi.org/10.3390/foods8120689
  • Mohammadalinejhad, S., Kurek, M. A. (2021). Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Applied Sciences, 11(9), 3936.
  • Muthukumarasamy, P., Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169. https://doi.org/10.1016/j.ijfoodmicro.2006.04.036
  • Niamah, A. K., Al-Sahlany, S. T. G., Ibrahim, S. A., Verma, D. K., Thakur, M., Singh, S., Patel, A. R., Aguilar, C. N., Utama, G. L. (2021). Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. Food Bioscience, 44, 101458. https://doi.org/10.1016/j.fbio.2021.101458
  • Paim, D. R., Costa, S. D., Walter, E. H., Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT, 74, 21-25. https://doi.org/10.1016/ j.lwt.2016.07.022
  • Peker, A. K., Guney, D., Sengun, I. (2024). The Use of both Free and Microencapsulated Lactiplantibacillus plantarum and Pediococcus parvulus in Cucumber Pickles. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03400-5
  • Peruzzolo, M., Ceni, G. C., Junges, A., Zeni, J., Cansian, R. L., Backes, G. T. (2025). Probiotics: Health benefits, microencapsulation, and viability, combination with natural compounds, and applications in foods. Food Bioscience, 106253. https://doi.org/10.1016/j.fbio.2025.106253
  • Praepanitchai, O. A., Noomhorm, A., Anal, A. K. (2019). Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium‐alginate‐soy protein isolate‐based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Research International, 2019(1), 9768152. https://doi.org/10.1155/2019/9768152
  • Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. https://doi.org/10.1038/s41598-021-93263-z
  • Rajam, R., Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 46. https://doi.org/10.1186/s43088-022-00228-w
  • Ramirez-Olea, H., Herrera-Cruz, S., Chavez-Santoscoy, R. A. (2024). Microencapsulation and controlled release of Bacillus clausii through a novel non-digestible carbohydrate formulation as revolutionizing probiotic delivery. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24923
  • Rengadu, D., Gerrano, A. S., Mellem, J. J. (2021). Microencapsulation of Lactobacillus casei and Bifidobacterium animalis enriched with resistant starch from vigna unguiculata. Starch‐Stärke, 73(7-8), 2000247. https://doi.org/10.1002/ star.202000247
  • Rojas-Muñoz, Y. V., Santagapita, P. R., Quintanilla-Carvajal, M. X. (2023). Probiotic encapsulation: bead design improves bacterial performance during in vitro digestion. Polymers, 15(21), 4296. https://doi.org/10.3390/ polym15214296
  • Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T., Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 86, 230-251. https://doi.org/10.1016/ j.tifs.2019.02.030
  • Santos Monteiro, S., Albertina Silva Beserra, Y., Miguel Lisboa Oliveira, H., Pasquali, M. A. D. B. (2020). Production of probiotic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) drink using Lactobacillus reuteri and microencapsulation via spray drying. Foods, 9(3), 335. https://doi.org/10.3390/foods9030335
  • Sharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496
  • Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78, 34-60. https://doi.org/10.1016/j.tifs.2018.05.018
  • Souza, M., Mesquita, A., Veríssimo, C., Grosso, C., Converti, A., Maciel, M. I. (2022). Microencapsulation by spray drying of a functional product with mixed juice of acerola and ciriguela fruits containing three probiotic lactobacilli. Drying Technology, 40(6), 1185-1195. https://doi.org/10.1080/07373937.2020.1862182
  • Srivastava, S., Pandey, V. K., Dar, A. H., Shams, R., Dash, K. K., Rafiq, S. M., Zahoor, I., Kumar, S. (2024). Effect of microencapsulation techniques on the different properties of bioactives, vitamins and minerals. Food Science and Biotechnology, 33(14), 3181-3198. https://doi.org/10.1007/s10068-024-01666-1
  • Ștefănescu, B. E., Nemes, S. A., Teleky, B. E., Călinoiu, L. F., Mitrea, L., Martău, G. A., Szabo, K., Mihai, M., Vodnar, D. C., Crișan, G. (2022). Microencapsulation and bioaccessibility of phenolic compounds of Vaccinium leaf extracts. Antioxidants, 11(4), 674. https://doi.org/ 10.3390/antiox11040674
  • Sun, W., Nguyen, Q. D., Süli, B. K., Alarawi, F., Szécsi, A., Gupta, V. K., Friedrich, L. F., Gere, A., Bujna, E. (2023). Microencapsulation and application of probiotic bacteria Lactiplantibacillus plantarum 299v strain. Microorganisms, 11(4), 947. https://doi.org/10.3390/microorganisms11040947
  • Talebzadeh, S., Sharifan, A. (2017). Developing probiotic jelly desserts with Lactobacillus acidophilus. Journal of Food Processing and Preservation, 41(1), e13026. https://doi.org/10.1111/jfpp.13026
  • Tang, Z., Huang, X., Baxi, S., Chambers, J. R., Sabour, P. M., Wang, Q. (2013). Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research International, 52(2), 460-466.https://doi.org/10.1016/j.foodres.2012.12.037Get rights and content
  • Tayyarcan, E. K., Evran, S., Akin, P. A., Soykut, E. A., Boyaci, I. H. (2022). The use of bacteriophage cocktails to reduce Salmonella Enteritidis in hummus. LWT-Food Science and Technology, 154, 112848. https://doi.org/10.1016/ j.lwt.2021.112848
  • Tidim, G., Guzel, M., Soyer, Y., Erel-Goktepe, I. (2024). Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydrate Polymers, 328, 121710. https://doi.org/10.1016/j.carbpol.2023.121710
  • Tutun, S., Yurdakul, O. (2022). Enkapsülasyon ve Gıda Teknolojisinde Kullanımı. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 13(2), 99-119. https://doi.org/10.38137/vftd.1096571
  • Udo, T., He, E., Qin, Z., Singh, R. K., Kong, F. (2025). Comparative evaluation of emulsification-based microencapsulation techniques with soy protein isolate for enhanced shelf-life and delivery of Lactobacillus rhamnosus GG. Food Bioscience, 106988.
  • Wang, Y., Brahmia, A., Shahbaz, A., Sahramaneshi, H., Alkhalifah, T., Yang, J. (2025). A novel machine learning model for innovative microencapsulation techniques and applications in advanced materials, textiles, and food industries. Renewable and Sustainable Energy Reviews, 224, 116082. https://doi.org/10.1016/ j.rser.2025.116082
  • Xiao, K., Pan, Q., Wu, Y., Ding, Y., Wu, Q., Zhang, J., Wang, Z., Liu, Z., & Wang, W., Wang, J. (2025). Application of a novel phage vB_CjeM_WX1 to control Campylobacter jejuni in foods. International Journal of Food Microbiology, 427, 110975. https://doi.org/10.1016/ j.ijfoodmicro.2024.110975
  • Yang, S., Wei, S., Wu, Y., Fang, Y., Deng, Z., Xu, J., Zhang, H. (2024). Encapsulation techniques, action mechanisms, and evaluation models of probiotics: Recent advances and future prospects. Food Frontiers, 5(3), 1212-1239.https://doi.org/10.1002/fft2.374
  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874. https://doi.org/10.1111/1541-4337.12532
  • Yee, W. L., Yee, C. L., Lin, N. K., Phing, P. L. (2019). Microencapsulation of Lactobacillus acidophilus NCFM incorporated with mannitol and its storage stability in mulberry tea. Ciência e Agrotecnologia, 43, e005819. https://doi.org/ 10.1590/1413-7054201943005819
  • Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., Anandharamakrishnan, C. (2022). Targeted delivery of probiotics: perspectives on research and commercialization. Probiotics and Antimicrobial Proteins, 14(1), 15-48. https://doi.org/10.1007/ s12602-021-09791-7
  • Zhang, Z. L., Li, L. J., Sun, D., Wang, M., Shi, J. R., Yang, D., Wang, L., Zou, S. C. (2020). Preparation and properties of chitosan‐based microspheres by spray drying. Food Science and Nutrition, 8(4), 1933-1941.https://doi.org/ 10.1002/fsn3.1479
  • Zhang, Z., Sun, C., Sun, X., Jin, Y., Yang, Z., Sun, Y., Wu, T. (2025). The Characteristics of Lactobacillus plantarum, Microencapsulation Technology, Wall Materials and applications: A Review. Food Reviews International, 1-24. https://doi.org/10.1080/87559129.2025.2553686
  • Zhong, H., Huang, W., Lin, K. T., Zhang, Q., Deng, Y., Zhang, R., Ma, R. (2025). A virulent phage vB_VpaP_R28Z infecting Vibrio parahaemolyticus with potential for therapeutic application. BMC Microbiology, 25(1), 433. https://doi.org/10.1186/s12866-025-04133-x
  • Zhu, Y. Y., Thakur, K., Zhang, W. W., Feng, J. Y., Zhang, J. G., Hu, F., Liao, C., Wei, Z. J. (2023). Double-layer mucin microencapsulation enhances the stress tolerance and oral delivery of Lactobacillus plantarum B2. Food Hydrocolloids, 141, 108678. https://doi.org/10.1016/ j.foodhyd.2023.108678

USE OF MICROENCAPSULATION TECHNIQUES IN PROBIOTICS, STARTER CULTURES AND BACTERIOPHAGES AND CURRENT FOOD APPLICATIONS

Year 2025, Volume: 50 Issue: 5, 929 - 945, 15.10.2025
https://doi.org/10.15237/gida.GD25119

Abstract

Microencapsulation is a technology that allows an active ingredient in solid, liquid, or gaseous form to be coated with one or more coating materials. This technology protects microorganisms from environmental stress factors, maintains their viability for longer periods, and allows for controlled release in targeted areas. With changing consumer preferences and increasing demands for health-focused foods, the integration of probiotics into various food matrices has become widespread. Furthermore, the use of bacteriophages, used as biological agents against pathogenic microorganisms, in foods and food packaging is among the current research topics. In this context, the controlled use of phages in foods and ensuring microbial stability, in addition to beneficial microorganisms such as probiotics and starter cultures, is of great importance to the food industry. Preserving the viability of these microorganisms in food and throughout the digestive tract; improving the sensory and physical properties of products, such as aroma, texture, and shelf life; ensuring the stability of functional ingredients; and developing new products by combining them with different metabolites are all possible through microencapsulation techniques. The aim of this review is to examine the preservation of phages, probiotics and starter cultures by microencapsulation techniques and the applications of this technology in the food industry and to reveal its potential benefits.

References

  • Acar Soykut, E., Tayyarcan, E. K., Evran, Ş., Boyacı, İ. H., Çakır, İ., Khaaladi, M., Fattouch, S. (2019). Microencapsulation of phages to analyze their demeanor in physiological conditions. Folia microbiologica, 64(6), 751-763. https://doi.org/ 10.1007/s12223-019-00688-1
  • Agriopoulou, S., Tarapoulouzi, M., Varzakas, T., Jafari, S. M. (2023). Application of encapsulation strategies for probiotics: from individual loading to co-encapsulation. Microorganisms, 11(12), 2896.https://doi.org/10.3390/microorganisms11122896
  • Agudelo-Chaparro, J., Ciro-Velásquez, H. J., Sepúlveda-Valencia, J. U., Pérez-Monterroza, E. J. (2022). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose. Food Science and Technology International,28(6), 476-488. https://doi.org/ 10.1177/10820132211020621
  • Anal, A. K., Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food Science and Technology, 18(5), 240-251. https://doi.org/10.1016/j.tifs.2007.01.004
  • Anany, H., Chou, Y., Cucic, S., Derda, R., Evoy, S., Griffiths, M. W. (2017). From bits and pieces to whole phage to nanomachines: pathogen detection using bacteriophages. Annual Review of Food Science and Technology, 8(1), 305-329.https://doi.org/10.1146/annurev-food-041715-033235
  • Arslan-Tontul, S., Erbas, M., Gorgulu, A. (2019). The use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840-849. https://doi.org/10.1007/s12602-018-9467-y
  • Barro, N. P. R., da Silva, L. M., Fischer, B., Cansian, R. L., Junges, A., Mignoni, M., Valduga, E. (2024). Survival of encapsulated and free probiotic cells Lactobacillus helveticus under different simulated conditions and in white chocolate. Journal of Food Measurement and Characterization, 18(6), 4807-4819. https://doi.org/10.1007/s11694-024-02535-5
  • Bhutto, R. A., Mahar, H., Khanal, S., Wang, M., Iqbal, S., Fan, Y., Yi, J. (2025). Recent trends in co-encapsulation of probiotics with prebiotics and their applications in the food industry. Trends in Food Science and Technology, 156, 104829.https://doi.org/10.1016/j.tifs.2024.104829
  • Browning, L. W., Wang, H., Taylor, J. W., Wilde, P., Rodriguez-Garcia, M., Holland, L. A. M., Knowles, T. P. (2025). Digestibility and enteric release achieved with microencapsulates made from emulsion-templated plant proteins. Sustainable Food Technology, 3(3), 689-699. 10.1039/D4FB00375F
  • Calderón-Oliver, M., Ponce-Alquicira, E. (2022). The role of microencapsulation in food application. Molecules, 27(5), 1499. https://doi.org/10.3390/molecules27051499
  • Călinoiu, L. F., Ştefănescu, B. E., Pop, I. D., Muntean, L., Vodnar, D. C. (2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194.https://doi.org/10.3390/coatings9030194
  • Cence, K., Vendruscolo, M. J. D., da Silva, L. M., Colet, R., Junges, A., Steffens, C., Zemi, J., Valduga, E. (2025). Impact of microencapsulated starter culture on the quality characteristics of Italian-type salami during storage. Journal of Food Measurement and Characterization, 19(3), 1913-1928.https://doi.org/10.1007/s11694-024-03083-8
  • Chahar, M., Rana, A., Gupta, V. K., Singh, A., Singh, N. (2025). Application of a novel lytic phage to control enterotoxigenic Escherichia coli in dairy food matrices. International Journal of Food Microbiology, 426, 110924. https://doi.org/ 10.1016/j.ijfoodmicro.2024.110924
  • Chandrasekaran, P., Weiskirchen, S., Weiskirchen, R. (2024). Effects of probiotics on gut microbiota: an overview. International Journal of Molecular Sciences, 25(11), 6022. https://doi.org/10.3390/ijms25116022
  • Chávez, R., Fierro, F., Rico, R. O. G., Laich, F. (2012). Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products. In Mycofactories (pp. 73-98). Bentham Science Publishers. https://doi.org/ 10.2174/97816080522331110101
  • Choi, I., Lee, J. S., Han, J. (2023). Maltodextrin-trehalose miscible system-based bacteriophage encapsulation: Studies of plasticizing effect on encapsulated phage activity and food application as an antimicrobial agent. Food Control, 146, 109550. https://doi.org/10.1016/ j.foodcont.2022.109550
  • Choińska-Pulit, A., Mituła, P., Śliwka, P., Łaba, W., Skaradzińska, A. (2015). Bacteriophage encapsulation: Trends and potential applications. Trends in Food Science and Technology, 45(2), 212-221. https://doi.org/10.1016/j.tifs.2015.07.001
  • Cui, H., Yuan, L., Lin, L. (2017). Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157: H7 in beef. Carbohydrate Polymers, 177, 156-164.https://doi.org/10.1016/j.carbpol.2017.08.137
  • Çakır, İ. (2006). Mikroenkapsülasyon tekniğinin probiyotik gıda üretiminde kullanımı. Türkiye 9. Gıda Kongresi; 24-26 Mayıs 2006, Bolu, Türkiye.
  • D’Herelle, F. (1917). An invisible microbe that is antagonistic to the dysentery bacillus. CR Acad Sci,165, 373-375.
  • da Silva Gomes, A., Costa, K. S., Salomao, B. D. C. M. (2024). Antagonism and survival of probiotics encapsulated in functional yogurt-like fermented vegetable beverage. Food Bioscience, 61, 104728. https://doi.org/10.1016/j.fbio.2024.104728
  • de Deus, C., Duque-Soto, C., Rueda-Robles, A., Martinez-Baena, D., Borras-Linares, I., Quirantes-Piné, R.,…, Lozano-Sánchez, J. (2024). Stability of probiotics through encapsulation: Comparative analysis of current methods and solutions. Food Research International, 197, 115183. https://doi.org/10.1016/j.foodres.2024.115183
  • de Melo, A. M., Barbi, R. C. T., Chaves Almeida, F. L., de Souza, W. F. C., de Melo Cavalcante, A. M., de Souza, H. J. B., Botrel, D. A., Borges, S. V., Costa, R. G., Quirino, M. R., de Sousa, S. (2022). Effect of microencapsulation on chemical composition and antimicrobial, antioxidant and cytotoxic properties of lemongrass (cymbopogon flexuosus) essential oil. Food Technology and Biotechnology, 60(3), 386-395. https://doi.org/10.17113/ftb.60.03.22.7470
  • De Prisco, A., van Valenberg, H. J., Fogliano, V., Mauriello, G. (2017). Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food and Bioprocess Technology, 10(10), 1767-1777. https://doi.org/10.1007/s11947-017-1946-8
  • Duc, H. M., Son, H. M., Yi, H. P. S., Sato, J., Ngan, P. H., Masuda, Y., Honjoh, K., Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices. Food Research International, 131, 108977. https://doi.org/ 10.1016/j.foodres.2020.108977
  • Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P. J., Brouns, S. J. (2022). Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiology Reviews, 46(1), fuab048. https://doi.org/10.1093/femsre/fuab048
  • Emon, D. D., Islam, M. S., Mazumder, M. A. R., Aziz, M. G., Rahman, M. S. (2025). Recent applications of microencapsulation techniques for delivery of functional ingredient in food products: a comprehensive review. Food Chemistry Advances, 6, 100923. https://doi.org/10.1016/ j.focha.2025.100923
  • Encu, Ş. B., Yıldırım, A., Akbaş, S., Çakır, İ., Soykut, E. A. (2024). Taze dilimlenmiş meyvelerde Salmonella Typhimurium’un fajlarla biyokontrolü. Gıda, 49(2), 370-384. https://doi.org/10.15237/gida.GD24010
  • Fanger, G. O. (1974). Microencapsulation: a brief history and introduction. Microencapsulation: Processes and Applications, 1-20.
  • FAO/WHO (2006) Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina, 1-4 October 2001 [and] Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 30 April-1 May 2002. FAO Food and Nutrition Paper 85, Food and Agriculture Organization of the United Nations, World Health Organization, Rome.
  • Fijan, S., Kocbek, P., Steyer, A., Vodičar, P. M., Strauss, M. (2022). The antimicrobial effect of various single-strain and multi-strain probiotics, dietary supplements or other beneficial microbes against common clinical wound pathogens. Microorganisms, 10(12), 2518. https://doi.org/10.3390/microorganisms10122518
  • Frakolaki, G., Giannou, V., Kekos, D., Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 61(9), 1515-1536. https://doi.org/10.1080/10408398.2020.1761773
  • García-Díez, J., Saraiva, C. (2021). Use of starter cultures in foods from animal origin to improve their safety. International Journal of Environmental Research and Public Health, 18(5), 2544. https://doi.org/10.3390/ijerph18052544
  • Giordano, I., Maresca, D., Mauriello, G. (2023). Microencapsulation and sonication: A multiple physical approach to attenuate the probiotic Lacticaseibacillus casei ATCC 393. Heliyon, 9(12).10.1016/j.heliyon.2023.e23144
  • Gullifa, G., Risoluti, R., Mazzoni, C., Barone, L., Papa, E., Battistini, A., Fraguas, R. M., Materazzi, S. (2023). Microencapsulation by a spray drying approach to produce innovative probiotics-based products extending the shelf-life in non-refrigerated conditions. Molecules, 28(2), 860. https://doi.org/10.3390/molecules28020860
  • Hassan, H., Gomaa, A., Subirade, M., Kheadr, E., St-Gelais, D., Fliss, I. (2020). Novel design for alginate/resistant starch microcapsules controlling nisin release. International Journal of Biological Macromolecules, 153, 1186-1192. https://doi.org/10.1016/j.ijbiomac.2019.10.248
  • Hernández‐Arteaga, A. M., Mendoza‐Corvis, F., Salgado‐Behaine, J., Gontijo, M., Batalha, L. S., Perez, G., Sierra, O. P., Soto Lopez, M. E. (2025). Application of conservation strategies for bacteriophages used in the biocontrol of pathogenic microorganisms in food. Journal of Food Safety, 45(1), e70014. https://doi.org/10.1111/jfs.70014
  • Jan, T., Negi, R., Sharma, B., Kumar, S., Singh, S., Rai, A. K., Shreaz, S., Rustagi, S., Chaudhary, N., Kaur, T., Kour, D., Sheikh, M. A., Kumar, K., Yadav, A. N., Ahmed, N. (2024). Next generation probiotics for human health: An emerging perspective. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e35980
  • Jayalalitha, V., Elango, A., Pugazhenthi, T. R., Balasundaram, B., Priyadharsini, R. (2025). Exploring the Biopreservation Strategies in Dairy. Journal of Biology and Nature, 17(2), 35-46. https://doi.org/10.56557/joban/2025/v17i29439
  • Jiang, Y., Luo, Z., Xiang, F., Liu, Y., Yan, J., Wang, J. (2024). Fabrication and Encapsulation of Soy Peptide Nanoparticles Using Ultrasound Followed by Spray Drying. Foods, 13(23), 3967. https://doi.org/10.3390/foods13233967
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. https://doi.org/10.3109/02652040903131301
  • Kamwa, R., Khurajog, B., Muangsin, N., Pupa, P., Hampson, D. J., Prapasarakul, N. (2024). Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens. Animal Bioscience, 37(8), 1440. 10.5713/ab.23.0446
  • Kawacka, I., Olejnik-Schmidt, A., Schmidt, M., Sip, A. (2020). Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms, 8(11), 1764.
  • Khan, A., Joshi, H. (2025). Isolation and Characterization of Stress-Tolerant Bacteriophages for Effective Biocontrol of Foodborne Pathogen. Food and Bioprocess Technology, 1-15. https://doi.org/10.1007/s11947-025-03885-8
  • Koh, W. Y., Lim, X. X., Tan, T. C., Kobun, R., Rasti, B. (2022). Encapsulated probiotics: Potential techniques and coating materials for non-dairy food applications. Applied Sciences, 12(19), 10005.https://doi.org/10.3390/app121910005
  • Kowsalya, M., Sudha, K. G., Ali, S., Velmurugan, T., Rajeshkumar, M. P. (2023). Sustainability and controlled release behavior of microencapsulated Lactobacillus plantarum PRK7 and its application in probiotic yogurt production. Food Bioscience, 52, 102430. https://doi.org/10.1016/ j.fbio.2023.102430
  • Kurhan, Ş., Çakir, İ. (2017, November). Lactic acid bacteria mediated apoptosis induction: Natural way of colon cancer cells’ inhibition. In Proceedings (Vol. 1, No. 10, p. 1041). MDPI. https://doi.org/10.3390/proceedings1101041
  • Lalarukh, Hussain, S. M., Ali, S., Yilmaz, E., Zahoor, A. F., Javid, A., Alshehri, M. A., Shahzad, M. M., Naeem, A., Mahrukh. (2025). Microencapsulation: An Innovative Technology in Modern Science. Polymers for Advanced Technologies, 36(1), e70066. https://doi.org/10.1002/pat.70066
  • Laurujisawat, P., Dumrongchai, T., Rodklongtan, A., Chitprasert, P. (2025). Spray‐Dried Microencapsulation of Probiotics With Genipin‐Crosslinked Whey Protein Isolate for Enhanced Stability in Fortified Instant Cereal Drinks. Journal of Food Science, 90(5), e70257. https://doi.org/10.1111/1750-3841.70257
  • Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15(2), 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  • Li, J., Li, Y., Ding, Y., Huang, C., Zhang, Y., Wang, J., Wang, X. (2021). Characterization of a novel Siphoviridae Salmonella bacteriophage T156 and its microencapsulation application in food matrix. Food Research International, 140, 110004.https://doi.org/10.1016/j.foodres.2020.110004
  • Lu, J., Ge, Y., Zhu, X., Ma, Y., Chiou, B. S., Liu, F. (2025). Enhancing the stability of spray‐dried vitamin A acetate: the role of synergistic wall materials in microencapsulation. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.14257
  • Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, 152, 1125-1134. https://doi.org/ 10.1016/j.ijbiomac.2019.10.201
  • Maia, M. S., Domingos, M. M., de São José, J. F. B. (2023). Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices. Microorganisms, 11(5), 1335. https://doi.org/10.3390/microorganisms11051335
  • Marcial-Coba, M. S., Saaby, L., Knøchel, S., Nielsen, D. S. (2019). Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei. FEMS Microbiology Letters, 366(2), fny290.https://doi.org/10.1093/femsle/fny290
  • Mardani, M., Siahtiri, S., Besati, M., Baghani, M., Baniassadi, M., Nejad, A. M. (2024). Microencapsulation of natural products using spray drying; an overview. Journal of Microencapsulation, 41(7), 649-678. https://doi.org/10.1080/02652048.2024.2389136
  • Martellet, M. C., Majolo, F., Cima, L., Goettert, M. I., de Souza, C. F. V. (2023). Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. Food Bioscience, 52, 102474. https://doi.org/10.1016/j.fbio.2023.102474
  • Martins, P. M. M., Batista, N. N., Naves, J. A. O., Dias, D. R., Schwan, R. F. (2023). Use of microencapsulated starter cultures by spray drying in coffee under self-induced anaerobiosis fermentation (SIAF). Food Research International, 172, 113189. https://doi.org/10.1016/j.foodres.2023.113189
  • Mazár, J., Albert, K., Kovács, Z., Koris, A., Nath, A., Bánvölgyi, S. (2025). Advances in spray-drying and freeze-drying Technologies for the Microencapsulation of instant tea and herbal powders: The role of wall materials. Foods, 14(3), 486. https://doi.org/10.3390/foods14030486
  • Melo, L. D., Oliveira, H., Pires, D. P., Dabrowska, K., Azeredo, J. (2020). Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 46(1), 78-99. https://doi.org/10.1080/1040841X.2020.1729695
  • Mis-Solval, K. E., Jiang, N., Yuan, M., Joo, K. H., Cavender, G. A. (2019). The effect of the ultra-high-pressure homogenization of protein encapsulants on the survivability of probiotic cultures after spray drying. Foods, 8(12), 689.https://doi.org/10.3390/foods8120689
  • Mohammadalinejhad, S., Kurek, M. A. (2021). Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Applied Sciences, 11(9), 3936.
  • Muthukumarasamy, P., Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169. https://doi.org/10.1016/j.ijfoodmicro.2006.04.036
  • Niamah, A. K., Al-Sahlany, S. T. G., Ibrahim, S. A., Verma, D. K., Thakur, M., Singh, S., Patel, A. R., Aguilar, C. N., Utama, G. L. (2021). Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. Food Bioscience, 44, 101458. https://doi.org/10.1016/j.fbio.2021.101458
  • Paim, D. R., Costa, S. D., Walter, E. H., Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT, 74, 21-25. https://doi.org/10.1016/ j.lwt.2016.07.022
  • Peker, A. K., Guney, D., Sengun, I. (2024). The Use of both Free and Microencapsulated Lactiplantibacillus plantarum and Pediococcus parvulus in Cucumber Pickles. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03400-5
  • Peruzzolo, M., Ceni, G. C., Junges, A., Zeni, J., Cansian, R. L., Backes, G. T. (2025). Probiotics: Health benefits, microencapsulation, and viability, combination with natural compounds, and applications in foods. Food Bioscience, 106253. https://doi.org/10.1016/j.fbio.2025.106253
  • Praepanitchai, O. A., Noomhorm, A., Anal, A. K. (2019). Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium‐alginate‐soy protein isolate‐based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Research International, 2019(1), 9768152. https://doi.org/10.1155/2019/9768152
  • Pupa, P., Apiwatsiri, P., Sirichokchatchawan, W., Pirarat, N., Muangsin, N., Shah, A. A., Prapasarakul, N. (2021). The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Scientific Reports, 11(1), 13753. https://doi.org/10.1038/s41598-021-93263-z
  • Rajam, R., Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 46. https://doi.org/10.1186/s43088-022-00228-w
  • Ramirez-Olea, H., Herrera-Cruz, S., Chavez-Santoscoy, R. A. (2024). Microencapsulation and controlled release of Bacillus clausii through a novel non-digestible carbohydrate formulation as revolutionizing probiotic delivery. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24923
  • Rengadu, D., Gerrano, A. S., Mellem, J. J. (2021). Microencapsulation of Lactobacillus casei and Bifidobacterium animalis enriched with resistant starch from vigna unguiculata. Starch‐Stärke, 73(7-8), 2000247. https://doi.org/10.1002/ star.202000247
  • Rojas-Muñoz, Y. V., Santagapita, P. R., Quintanilla-Carvajal, M. X. (2023). Probiotic encapsulation: bead design improves bacterial performance during in vitro digestion. Polymers, 15(21), 4296. https://doi.org/10.3390/ polym15214296
  • Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T., Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 86, 230-251. https://doi.org/10.1016/ j.tifs.2019.02.030
  • Santos Monteiro, S., Albertina Silva Beserra, Y., Miguel Lisboa Oliveira, H., Pasquali, M. A. D. B. (2020). Production of probiotic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) drink using Lactobacillus reuteri and microencapsulation via spray drying. Foods, 9(3), 335. https://doi.org/10.3390/foods9030335
  • Sharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496
  • Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78, 34-60. https://doi.org/10.1016/j.tifs.2018.05.018
  • Souza, M., Mesquita, A., Veríssimo, C., Grosso, C., Converti, A., Maciel, M. I. (2022). Microencapsulation by spray drying of a functional product with mixed juice of acerola and ciriguela fruits containing three probiotic lactobacilli. Drying Technology, 40(6), 1185-1195. https://doi.org/10.1080/07373937.2020.1862182
  • Srivastava, S., Pandey, V. K., Dar, A. H., Shams, R., Dash, K. K., Rafiq, S. M., Zahoor, I., Kumar, S. (2024). Effect of microencapsulation techniques on the different properties of bioactives, vitamins and minerals. Food Science and Biotechnology, 33(14), 3181-3198. https://doi.org/10.1007/s10068-024-01666-1
  • Ștefănescu, B. E., Nemes, S. A., Teleky, B. E., Călinoiu, L. F., Mitrea, L., Martău, G. A., Szabo, K., Mihai, M., Vodnar, D. C., Crișan, G. (2022). Microencapsulation and bioaccessibility of phenolic compounds of Vaccinium leaf extracts. Antioxidants, 11(4), 674. https://doi.org/ 10.3390/antiox11040674
  • Sun, W., Nguyen, Q. D., Süli, B. K., Alarawi, F., Szécsi, A., Gupta, V. K., Friedrich, L. F., Gere, A., Bujna, E. (2023). Microencapsulation and application of probiotic bacteria Lactiplantibacillus plantarum 299v strain. Microorganisms, 11(4), 947. https://doi.org/10.3390/microorganisms11040947
  • Talebzadeh, S., Sharifan, A. (2017). Developing probiotic jelly desserts with Lactobacillus acidophilus. Journal of Food Processing and Preservation, 41(1), e13026. https://doi.org/10.1111/jfpp.13026
  • Tang, Z., Huang, X., Baxi, S., Chambers, J. R., Sabour, P. M., Wang, Q. (2013). Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Research International, 52(2), 460-466.https://doi.org/10.1016/j.foodres.2012.12.037Get rights and content
  • Tayyarcan, E. K., Evran, S., Akin, P. A., Soykut, E. A., Boyaci, I. H. (2022). The use of bacteriophage cocktails to reduce Salmonella Enteritidis in hummus. LWT-Food Science and Technology, 154, 112848. https://doi.org/10.1016/ j.lwt.2021.112848
  • Tidim, G., Guzel, M., Soyer, Y., Erel-Goktepe, I. (2024). Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydrate Polymers, 328, 121710. https://doi.org/10.1016/j.carbpol.2023.121710
  • Tutun, S., Yurdakul, O. (2022). Enkapsülasyon ve Gıda Teknolojisinde Kullanımı. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 13(2), 99-119. https://doi.org/10.38137/vftd.1096571
  • Udo, T., He, E., Qin, Z., Singh, R. K., Kong, F. (2025). Comparative evaluation of emulsification-based microencapsulation techniques with soy protein isolate for enhanced shelf-life and delivery of Lactobacillus rhamnosus GG. Food Bioscience, 106988.
  • Wang, Y., Brahmia, A., Shahbaz, A., Sahramaneshi, H., Alkhalifah, T., Yang, J. (2025). A novel machine learning model for innovative microencapsulation techniques and applications in advanced materials, textiles, and food industries. Renewable and Sustainable Energy Reviews, 224, 116082. https://doi.org/10.1016/ j.rser.2025.116082
  • Xiao, K., Pan, Q., Wu, Y., Ding, Y., Wu, Q., Zhang, J., Wang, Z., Liu, Z., & Wang, W., Wang, J. (2025). Application of a novel phage vB_CjeM_WX1 to control Campylobacter jejuni in foods. International Journal of Food Microbiology, 427, 110975. https://doi.org/10.1016/ j.ijfoodmicro.2024.110975
  • Yang, S., Wei, S., Wu, Y., Fang, Y., Deng, Z., Xu, J., Zhang, H. (2024). Encapsulation techniques, action mechanisms, and evaluation models of probiotics: Recent advances and future prospects. Food Frontiers, 5(3), 1212-1239.https://doi.org/10.1002/fft2.374
  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874. https://doi.org/10.1111/1541-4337.12532
  • Yee, W. L., Yee, C. L., Lin, N. K., Phing, P. L. (2019). Microencapsulation of Lactobacillus acidophilus NCFM incorporated with mannitol and its storage stability in mulberry tea. Ciência e Agrotecnologia, 43, e005819. https://doi.org/ 10.1590/1413-7054201943005819
  • Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., Anandharamakrishnan, C. (2022). Targeted delivery of probiotics: perspectives on research and commercialization. Probiotics and Antimicrobial Proteins, 14(1), 15-48. https://doi.org/10.1007/ s12602-021-09791-7
  • Zhang, Z. L., Li, L. J., Sun, D., Wang, M., Shi, J. R., Yang, D., Wang, L., Zou, S. C. (2020). Preparation and properties of chitosan‐based microspheres by spray drying. Food Science and Nutrition, 8(4), 1933-1941.https://doi.org/ 10.1002/fsn3.1479
  • Zhang, Z., Sun, C., Sun, X., Jin, Y., Yang, Z., Sun, Y., Wu, T. (2025). The Characteristics of Lactobacillus plantarum, Microencapsulation Technology, Wall Materials and applications: A Review. Food Reviews International, 1-24. https://doi.org/10.1080/87559129.2025.2553686
  • Zhong, H., Huang, W., Lin, K. T., Zhang, Q., Deng, Y., Zhang, R., Ma, R. (2025). A virulent phage vB_VpaP_R28Z infecting Vibrio parahaemolyticus with potential for therapeutic application. BMC Microbiology, 25(1), 433. https://doi.org/10.1186/s12866-025-04133-x
  • Zhu, Y. Y., Thakur, K., Zhang, W. W., Feng, J. Y., Zhang, J. G., Hu, F., Liao, C., Wei, Z. J. (2023). Double-layer mucin microencapsulation enhances the stress tolerance and oral delivery of Lactobacillus plantarum B2. Food Hydrocolloids, 141, 108678. https://doi.org/10.1016/ j.foodhyd.2023.108678
There are 97 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Food Microbiology
Journal Section Articles
Authors

Şeyma Betül Encu 0000-0001-9155-1868

Esra Acar Soykut 0000-0002-6639-4212

İbrahim Çakır 0000-0001-7775-1871

Publication Date October 15, 2025
Submission Date September 9, 2025
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 50 Issue: 5

Cite

APA Encu, Ş. B., Acar Soykut, E., & Çakır, İ. (2025). PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI. Gıda, 50(5), 929-945. https://doi.org/10.15237/gida.GD25119
AMA Encu ŞB, Acar Soykut E, Çakır İ. PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI. The Journal of Food. October 2025;50(5):929-945. doi:10.15237/gida.GD25119
Chicago Encu, Şeyma Betül, Esra Acar Soykut, and İbrahim Çakır. “PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI”. Gıda 50, no. 5 (October 2025): 929-45. https://doi.org/10.15237/gida.GD25119.
EndNote Encu ŞB, Acar Soykut E, Çakır İ (October 1, 2025) PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI. Gıda 50 5 929–945.
IEEE Ş. B. Encu, E. Acar Soykut, and İ. Çakır, “PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI”, The Journal of Food, vol. 50, no. 5, pp. 929–945, 2025, doi: 10.15237/gida.GD25119.
ISNAD Encu, Şeyma Betül et al. “PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI”. Gıda 50/5 (October2025), 929-945. https://doi.org/10.15237/gida.GD25119.
JAMA Encu ŞB, Acar Soykut E, Çakır İ. PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI. The Journal of Food. 2025;50:929–945.
MLA Encu, Şeyma Betül et al. “PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI”. Gıda, vol. 50, no. 5, 2025, pp. 929-45, doi:10.15237/gida.GD25119.
Vancouver Encu ŞB, Acar Soykut E, Çakır İ. PROBİYOTİK, STARTER KÜLTÜR VE BAKTERİYOFAJLARDA MİKROENKAPSÜLASYON TEKNİKLERİNİN KULLANIMI VE GÜNCEL GIDA UYGULAMALARI. The Journal of Food. 2025;50(5):929-45.