Research Article
BibTex RIS Cite

Optimization of Bioactive Components in Fresh Red Watermelon Juice of Ultrasound Assisted Extraction Conditions With Response Surface Methodology

Year 2022, , 113 - 119, 31.08.2022
https://doi.org/10.55507/gopzfd.1138189

Abstract

In this study, optimization of bioactive components in fresh red watermelon juice which was applied ultrasound for different amplitude and time with response surface methodology (RSM) was performed. As a result of the optimization, lycopene, ascorbic acid, total phenolic content and DPPH were determined as 28.74 mg/100 mL, 4.34 mg/100 mL, 122.2 mg GAE/L and 54.26%, respectively. When compared to the fresh red watermelon juice samples applied ultrasound with control samples, it was found that lycopene, total phenolic content and DPPH values increase and ascorbic acid content decreased.

References

  • Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206. https://doi.org/10.1016/J.FOODCHEM.2013.06.008
  • Aadil, R. M., Zeng, X. A., Wang, M. S., Liu, Z. W., Han, Z., Zhang, Z. H., ... & Jabbar, S. (2015). A potential of ultrasound on minerals, micro‐organisms, phenolic compounds and colouring pigments of grapefruit juice. International Journal of Food Science & Technology, 50(5), 1144-1150.
  • Alijan, S., Hosseini, M., Khosravi-Darani, K., & Esmaeili, S. (2021). Impact of Ultrasound and Medium Condition on Selenium-Enriched Yeast Production from Sugar Beet Molasses and Date Waste. Available at SSRN 3877919.
  • AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists (15th ed.).
  • Atalar, I., Saricaoglu, F. T., Odabas, H. I., Yilmaz, V. A., & Gul, O. (2020). Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar. LWT, 118, 108850.
  • Bang, H., Kim, S., Leskovar, D., & King, S. (2007). Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Molecular Breeding, 20(1), 63-72.
  • Bang, H., Davis, A. R., Kim, S., Leskovar, D. I., & King, S. R. (2010). Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. Journal of the American Society for Horticultural Science, 135(4), 362-368.
  • Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in the application of ultrasound in food processing: A review. In Ultrasonics Sonochemistry (Vol. 70, p. 105293). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2020.105293
  • Bindes, M. M. M., Reis, M. H. M., Cardoso, V. L., & Boffito, D. C. (2019). Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrasonics sonochemistry, 51, 111-119.
  • Campoli, S. S., Rojas, M. L., do Amaral, J. E. P. G., Canniatti-Brazaca, S. G., & Augusto, P. E. D. (2018). Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594–601. https://doi.org/10.1016/j.foodchem.2018.06.127
  • Dall’Asta, M., Barbato, M., Rocchetti, G., Rossi, F., Lucini, L., Marsan, P. A., & Colli, L. (2022). Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Current Opinion in Food Science, 100880. https://doi.org/10.1016/J.COFS.2022.100880
  • Debelo, H., Li, M., & Ferruzzi, M. G. (2020). Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 32, 90–102. https://doi.org/10.1016/J.COFS.2020.03.001
  • De Souza Carvalho, L.M., Lemos, M.C.M., Sanches, E.A.et al. (2020). Improvement of the bioaccessibility of bioactive com-pounds from Amazon fruits treated using high energy ultrasound.Ultrasonics Sonochemistry,67, 105148.
  • Doguer, C., Yıkmış, S., Levent, O., & Turkol, M. (2021). Anticancer effects of enrichment in the bioactive components of the functional beverage of Turkish gastronomy by supplementation with purple basil (Ocimum basilicum L.) and the ultrasound treatment. Journal of Food Processing and Preservation, 45(5), e15436. https://doi.org/10.1111/JFPP.15436
  • Erdal, B., Yıkmış, S., Demirok, N. T., Bozgeyik, E., & Levent, O. (2022). Effects of Non-Thermal Treatment on Gilaburu Vinegar (Viburnum opulus L.): Polyphenols, Amino Acid, Antimicrobial, and Anticancer Properties. Biology 2022, Vol. 11, Page 926, 11(6), 926. https://doi.org/10.3390/BIOLOGY11060926
  • Fan, K., Wu, J., & Chen, L. (2021). Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrasonics Sonochemistry, 80, 105838. https://doi.org/10.1016/J.ULTSONCH.2021.105838
  • Fehér, T. (1993). Watermelon: Citrullus lanatus (Thunb.) Matsum. & Nakai. Genetic improvement of vegetable crops, 295-311.
  • Grajeda-Iglesias, C., Salas, E., Barouh, N., Baréa, B., Panya, A., & Figueroa-Espinoza, M. C. (2016). Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chemistry, 194, 749–757. https://doi.org/10.1016/j.foodchem.2015.07.119
  • Kwaw, E., Ma, Y., Tchabo, W., Sackey, A. S., Apaliya, M. T., Xiao, L., Wu, M., & Sarpong, F. (2018). Ultrasonication effects on the phytochemical, volatile and sensorial characteristics of lactic acid fermented mulberry juice. Food Bioscience, 24, 17–25. https://doi.org/10.1016/j.fbio.2018.05.004
  • Margean, A., Lupu, M. I., Alexa, E., Padureanu, V., Canja, C. M., Cocan, I., Negrea, M., Calefariu, G., & Poiana, M. A. (2020). An Overview of Effects Induced by Pasteurization and High-Power Ultrasound Treatment on the Quality of Red Grape Juice. Molecules 2020, Vol. 25, Page 1669, 25(7), 1669. https://doi.org/10.3390/MOLECULES25071669
  • Lee, W. C., Yusof, S. A. L. M. A. H., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of food Engineering, 73(1), 55-63.
  • Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., & Sáyago-Ayerdi, S. G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience, 21, 125-131.
  • Olayinka, B. U., & Etejere, E. O. (2018). Proximate and Chemical Compositions of Watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai cv Red and Cucumber (Cucumis sativus L. cv Pipino). International Food Research Journal, 25(3).
  • Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chemistry, 115(4), 1312–1319. https://doi.org/10.1016/J.FOODCHEM.2009.01.049
  • Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/J.FOODCHEM.2017.04.114
  • Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282. https://doi.org/10.1016/J.ULTSONCH.2013.02.005
  • Santos, D. I., Saraiva, J. M. A., Vicente, A. A., & Moldão-Martins, M. (2019). Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds (pp. 23-54). Woodhead Publishing.
  • Seyed, M. R., & Elnaz, M. (2006). Some physical properties of the watermelon seeds. African Journal of Agricultural Research, 1(3), 065-069.
  • Shi, J., & Le Maguer, M. (2000). Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Critical Reviews in Biotechnology, 20(4), 293–334. https://doi.org/10.1080/07388550091144212
  • Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.
  • Singleton, V., & Rossi, A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16(3), 144–158. http://www.ajevonline.org/content/16/3/144
  • Valiati, B. S., Lepaus, B. M., Domingos, M. M., Silva, M. N., de Souza Vieira, M., & de São José, J. F. B. (2022). Application of ultrasound in food processing. Research and Technological Advances in Food Science, 407–423. https://doi.org/10.1016/B978-0-12-824369-5.00011-7
  • Vani, B., Kalyani, S., Pabba, M., & Sridhar, S. (2021). Forward osmosis aided concentration of lycopene carotenoid from watermelon juice. Journal of Chemical Technology & Biotechnology, 96(7), 1960–1973. https://doi.org/10.1002/JCTB.6720
  • Wang, J., Vanga, S. K., & Raghavan, V. (2019). High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT, 107, 299–307. https://doi.org/10.1016/j.lwt.2019.03.024
  • Wang, J., Wang, J., Ye, J., Vanga, S. K., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007
  • Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. Journal of Food Measurement and Characterization, 14(3), 1417–1426. https://doi.org/10.1007/s11694-020-00391-7
  • Yıkmış, S., Aksu, F., Altunatmaz, S. S., & Çöl, B. G. (2021). Ultrasound Processing of Vinegar: Modelling the Impact on Bioactives and Other Quality Factors. Foods, 10(8), 1703. https://doi.org/10.3390/FOODS10081703
  • Yıkmış, S., Aksu, H., Çöl, B. G., & Alpaslan, M. (2019). Thermosonication processing of quince (Cydonia Oblonga) juice: Effects on total phenolics, ascorbic acid, antioxidant capacity, color and sensory properties. Ciência e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943019919
  • Zafra-Rojas, Q. Y., Cruz-Cansino, N., Ramírez-Moreno, E., Delgado-Olivares, L., Villanueva-Sánchez, J., & Alanís-García, E. (2013). Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrasonics Sonochemistry, 20(5), 1283–1288. https://doi.org/10.1016/J.ULTSONCH.2013.01.021
  • Zamuz, S., Munekata, P. E., Gullón, B., Rocchetti, G., Montesano, D., & Lorenzo, J. M. (2021). Citrullus lanatus as source of bioactive components: An up-to-date review. Trends in Food Science & Technology, 111, 208-222.
  • Zhang, W., Yu, Y., Xie, F., Gu, X., Wu, J., & Wang, Z. (2019). High pressure homogenization versus ultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids. Lwt, 116, 108597.
Year 2022, , 113 - 119, 31.08.2022
https://doi.org/10.55507/gopzfd.1138189

Abstract

References

  • Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206. https://doi.org/10.1016/J.FOODCHEM.2013.06.008
  • Aadil, R. M., Zeng, X. A., Wang, M. S., Liu, Z. W., Han, Z., Zhang, Z. H., ... & Jabbar, S. (2015). A potential of ultrasound on minerals, micro‐organisms, phenolic compounds and colouring pigments of grapefruit juice. International Journal of Food Science & Technology, 50(5), 1144-1150.
  • Alijan, S., Hosseini, M., Khosravi-Darani, K., & Esmaeili, S. (2021). Impact of Ultrasound and Medium Condition on Selenium-Enriched Yeast Production from Sugar Beet Molasses and Date Waste. Available at SSRN 3877919.
  • AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists (15th ed.).
  • Atalar, I., Saricaoglu, F. T., Odabas, H. I., Yilmaz, V. A., & Gul, O. (2020). Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar. LWT, 118, 108850.
  • Bang, H., Kim, S., Leskovar, D., & King, S. (2007). Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Molecular Breeding, 20(1), 63-72.
  • Bang, H., Davis, A. R., Kim, S., Leskovar, D. I., & King, S. R. (2010). Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. Journal of the American Society for Horticultural Science, 135(4), 362-368.
  • Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in the application of ultrasound in food processing: A review. In Ultrasonics Sonochemistry (Vol. 70, p. 105293). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2020.105293
  • Bindes, M. M. M., Reis, M. H. M., Cardoso, V. L., & Boffito, D. C. (2019). Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrasonics sonochemistry, 51, 111-119.
  • Campoli, S. S., Rojas, M. L., do Amaral, J. E. P. G., Canniatti-Brazaca, S. G., & Augusto, P. E. D. (2018). Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chemistry, 268, 594–601. https://doi.org/10.1016/j.foodchem.2018.06.127
  • Dall’Asta, M., Barbato, M., Rocchetti, G., Rossi, F., Lucini, L., Marsan, P. A., & Colli, L. (2022). Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Current Opinion in Food Science, 100880. https://doi.org/10.1016/J.COFS.2022.100880
  • Debelo, H., Li, M., & Ferruzzi, M. G. (2020). Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 32, 90–102. https://doi.org/10.1016/J.COFS.2020.03.001
  • De Souza Carvalho, L.M., Lemos, M.C.M., Sanches, E.A.et al. (2020). Improvement of the bioaccessibility of bioactive com-pounds from Amazon fruits treated using high energy ultrasound.Ultrasonics Sonochemistry,67, 105148.
  • Doguer, C., Yıkmış, S., Levent, O., & Turkol, M. (2021). Anticancer effects of enrichment in the bioactive components of the functional beverage of Turkish gastronomy by supplementation with purple basil (Ocimum basilicum L.) and the ultrasound treatment. Journal of Food Processing and Preservation, 45(5), e15436. https://doi.org/10.1111/JFPP.15436
  • Erdal, B., Yıkmış, S., Demirok, N. T., Bozgeyik, E., & Levent, O. (2022). Effects of Non-Thermal Treatment on Gilaburu Vinegar (Viburnum opulus L.): Polyphenols, Amino Acid, Antimicrobial, and Anticancer Properties. Biology 2022, Vol. 11, Page 926, 11(6), 926. https://doi.org/10.3390/BIOLOGY11060926
  • Fan, K., Wu, J., & Chen, L. (2021). Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrasonics Sonochemistry, 80, 105838. https://doi.org/10.1016/J.ULTSONCH.2021.105838
  • Fehér, T. (1993). Watermelon: Citrullus lanatus (Thunb.) Matsum. & Nakai. Genetic improvement of vegetable crops, 295-311.
  • Grajeda-Iglesias, C., Salas, E., Barouh, N., Baréa, B., Panya, A., & Figueroa-Espinoza, M. C. (2016). Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chemistry, 194, 749–757. https://doi.org/10.1016/j.foodchem.2015.07.119
  • Kwaw, E., Ma, Y., Tchabo, W., Sackey, A. S., Apaliya, M. T., Xiao, L., Wu, M., & Sarpong, F. (2018). Ultrasonication effects on the phytochemical, volatile and sensorial characteristics of lactic acid fermented mulberry juice. Food Bioscience, 24, 17–25. https://doi.org/10.1016/j.fbio.2018.05.004
  • Margean, A., Lupu, M. I., Alexa, E., Padureanu, V., Canja, C. M., Cocan, I., Negrea, M., Calefariu, G., & Poiana, M. A. (2020). An Overview of Effects Induced by Pasteurization and High-Power Ultrasound Treatment on the Quality of Red Grape Juice. Molecules 2020, Vol. 25, Page 1669, 25(7), 1669. https://doi.org/10.3390/MOLECULES25071669
  • Lee, W. C., Yusof, S. A. L. M. A. H., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of food Engineering, 73(1), 55-63.
  • Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., & Sáyago-Ayerdi, S. G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience, 21, 125-131.
  • Olayinka, B. U., & Etejere, E. O. (2018). Proximate and Chemical Compositions of Watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai cv Red and Cucumber (Cucumis sativus L. cv Pipino). International Food Research Journal, 25(3).
  • Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chemistry, 115(4), 1312–1319. https://doi.org/10.1016/J.FOODCHEM.2009.01.049
  • Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/J.FOODCHEM.2017.04.114
  • Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282. https://doi.org/10.1016/J.ULTSONCH.2013.02.005
  • Santos, D. I., Saraiva, J. M. A., Vicente, A. A., & Moldão-Martins, M. (2019). Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds (pp. 23-54). Woodhead Publishing.
  • Seyed, M. R., & Elnaz, M. (2006). Some physical properties of the watermelon seeds. African Journal of Agricultural Research, 1(3), 065-069.
  • Shi, J., & Le Maguer, M. (2000). Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Critical Reviews in Biotechnology, 20(4), 293–334. https://doi.org/10.1080/07388550091144212
  • Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.
  • Singleton, V., & Rossi, A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16(3), 144–158. http://www.ajevonline.org/content/16/3/144
  • Valiati, B. S., Lepaus, B. M., Domingos, M. M., Silva, M. N., de Souza Vieira, M., & de São José, J. F. B. (2022). Application of ultrasound in food processing. Research and Technological Advances in Food Science, 407–423. https://doi.org/10.1016/B978-0-12-824369-5.00011-7
  • Vani, B., Kalyani, S., Pabba, M., & Sridhar, S. (2021). Forward osmosis aided concentration of lycopene carotenoid from watermelon juice. Journal of Chemical Technology & Biotechnology, 96(7), 1960–1973. https://doi.org/10.1002/JCTB.6720
  • Wang, J., Vanga, S. K., & Raghavan, V. (2019). High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT, 107, 299–307. https://doi.org/10.1016/j.lwt.2019.03.024
  • Wang, J., Wang, J., Ye, J., Vanga, S. K., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007
  • Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. Journal of Food Measurement and Characterization, 14(3), 1417–1426. https://doi.org/10.1007/s11694-020-00391-7
  • Yıkmış, S., Aksu, F., Altunatmaz, S. S., & Çöl, B. G. (2021). Ultrasound Processing of Vinegar: Modelling the Impact on Bioactives and Other Quality Factors. Foods, 10(8), 1703. https://doi.org/10.3390/FOODS10081703
  • Yıkmış, S., Aksu, H., Çöl, B. G., & Alpaslan, M. (2019). Thermosonication processing of quince (Cydonia Oblonga) juice: Effects on total phenolics, ascorbic acid, antioxidant capacity, color and sensory properties. Ciência e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943019919
  • Zafra-Rojas, Q. Y., Cruz-Cansino, N., Ramírez-Moreno, E., Delgado-Olivares, L., Villanueva-Sánchez, J., & Alanís-García, E. (2013). Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrasonics Sonochemistry, 20(5), 1283–1288. https://doi.org/10.1016/J.ULTSONCH.2013.01.021
  • Zamuz, S., Munekata, P. E., Gullón, B., Rocchetti, G., Montesano, D., & Lorenzo, J. M. (2021). Citrullus lanatus as source of bioactive components: An up-to-date review. Trends in Food Science & Technology, 111, 208-222.
  • Zhang, W., Yu, Y., Xie, F., Gu, X., Wu, J., & Wang, Z. (2019). High pressure homogenization versus ultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids. Lwt, 116, 108597.
There are 41 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Okan Levent 0000-0003-0415-0308

Doç. Dr. .seydi Yıkmış 0000-0001-8694-0658

Nazan Tokatlı Demirok 0000-0003-1936-9337

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Levent, O., Yıkmış, D. D. .., & Tokatlı Demirok, N. (2022). Optimization of Bioactive Components in Fresh Red Watermelon Juice of Ultrasound Assisted Extraction Conditions With Response Surface Methodology. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 39(2), 113-119. https://doi.org/10.55507/gopzfd.1138189