Derleme
BibTex RIS Kaynak Göster

Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü

Yıl 2025, Cilt: 6 Sayı: 1, 74 - 84, 29.05.2025
https://doi.org/10.63716/guffd.1617231

Öz

Embriyo ve maternal faktörler arasındaki sıkı ilişki sağlıklı bir gebelik süreci için oldukça önemlidir. Bu noktada uterus, sağlıklı bir embriyonun gelişimine devam etmesi ya da ortadan kaldırılması için embriyoyu indüklerken, embriyo endometriyuma tutunmaya, endometriyum içine yayılmaya ve maternal immünolojik etkilere karşı hayatta kalmaya çalışmaktadır. İmplantasyon, desidual reaksiyon ve plasentasyon olayları çok sayıda sinyal yolunun birbirleri ile etkileştiği kompleks bir süreçle kontrol edilmektedir. Wnt/beta-katenin sinyal yolu da bu gelişimsel olaylarda rol oynadığı belirlenen evrimsel olarak korunmuş bir sinyal yoludur. Son bulgular, Wnt/beta-katenin sinyalindeki anormalliklerin implantasyon başarısızlığı, anormal plasenta gelişimi ve preeklampsi gibi üreme bozukluklarına katkıda bulunabileceğini göstermektedir. Bu sebeple derlememizde erişkin ve embriyonik dönemde hücre proliferasyonu, farklılaşması, adezyonu ve hücre göçü gibi çeşitli biyolojik süreçlerdeki etkisi olan Wnt/beta-katenin sinyal yolunun preimplantasyon, implantasyon, desidual reaksiyon ve plasentasyondaki rolünün literatür bilgileri eşliğinde açıklanması ve ortaya konulması amaçlanmıştır. Böylece bu derleme, Wnt/beta-Katenin sinyal yolunun üreme sürecindeki kritik rolünü daha iyi anlamamıza katkı sağlayarak, bu yoldaki bozukluklarla ilişkili komplikasyonların tanı ve tedavisinde yeni stratejilerin geliştirilmesine ışık tutmayı amaçlamaktadır.

Kaynakça

  • Klaus, A., and Birchmeier, W. (2008). Wnt signalling and its impact on development and cancer. Nature Reviews Cancer, 8(5), 387–398. https://doi.org/10.1038/nrc2389
  • Nusse, R., and Clevers, H. (2017). Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell, 169, 985–999. https://doi.org/10.1016/J.CELL.2017.05.016
  • Cadigan, K. M., and Waterman, M. L. (2012). TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor Perspectives in Biology, 4(11), a007906. https://doi.org/10.1101/cshperspect.a007906
  • Shitashige, M., Hirohashi, S., and Yamada, T. (2008). Wnt signaling inside the nucleus. Cancer Science, 99(4), 631–637. https://doi.org/10.1111/j.1349-7006.2007.00716.x
  • Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., Zhou, Z., Shu, G., and Yin, G. (2022). Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy, 7(1), 3. https://doi.org/10.1038/s41392-021-00762-6
  • de Winter, T. J. J., and Nusse, R. (2021). Running against the Wnt: How Wnt/β-Catenin suppresses adipogenesis. Frontiers in Cell and Developmental Biology, 9, 627429. https://doi.org/10.3389/fcell.2021.6274297.
  • Olsen, J. J., Pohl, S. Ö., Deshmukh, A., Visweswaran, M., Ward, N. C., Arfuso, F., Agostino, M., and Dharmarajan, A. (2017). The role of Wnt signalling in angiogenesis. The Clinical Biochemist Reviews, 38(3), 131–142.
  • Donmez, H. G., Demirezen, S., and Beksac, M. S. (2016). The relationship between beta-catenin and apoptosis: A cytological and immunocytochemical examination. Tissue & Cell, 48(3), 160–167. https://doi.org/10.1016/j.tice.2016.04.001
  • Chong, J. M., Uren, A., Rubin, J. S., and Speicher, D. W. (2002). Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules. The Journal of Biological Chemistry, 277(7), 5134–5144. https://doi.org/10.1074/jbc.M108533200
  • Li, N., Wei, L., Liu, X., Bai, H., Ye, Y., Li, D., Li, N., Baxa, U., Wang, Q., Lv, L., Chen, Y., Feng, M., Lee, B., Gao, W., and Ho, M. (2019). A Frizzled-Like Cysteine-Rich Domain in Glypican-3 mediates Wnt binding and regulates hepatocellular carcinoma tumor growth in mice. Hepatology, 70(4), 1231–1245. https://doi.org/10.1002/hep.30646
  • Zhang, X., MacDonald, B. T., Gao, H., Shamashkin, M., Coyle, A. J., Martinez, R. V., and He, X. (2016). Characterization of Tiki, a new family of Wnt-specific metalloproteases. The Journal of Biological Chemistry, 291(5), 2435–2443. https://doi.org/10.1074/jbc.M115.677807
  • Kakugawa, S., Langton, P. F., Zebisch, M., Howell, S., Chang, T. H., Liu, Y., Feizi, T., Bineva, G., O'Reilly, N., Snijders, A. P., Jones, E. Y., and Vincent, J. P. (2015). Notum deacylates Wnt proteins to suppress signalling activity. Nature, 519(7542), 187–192. https://doi.org/10.1038/nature14259
  • Zhang, B., and Ma, J. X. (2010). Wnt pathway antagonists and angiogenesis. Protein & Cell, 1(10), 898–906. https://doi.org/10.1007/s13238-010-0112-0
  • Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., and Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(Pt 6), 737–746. https://doi.org/10.1242/jcs.026096
  • Kawano, Y., and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. Journal of Cell Science, 116(Pt 13), 2627–2634. https://doi.org/10.1242/jcs.00623
  • Schmidt, O., Brückner, M., and Bernkopf, D. B. (2025). AXIN2 promotes degradation of AXIN1 through tankyrase in colorectal cancer cells. The FEBS journal, 292(5), 1019–1033. https://doi.org/10.1111/febs.17226
  • Xu, X., Zhang, M., Xu, F., and Jiang, S. (2020). Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Molecular Cancer, 19(1), 165. https://doi.org/10.1186/s12943-020-01276-5
  • Ely, K. A., Bischoff, L. A., and Weiss, V. L. (2018). Wnt signaling in thyroid homeostasis and carcinogenesis. Genes, 9(4), 204. https://doi.org/10.3390/genes9040204
  • Han, R., Yang, J., Zhu, Y., and Gan, R. (2024). Wnt signaling in gastric cancer: current progress and future prospects. Frontiers in Oncology, 14, 1410513. https://doi.org/10.3389/fonc.2024.1410513
  • Ruan, Y., Kim, H. N., Ogana, H., and Kim, Y. M. (2020). Wnt Signaling in leukemia and its bone marrow microenvironment. International Journal of Molecular Sciences, 21(17), 6247. https://doi.org/10.3390/ijms21176247
  • Niemann, S., Zhao, C., Pascu, F., Stahl, U., Aulepp, U., Niswander, L., Weber, J. L., and Müller, U. (2004). Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. American Journal of Human Genetics, 74(3), 558–563. https://doi.org/10.1086/382196
  • Shin D. W. (2022). The molecular mechanism of natural products activating Wnt/β-Catenin Signaling Pathway for improving hair loss. Life, 12(11), 1856. https://doi.org/10.3390/life12111856
  • Zhao, S. J., Jia, H., Xu, X. L., Bu, W. B., Zhang, Q., Chen, X., Ji, J., and Sun, J. F. (2021). Identification of the role of Wnt/β-Catenin Pathway through integrated analyses and in vivo experiments in vitiligo. Clinical, Cosmetic and Investigational Dermatology, 14, 1089–1103. https://doi.org/10.2147/CCID.S319061
  • Sun, Q., Rabbani, P., Takeo, M., Lee, S. H., Lim, C. H., Noel, E. S., Taketo, M. M., Myung, P., Millar, S., and Ito, M. (2018). Dissecting Wnt signaling for melanocyte regulation during wound healing. The Journal of Investigative Dermatology, 138(7), 1591–1600. https://doi.org/10.1016/j.jid.2018.01.030
  • Lai, J., Yang, H., Huang, J., and He, L. (2024). Investigating the impact of Wnt pathway-related genes on biomarker and diagnostic model development for osteoporosis in postmenopausal females. Scientific Reports, 14(1), 2880. https://doi.org/10.1038/s41598-024-52429-1
  • Libro, R., Bramanti, P., and Mazzon, E. (2016). The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sciences, 158, 78–88. https://doi.org/10.1016/j.lfs.2016.06.024
  • Zhang, Z., Wang, X., Zhang, L., Shi, Y., Wang, J., and Yan, H. (2017). Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Molecular Medicine Reports, 16(2), 1007–1013. https://doi.org/10.3892/mmr.2017.6718
  • Chen, L., Wang, J., Fan, X., Zhang, Y., Zhoua, M., Li, X., and Wang, L. (2021). LASP2 inhibits trophoblast cell migration and invasion in preeclampsia through inactivation of the Wnt/β-catenin signaling pathway. Journal of Receptor and Signal Transduction Research, 41(1), 67–73. https://doi.org/10.1080/10799893.2020.1787444
  • Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., Czerwenka, K., Husslein, P., and Knöfler, M. (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. The American Journal of Pathology, 168(4), 1134–1147. https://doi.org/10.2353/ajpath.2006.050686
  • Chronopoulou, E., Koika, V., Tsiveriotis, K., Stefanidis, K., Kalogeropoulos, S., Georgopoulos, N., Adonakis, G., and Kaponis, A. (2022). Wnt4, Wnt6 and β-catenin expression in human placental tissue - is there a link with first trimester miscarriage? Results from a pilot study. Reproductive Biology and Endocrinology, 20(1), 51. https://doi.org/10.1186/s12958-022-00923-4
  • Li, N., Li, S., Wang, Y., Wang, J., Wang, K., Liu, X., Li, Y., and Liu, J. (2017). Decreased expression of WNT2 in villi of unexplained recurrent spontaneous abortion patients may cause trophoblast cell dysfunction via downregulated Wnt/β-catenin signaling pathway. Cell Biology International, 41(8), 898–907. https://doi.org/10.1002/cbin.10807
  • Schulz, K. N., and Harrison, M. M. (2019). Mechanisms regulating zygotic genome activation. Nature Reviews Genetics, 20(4), 221–234. https://doi.org/10.1038/s41576-018-0087-x
  • Bettegowda, A., Smith, G. W. (2007). Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Frontiers in Bioscience, 12, 3713–3726. https://doi.org/10.2741/2346
  • Kemp, C. R., Hendrickx, M., Willems, E., Wawrzak, D., Metioui, M., and Leyns, L. (2007). The roles of Wnt signaling in early mouse development and embryonic stem cells. Functional Development and Embryolology, 1, 1–13.
  • Tepekoy, F., Akkoyunlu, G., and Demir, R. (2015). The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. Journal of Assisted Reproduction and Genetics, 32(3), 337–346. https://doi.org/10.1007/s10815-014-0409-7
  • Harwood, B. N., Cross, S. K., Radford, E. E., Haac, B. E., and De Vries, W. N. (2008). Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Developmental Dynamics, 237(4), 1099–1111. https://doi.org/10.1002/dvdy.21491
  • Mohamed, O. A., Clarke, H. J., and Dufort, D. (2004). Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Developmental Dynamics, 231(2), 416–424. https://doi.org/10.1002/dvdy.20135
  • Xie, H., Tranguch, S., Jia, X., Zhang, H., Das, S. K., Dey, S. K., Kuo, C. J., and Wang, H. (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development, 135(4), 717–727. https://doi.org/10.1242/dev.015339
  • ten Berge, D., Kurek, D., Blauwkamp, T., Koole, W., Maas, A., Eroglu, E., Siu, R. K., and Nusse, R. (2011). Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biology, 13(9), 1070–1075. https://doi.org/10.1038/ncb2314
  • De Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., Solter, D., and Knowles, B. B. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131(18), 4435–4445. https://doi.org/10.1242/dev.01316
  • Krivega, M., Essahib, W., and Van de Velde, H. (2015). WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Molecular Human Reproduction, 21(9), 711–722. https://doi.org/10.1093/molehr/gav036
  • Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C., and Birchmeier, W. (2000). Requirement for beta-catenin in anterior-posterior axis formation in mice. The Journal of Cell Biology, 148(3), 567–578. https://doi.org/10.1083/jcb.148.3.567
  • Kelly, O. G., Pinson, K. I., and Skarnes, W. C. (2004). The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development, 131(12), 2803–2815. https://doi.org/10.1242/dev.01137
  • Large, M. J., and DeMayo, F. J. (2012). The regulation of embryo implantation and endometrial decidualization by progesterone receptor signaling. Molecular and Cellular Endocrinology, 358(2), 155–165. https://doi.org/10.1016/j.mce.2011.07.027
  • Shibata, S., Endo, S., Nagai, L. A. E., H Kobayashi, E., Oike, A., Kobayashi, N., Kitamura, A., Hori, T., Nashimoto, Y., Nakato, R., Hamada, H., Kaji, H., Kikutake, C., Suyama, M., Saito, M., Yaegashi, N., Okae, H., and Arima, T. (2024). Modeling embryo-endometrial interface recapitulating human embryo implantation. Science Advances, 10(8), eadi4819. https://doi.org/10.1126/sciadv.adi4819
  • Wang, H., and Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nature Reviews Genetics, 7(3), 185–199. https://doi.org/10.1038/nrg1808
  • Yoshinaga K. (2018). A historical review of blastocyst implantation research. Biology of Reproduction, 99(1), 175–195. https://doi.org/10.1093/biolre/ioy093
  • Edwards R. G. (1988). Human uterine endocrinology and the implantation window. Annals of the New York Academy of Sciences, 541, 445–454. https://doi.org/10.1111/j.1749-6632.1988.tb22281.x
  • Gupta, S. K., Malhotra, S. S., Malik, A., Verma, S., and Chaudhary, P. (2016). Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. American Journal of Reproductive Immunology, 75(3), 361–371. https://doi.org/10.1111/aji.12436
  • Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., and Dufort, D. (2005). Uterine Wnt/beta-catenin signaling is required for implantation. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8579–8584. https://doi.org/10.1073/pnas.0500612102
  • de Jaime-Soguero, A., Abreu de Oliveira, W. A., and Lluis, F. (2018). The pleiotropic effects of the Canonical Wnt Pathway in early development and pluripotency. Genes, 9(2), 93. https://doi.org/10.3390/genes9020093
  • Fritz, R., Jain, C., and Armant, D. R. (2014). Cell signaling in trophoblast-uterine communication. The International Journal of Developmental Biology, 58(2-4), 261–271. https://doi.org/10.1387/ijdb.140011da
  • Catalano, R. D., Critchley, H. O., Heikinheimo, O., Baird, D. T., Hapangama, D., Sherwin, J. R., Charnock-Jones, D. S., Smith, S. K., and Sharkey, A. M. (2007). Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Molecular Human Reproduction, 13(9), 641–654. https://doi.org/10.1093/molehr/gam021
  • Hayashi, K., Erikson, D. W., Tilford, S. A., Bany, B. M., Maclean, J. A., 2nd, Rucker, E. B., 3rd, Johnson, G. A., and Spencer, T. E. (2009). Wnt genes in the mouse uterus: potential regulation of implantation. Biology of Reproduction, 80(5), 989–1000. https://doi.org/10.1095/biolreprod.108.075416
  • Okada, H., Tsuzuki, T., and Murata, H. (2018). Decidualization of the human endometrium. Reproductive Medicine and Biology, 17(3), 220–227. https://doi.org/10.1002/rmb2.12088
  • Garrido-Gomez, T., Dominguez, F., Quiñonero, A., Diaz-Gimeno, P., Kapidzic, M., Gormley, M., Ona, K., Padilla-Iserte, P., McMaster, M., Genbacev, O., Perales, A., and Fisher, S. J., Simón, C. (2017). Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proceedings of the National Academy of Sciences of the United States of America, 114(40), E8468–E8477. https://doi.org/10.1073/pnas.1706546114
  • Gellersen, B., and Brosens, J. J. (2014). Cyclic decidualization of the human endometrium in reproductive health and failure. Endocrine Reviews, 35(6), 851–905. https://doi.org/10.1210/er.2014-1045
  • Large, M. J., and DeMayo, F. J. (2012). The regulation of embryo implantation and endometrial decidualization by progesterone receptor signaling. Molecular and Cellular Endocrinology, 358(2), 155–165. https://doi.org/10.1016/j.mce.2011.07.027
  • Tulac, S., Overgaard, M. T., Hamilton, A. E., Jumbe, N. L., Suchanek, E., and Giudice, L. C. (2006). Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. The Journal of Clinical Endocrinology and Metabolism, 91(4), 1453–1461. https://doi.org/10.1210/jc.2005-0769
  • Franco, H. L., Dai, D., Lee, K. Y., Rubel, C. A., Roop, D., Boerboom, D., Jeong, J. W., Lydon, J. P., Bagchi, I. C., Bagchi, M. K., and DeMayo, F. J. (2011). WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB Journal, 25(4), 1176–1187. https://doi.org/10.1096/fj.10-175349
  • Hess, A. P., Hamilton, A. E., Talbi, S., Dosiou, C., Nyegaard, M., Nayak, N., Genbecev-Krtolica, O., Mavrogianis, P., Ferrer, K., Kruessel, J., Fazleabas, A. T., Fisher, S. J., and Giudice, L. C. (2007). Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biology of Reproduction, 76(1), 102–117. https://doi.org/10.1095/biolreprod.106.054791
  • Wang, Y., Hanifi-Moghaddam, P., Hanekamp, E. E., Kloosterboer, H. J., Franken, P., Veldscholte, J., van Doorn, H. C., Ewing, P. C., Kim, J. J., Grootegoed, J. A., Burger, C. W., Fodde, R., and Blok, L. J. (2009). Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clinical Cancer Research, 15(18), 5784–5793. https://doi.org/10.1158/1078-0432.CCR-09-0814
  • Tulac, S., Nayak, N. R., Kao, L. C., Van Waes, M., Huang, J., Lobo, S., Germeyer, A., Lessey, B. A., Taylor, R. N., Suchanek, E., and Giudice, L. C. (2003). Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. The Journal of Clinical Endocrinology and Metabolism, 88(8), 3860–3866. https://doi.org/10.1210/jc.2003-030494
  • Bui, T. D., Zhang, L., Rees, M. C., Bicknell, R., and Harris, A. L. (1997). Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. British Journal of Cancer, 75(8), 1131–1136. https://doi.org/10.1038/bjc.1997.195
  • Chavatte-Palmer, P., and Tarrade, A. (2016). Placentation in different mammalian species. Annales D'endocrinologie, 77(2), 67–74. https://doi.org/10.1016/j.ando.2016.04.006
  • Knöfler, M., and Pollheimer, J. (2013). Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Frontiers in Genetics, 4, 190. https://doi.org/10.3389/fgene.2013.00190
  • Sonderegger, S., Haslinger, P., Sabri, A., Leisser, C., Otten, J. V., Fiala, C., and Knöfler, M. (2010). Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology, 151(1), 211–220. https://doi.org/10.1210/en.2009-0557
  • Sonderegger, S., Husslein, H., Leisser, C., and Knöfler, M. (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta, 28 Suppl A(Suppl A), S97–S102. https://doi.org/10.1016/j.placenta.2006.11.003
  • Novakovic, B., Rakyan, V., Ng, H. K., Manuelpillai, U., Dewi, C., Wong, N. C., Morley, R., Down, T., Beck, S., Craig, J. M., and Saffery, R. (2008). Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Molecular Human Reproduction, 14(9), 547–554. https://doi.org/10.1093/molehr/gan046
  • Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., and Wainwright, B. J. (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development, 122(11), 3343–3353. https://doi.org/10.1242/dev.122.11.3343
  • Herr, F., Horndasch, M., Howe, D., Baal, N., Goyal, P., Fischer, S., Zygmunt, M., and Preissner, K. T. (2014). Human placenta-derived Wnt-5a induces the expression of ICAM-1 and VCAM-1 in CD133(+)CD34(+)-hematopoietic progenitor cells. Reproductive Biology, 14(4), 262–275. https://doi.org/10.1016/j.repbio.2014.08.001
  • Newman, A. C., and Hughes, C. C. (2012). Macrophages and angiogenesis: a role for Wnt signaling. Vascular Cell, 4(1), 13. https://doi.org/10.1186/2045-824X-4-13
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hücre Gelişimi, Proliferasyon ve Ölümü, Sinyal İletimi
Bölüm Derlemeler
Yazarlar

Hanife Güler Dönmez 0000-0002-7413-4939

M.sinan Beksac 0000-0001-6362-787X

Yayımlanma Tarihi 29 Mayıs 2025
Gönderilme Tarihi 10 Ocak 2025
Kabul Tarihi 20 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Dönmez, H. G., & Beksac, M. (2025). Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(1), 74-84. https://doi.org/10.63716/guffd.1617231
AMA Dönmez HG, Beksac M. Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü. GÜFFD. Mayıs 2025;6(1):74-84. doi:10.63716/guffd.1617231
Chicago Dönmez, Hanife Güler, ve M.sinan Beksac. “Wnt/Beta-Katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon Ve Plasentasyondaki Kritik Rolü”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, sy. 1 (Mayıs 2025): 74-84. https://doi.org/10.63716/guffd.1617231.
EndNote Dönmez HG, Beksac M (01 Mayıs 2025) Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü. Gazi Üniversitesi Fen Fakültesi Dergisi 6 1 74–84.
IEEE H. G. Dönmez ve M. Beksac, “Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü”, GÜFFD, c. 6, sy. 1, ss. 74–84, 2025, doi: 10.63716/guffd.1617231.
ISNAD Dönmez, Hanife Güler - Beksac, M.sinan. “Wnt/Beta-Katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon Ve Plasentasyondaki Kritik Rolü”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/1 (Mayıs 2025), 74-84. https://doi.org/10.63716/guffd.1617231.
JAMA Dönmez HG, Beksac M. Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü. GÜFFD. 2025;6:74–84.
MLA Dönmez, Hanife Güler ve M.sinan Beksac. “Wnt/Beta-Katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon Ve Plasentasyondaki Kritik Rolü”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 6, sy. 1, 2025, ss. 74-84, doi:10.63716/guffd.1617231.
Vancouver Dönmez HG, Beksac M. Wnt/Beta-katenin Sinyal Yolunun Preimplantasyon, İmplantasyon, Desidualizasyon ve Plasentasyondaki Kritik Rolü. GÜFFD. 2025;6(1):74-8.