Derleme
BibTex RIS Kaynak Göster

Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler

Yıl 2025, Cilt: 6 Sayı: 2, 343 - 374, 29.11.2025
https://doi.org/10.63716/guffd.1768168

Öz

Son yıllarda, immün hücrelerin tümör organoidleri ile birlikte kültürlenmesine yönelik artan bir ilgi bulunmaktadır. Bu yaklaşım, tümörler ile immün sistem arasındaki karmaşık etkileşimlere dair önemli bilgiler elde edilmesini sağlamıştır. Bu çalışmada, tümör mikro çevresi içerisinde yer alan immün hücrelerle olan etkileşimlerin modellenmesine yönelik olarak geliştirilen tümör–immün sistem hücresi organoidlerine dair mevcut gelişmeler ele alınmaktadır. Tümörün oluşumu, tümör mikro çevresinin temel bileşenleri ve bu çevrede yer alan başlıca immün hücre türleri hakkında genel bir çerçeve sunulmuştur. Özellikle hücre dışı matriksin biyokimyasal ve mekanik özelliklerinin; hücreler arası sinyalleşme, hücre göçü ve immün hücrelerin tümöre erişimi üzerindeki etkileri değerlendirilmektedir. Üç boyutlu kültür yöntemleriyle oluşturulan organoid modellerin geliştirilmesi, hastadan türetilmiş örneklerin kullanımı ve organ-on-a-chip gibi ileri teknolojilere dayalı yaklaşımlar sayesinde, tümör–immün sistem etkileşimlerinin daha fizyolojik koşullarda modellenmesi mümkün hale gelmektedir. Son olarak, bu modellerin klinik araştırmalarda kullanımı, tümör biyolojisinin anlaşılmasına katkıları ve gelecekteki potansiyel uygulama alanları tartışılmaktadır.

Kaynakça

  • Boutry, J., Tissot, S., Ujvari, B., Capp, J. P., Giraudeau, M., Nedelcu, A. M., et al. (2022). The evolution and ecology of benign tumors. Biochimica et Biophysica Acta Reviews on Cancer, 1877. https://doi.org/10.1016/j.bbcan.2021.188643.
  • Peña-Romero, A. C., and Orenes-Piñero, E. (2022). Dual effect of immune cells within tumour microenvironment: Pro- and anti-tumour effects and their triggers. Cancers (Basel), 14. https://doi.org/10.3390/cancers14071681.
  • Jeong, S. R., and Kang, M. (2023). Exploring tumor–immune interactions in co-culture models of T cells and tumor organoids derived from patients. International Journal of Molecular Sciences, 24, 14609. https://doi.org/10.3390/ijms241914609.
  • Arneth, B. (2019). Tumor microenvironment. Medicina, 56, 15. https://doi.org/10.3390/medicina56010015.
  • Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., et al. (2018). Organoid modeling of the tumor immune microenvironment. Cell, 175, 1972–1988.e16. https://doi.org/10.1016/j.cell.2018.11.021.
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., and Pienta, K. J. (2023). Updating the Definition of Cancer. Molecular Cancer Research, 21, 1142–1147. https://doi.org/10.1158/1541-7786.MCR-23-0411/727658/AM/UPDATING-THE-DEFINITION-OF-CANCERUPDATING-THE.
  • Feitelson, M. A., Arzumanyan, A., Kulathinal, R. J., Blain, S. W., Holcombe, R. F., Mahajna, J., et al. (2015). Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology, 35, S25–S54. https://doi.org/10.1016/J.SEMCANCER.2015.02.006.
  • Maniam, S., and Maniam, S. (2020). Cancer Cell Metabolites: Updates on Current Tracing Methods. ChemBioChem, 21, 3476–3488. https://doi.org/10.1002/CBIC.202000290.
  • Arı, M., Öğüt, S., Kaçar Döğer, F., Yazar, S., ve Adnan Menderes Üniversitesi Tıp Fakültesi Tıbbi Biyokimya Anabilim Dalı. (2017). Kanserin önlenmesinde antioksidanların rolü. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 1(2), 67–74. https://dergipark.org.tr/tr/pub/amusbfd/issue/31082/337211
  • Menendez, J. A., and Alarcón, T. (2014). Metabostemness: A new cancer hallmark. Frontiers in Oncology, 4, 112448. https://doi.org/10.3389/FONC.2014.00262/BIBTEX.
  • Hanahan, D., and Weinberg, R. A. (2000). The Hallmarks of Cancer. Cell, 100, 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9.
  • Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144, 646–674. https://doi.org/10.1016/J.CELL.2011.02.013.
  • Topal, T., and Tosun, İ. (2025). Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 6, 113–130. https://doi.org/10.63716/GUFFD.1594101
  • Anderson, N. M., and Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30, R921–R925. https://doi.org/10.1016/J.CUB.2020.06.081.
  • Zhao, Y., Shen, M., Wu, L., Yang, H., Yao, Y., Yang, Q., Du, J., Liu, L., Li, Y., and Bai, Y. (2023). Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death & Disease, 14(9), 1–24. https://doi.org/10.1038/s41419-023-06110-6
  • Patel, A. (2020). Benign vs Malignant Tumors. JAMA Oncology, 6. https://doi.org/10.1001/jamaoncol.2020.2592.
  • Wang, B., Hu, S., Teng, Y., Chen, J., Wang, H., Xu, Y., et al. (2024). Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduction and Targeted Therapy, 9, 1–65. https://doi.org/10.1038/s41392-024-01889-y.
  • Lüönd, F., Tiede, S., and Christofori, G. (2021). Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 125. https://doi.org/10.1038/s41416-021-01328-7.
  • Eskiizmir, G. (2015). Tumor Microenvironment in Head and Neck Squamous Cell Carcinomas. Turkish Archives of Otorhinolaryngology, 53, 120. https://doi.org/10.5152/TAO.2015.1065.
  • Voena, C., and Chiarle, R. (2016). Advances in Cancer Immunology and Cancer Immunotherapy. Discovery Medicine, 21, 125–133.
  • Prendergast, G. C., and Jaffee, E. M. (2007). Cancer immunologists and cancer biologists: Why we didn’t talk then but need to now. Cancer Research, 67, 3500–3504. https://doi.org/10.1158/0008-5472.CAN-06-4626/654368/P/CANCER-IMMUNOLOGISTS-AND-CANCER-BIOLOGISTS-WHY-WE.
  • Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., and Delort, L. (2021). 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 22, 12200. https://doi.org/10.3390/IJMS222212200.
  • Ballav, S., Deshmukh, A. J., Siddiqui, S., Aich, J., Basu, S., and Ballav, S., et al. (2021). Two-Dimensional and Three-Dimensional Cell Culture and Their Applications. IntechOpen Press, United Kingdom.
  • Kamińska, K., Szczylik, C., Bielecka, Z. F., Bartnik, E., Porta, C., Lian, F., et al. (2015). The role of the cell–cell interactions in cancer progression. Journal of Cellular and Molecular Medicine, 19, 283–296. https://doi.org/10.1111/JCMM.12408.
  • Cardoso, B. D., Castanheira, E. M. S., Lanceros-Méndez, S., and Cardoso, V. F. (2023). Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Advanced Healthcare Materials, 12. https://doi.org/10.1002/ADHM.202202936.
  • Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., and De Boer, J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol, 31, 108–115. https://doi.org/10.1016/J.TIBTECH.2012.12.003.
  • Živković, Z., and Opačak-Bernardi, T. (2025). An overview on spheroid and organoid models in applied studies. Science, 7, 27. https://doi.org/10.3390/SCI7010027.
  • Brown, T.E., and Anseth, K.S. (2017). Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 46, 6532–6552. https://doi.org/10.1039/C7CS00445A.
  • Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., and Delort, L. (2021). 3D cell culture systems: Tumor application, advantages, and disadvantages. International Journal of Molecular Sciences, 22, 12200. https://doi.org/10.3390/IJMS222212200.
  • Fang, Y., and Eglen, R.M. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS Discovery, 22, 456–472. https://doi.org/10.1177/1087057117696795.
  • Akkerman, N., and Defize, L.H.K. (2017). Dawn of the organoid era. BioEssays, United Kingdom, 39, 1600244. https://doi.org/10.1002/BIES.201600244.
  • Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082.
  • Fatehullah, A., Tan, S.H., and Barker, N. (2016). Organoids as an in vitro model of human development and disease. Nature Cell Biology, 18, 246–254. https://doi.org/10.1038/NCB3312.
  • Alhaque, S., Themis, M., and Rashidi, H. (2018). Three-dimensional cell culture: From evolution to revolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373. https://doi.org/10.1098/RSTB.2017.0216.
  • Huch, M., and Koo, B.K. (2015). Modeling mouse and human development using organoid cultures. Development, 142, 3113–3125. https://doi.org/10.1242/DEV.118570.
  • Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–110. https://doi.org/10.1038/NATURE09691.
  • Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379. https://doi.org/10.1038/NATURE12517.
  • Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., et al. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10, 771–785. https://doi.org/10.1016/J.STEM.2012.05.009.
  • Kim, J., Koo, B.K., and Knoblich, J.A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3.
  • Hofer, M., and Lutolf, M.P. (2021). Engineering organoids. Nature Reviews Materials, 6, 402–420. https://doi.org/10.1038/s41578-021-00279-y.
  • Klompstra, T.M., Yoon, K.J., and Koo, B.K. (2025). Evolution of organoid genetics. European Journal of Cell Biology, 104, 151481. https://doi.org/10.1016/J.EJCB.2025.151481.
  • Joseph, J.S., Malindisa, S.T., and Ntwasa, M. (2018). Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. In Cell Culture. https://doi.org/10.5772/INTECHOPEN.81552.
  • McKim, J., Goldberg, A., Kleinstreuer, N., Busquet, F., et al. (2015). A vision of toxicity testing in the 21st century. Applied In Vitro Toxicology, 1(1), 10–15. https://doi.org/10.1089/AIVT.2014.1501
  • Langhans, S. A. (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology, 9, 6. https://doi.org/10.3389/fphar.2018.00006
  • Ajjarapu, S. M., Tiwari, A., & Kumar, S. (2023). Applications and utility of three-dimensional in vitro cell culture for therapeutics. Future Pharmacology, 3(1), 213–228. https://doi.org/10.3390/futurepharmacol3010015
  • Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207–218. https://doi.org/10.1089/adt.2014.573
  • Shi, W., Kwon, J., Huang, Y., Tan, J., Uhl, C. G., He, R., et al. (2018). Facile tumor spheroids formation in large quantity with controllable size and high uniformity. Scientific Reports, 8, 1–9. https://doi.org/10.1038/s41598-018-25203-3
  • Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., & Searson, P. C. (2016). In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology, 4, 12. https://doi.org/10.3389/fbioe.2016.00012
  • Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., et al. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 87(7), 1315–1530. https://doi.org/10.1007/s00204-013-1078-5
  • Proctor, W. R., Foster, A. J., Vogt, J., Summers, C., Middleton, B., Pilling, M. A., et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Archives of Toxicology, 91(8), 2849–2863. https://doi.org/10.1007/s00204-017-2002-1
  • Gori, M., Giannitelli, S. M., Torre, M., Mozetic, P., Abbruzzese, F., Trombetta, M., et al. (2020). Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: An effective tool to assess drug-induced hepatotoxic response. Advanced Healthcare Materials, 9(12), 2001163. https://doi.org/10.1002/adhm.202001163
  • Kronemberger, G. S., Matsui, R. A. M., de Castro e Miranda, G. A. S., Granjeiro, J. M., & Baptista, L. S. (2020). Cartilage and bone tissue engineering using adipose stromal/stem cell spheroids as building blocks. World Journal of Stem Cells, 12(2), 110–122. https://doi.org/10.4252/wjsc.v12.i2.110
  • Laschke, M. W., & Menger, M. D. (2017). Life is 3D: Boosting spheroid function for tissue engineering. Trends in Biotechnology, 35(2), 133–144. https://doi.org/10.1016/j.tibtech.2016.08.004
  • Zeng, J., Chen, X., Zhang, J., Qin, Y., Zhang, K., Li, X., et al. (2022). Stem cell spheroids production for wound healing with a reversible porous hydrogel. Materials Today Advances, 15, 100269. https://doi.org/10.1016/j.mtadv.2022.100269
  • Song, L., Yuan, X., Jones, Z., Griffin, K., Zhou, Y., Ma, T., et al. (2019). Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3D brain-like tissues. Scientific Reports, 9, 5977. https://doi.org/10.1038/s41598-019-42439-9
  • Liu, W. M., Zhou, X., Chen, C. Y., Lv, D. D., Huang, W. J., Peng, Y., et al. (2021). Establishment of functional liver spheroids from human hepatocyte-derived liver progenitor-like cells for cell therapy. Frontiers in Bioengineering and Biotechnology, 9, 738081. https://doi.org/10.3389/fbioe.2021.738081
  • Campbell, M., Chabria, M., Figtree, G. A., Polonchuk, L., & Gentile, C. (2018). Stem cell-derived cardiac spheroids as 3D in vitro models of the human heart microenvironment. Methods in Molecular Biology, 2002, 51–59. https://doi.org/10.1007/7651_2018_187
  • Hautefort, I., Poletti, M., Papp, D., & Korcsmaros, T. (2022). Everything you always wanted to know about organoid-based models (and never dared to ask). Cellular and Molecular Gastroenterology and Hepatology, 14(2), 311–331. https://doi.org/10.1016/j.jcmgh.2022.04.012
  • Lewis, J., & Holm, S. (2022). Organoid biobanking, autonomy and the limits of consent. Bioethics, 36(8), 742–756. https://doi.org/10.1111/bioe.13047
  • Nie, X., Liang, Z., Li, K., Yu, H., Huang, Y., Ye, L., et al. (2021). Novel organoid model in drug screening: Past, present, and future. Liver Research, 5(2), 72–78. https://doi.org/10.1016/j.livres.2021.05.003
  • Schwartz, M. P., Hou, Z., Propson, N. E., Zhang, J., Engstrom, C. J., Costa, V. S., et al. (2015). Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12516–12521. https://doi.org/10.1073/pnas.1516645112
  • Shinozawa, T., Kimura, M., Cai, Y., Saiki, N., Yoneyama, Y., Ouchi, R., et al. (2021). High-fidelity drug-induced liver injury screen using human pluripotent stem cell–derived organoids. Gastroenterology, 160(3), 831–846.e10. https://doi.org/10.1053/j.gastro.2020.10.002
  • Meier, M. A., Nuciforo, S., Coto-Llerena, M., Gallon, J., Matter, M. S., Ercan, C., et al. (2022). Patient-derived tumor organoids for personalized medicine in a patient with rare hepatocellular carcinoma with neuroendocrine differentiation: A case report. Communications Medicine, 2, 150. https://doi.org/10.1038/s43856-022-00150-3
  • Zhao, Z., Chen, X., Dowbaj, A. M., Sljukic, A., Bratlie, K., Lin, L., et al. (2022). Organoids. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-022-00174-y
  • Revokatova, D., Bikmulina, P., Heydari, Z., Solovieva, A., Vosough, M., Shpichka, A., et al. (2025). Getting blood out of a stone: Vascularization via spheroids and organoids in 3D bioprinting. Cells, 14(9), 665. https://doi.org/10.3390/cells14090665
  • Velasco, V., Shariati, S. A., & Esfandyarpour, R. (2020). Microtechnology-based methods for organoid models. Microsystems & Nanoengineering, 6(1), 1–13. https://doi.org/10.1038/s41378-020-00185-3
  • Topal, T., Hong, X., Xue, X., Fan, Z., Kanetkar, N., Nguyen, J. T., et al. (2018). Acoustic tweezing cytometry induces rapid initiation of human embryonic stem cell differentiation. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-30939-z
  • Topal, T., Fan, Z., Deng, L. Y., Krebsbach, P. H., & Deng, C. X. (2019). Integrin-targeted cyclic forces accelerate neural tube-like rosette formation from human embryonic stem cells. Advanced Biosystems, 3(10), 1900064. https://doi.org/10.1002/adbi.201900064
  • Muñiz, A. J., Topal, T., Brooks, M. D., Sze, A., Kim, D. H., Jordahl, J., et al. (2023). Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells. Annals of Clinical and Translational Neurology, 10(7), 1239–1253. https://doi.org/10.1002/acn3.51820
  • Hu, H., Gehart, H., Artegiani, B., López-Iglesias, C., Dekkers, F., Basak, O., et al. (2018). Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 175(6), 1591–1606.e19. https://doi.org/10.1016/j.cell.2018.11.013
  • Drost, J., Karthaus, W. R., Gao, D., Driehuis, E., Sawyers, C. L., Chen, Y., et al. (2016). Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 11(2), 347–358. https://doi.org/10.1038/nprot.2016.006
  • Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
  • Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2
  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64(Suppl), 18–23. https://doi.org/10.1016/j.addr.2012.09.010
  • Madduma-Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(16), 50376. https://doi.org/10.1002/app.50376
  • Saheli, M., Sepantafar, M., Pournasr, B., Farzaneh, Z., Vosough, M., Piryaei, A., et al. (2018). Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 119(5), 4320–4333. https://doi.org/10.1002/jcb.26622
  • Meenach, S. A., Tsoras, A. N., McGarry, R. C., Mansour, H. M., Hilt, J. Z., & Anderson, K. W. (2016). Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics. International Journal of Oncology, 48(5), 1701–1709. https://doi.org/10.3892/ijo.2016.3376
  • Radtke, A. L., & Herbst-Kralovetz, M. M. (2012). Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. Journal of Visualized Experiments, 62, e3868. https://doi.org/10.3791/3868
  • Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19(1), 181. https://doi.org/10.3390/ijms19010181
  • Almeqdadi, M., Mana, M. D., Roper, J., & Yilmaz, Ö. H. (2019). Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. American Journal of Physiology-Cell Physiology, 317(3), C405–C419. https://doi.org/10.1152/ajpcell.00300.2017
  • Harrison, S. P., Baumgarten, S. F., Verma, R., Lunov, O., Dejneka, A., & Sullivan, G. J. (2021). Liver organoids: Recent developments, limitations and potential. Frontiers in Medicine (Lausanne), 8, 574047. https://doi.org/10.3389/fmed.2021.574047
  • Nishinakamura, R. (2019). Human kidney organoids: Progress and remaining challenges. Nature Reviews Nephrology, 15, 613–624. https://doi.org/10.1038/s41581-019-0176-x
  • Qian, X., Song, H., & Ming, G. L. (2019). Brain organoids: Advances, applications and challenges. Development, 146, dev166074. https://doi.org/10.1242/dev.166074
  • Papamichail, L., Koch, L. S., Veerman, D., Broersen, K., & van der Meer, A. D. (2025). Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Frontiers in Bioengineering and Biotechnology, 13, 1515340. https://doi.org/10.3389/fbioe.2025.1515340
  • Przepiorski, A., Sander, V., Tran, T., Hollywood, J. A., Sorrenson, B., Shih, J. H., et al. (2018). A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Reports, 11(2), 470–484. https://doi.org/10.1016/j.stemcr.2018.06.018
  • Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7(6), 862–869. https://doi.org/10.1016/0955-0674(95)80071-9
  • Rimann, M., & Graf-Hausner, U. (2012). Synthetic 3D multicellular systems for drug development. Current Opinion in Biotechnology, 23(5), 803–809. https://doi.org/10.1016/j.copbio.2012.01.011
  • Kuo, C. T., Wang, J. Y., Lin, Y. F., Wo, A. M., Chen, B. P. C., & Lee, H. (2017). Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Scientific Reports, 7(1), 42831. https://doi.org/10.1038/s41598-017-04718-1
  • Gupta, N., Liu, J. R., Patel, B., Solomon, D. E., Vaidya, B., & Gupta, V. (2016). Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioengineering & Translational Medicine, 1(1), 63–81. https://doi.org/10.1002/btm2.10013
  • Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83(2), 173–180. https://doi.org/10.1002/bit.10655
  • Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer–microenvironment interactions? International Journal of Molecular Sciences, 19(1), 181. https://doi.org/10.3390/ijms19010181
  • Sutherland, R. M., McCredie, J. A., & Inch, W. R. (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. Journal of the National Cancer Institute, 46(1), 113–120. https://doi.org/10.1093/jnci/46.1.113
  • Sutherland, R. M., Inch, W. R., McCredie, J. A., & Kruuv, J. (1970). A multi-component radiation survival curve using an in vitro tumour model. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 18(5), 491–495. https://doi.org/10.1080/09553007014551401
  • Dzobo, K., Motaung, K. S. C. M., & Adesida, A. (2019). Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. International Journal of Molecular Sciences, 20(18), 4628. https://doi.org/10.3390/ijms20184628
  • Li, X., Ootani, A., & Kuo, C. (2016). An air–liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods in Molecular Biology, 1422, 33–40. https://doi.org/10.1007/978-1-4939-3603-8_4
  • Tseng, H., Gage, J. A., Raphael, R. M., Moore, R. H., Killian, T. C., Grande-Allen, K. J., & Souza, G. R. (2013). Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Engineering Part C: Methods, 19(8), 665–675. https://doi.org/10.1089/ten.tec.2012.0157
  • Nath, S., & Devi, G. R. (2016). Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics, 163, 94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013
  • Marques, I. A., Fernandes, C., Tavares, N. T., Pires, A. S., Abrantes, A. M., & Botelho, M. F. (2022). Magnetic-based human tissue 3D cell culture: A systematic review. International Journal of Molecular Sciences, 23(20), 12681. https://doi.org/10.3390/ijms232012681
  • Souza, G. R., Molina, J. R., Raphael, R. M., Ozawa, M. G., Stark, D. J., Levin, C. S., Bronk, L. F., Ananta, J. S., Mandelin, J., Georgescu, M.-M., Bankson, J. A., Gelovani, J. G., Killian, T. C., Arap, W., & Pasqualini, R. (2010). Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotechnology, 5, 291–296. https://doi.org/10.1038/nnano.2010.23
  • Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785. https://doi.org/10.1038/nbt.2958
  • Cho, H., Bae, I., Chung, H., et al. (2004). Effects of hair follicle dermal sheath cells in the reconstruction of skin equivalents. Journal of Dermatological Science.
  • Park, H., Lim, D. J., Sung, M., Lee, S. H., Na, D., & Park, H. (2016). Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Engineering and Regenerative Medicine, 13(5), 465–474. https://doi.org/10.1007/s13770-016-9080-7
  • Shim, J. H., Jang, K. M., Hahn, S. K., Park, J. Y., Jung, H., Oh, K., Park, K. M., Yeom, J., Park, S. H., and Kim, S. W. (2016). Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 8, 014102. https://doi.org/10.1088/1758-5090/8/1/014102.
  • Park, J. Y., Shim, J.-H., Choi, S.-A., Jang, J., Kim, M., Lee, S. H., & Cho, D. W. (2015). 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. Journal of Materials Chemistry B, 3, 5415–5424. https://doi.org/10.1039/c5tb00637f
  • Gao, G., Huang, Y., Schilling, A. F., Hubbell, K., & Cui, X. (2018). Organ bioprinting: Are we there yet? Advanced Healthcare Materials, 7, 1701018. https://doi.org/10.1002/adhm.201701018
  • Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., & Colosi, C. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003
  • Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D printing of personalized thick and perfusable cardiac patches and hearts. Advanced Science, 6, 1900344. https://doi.org/10.1002/advs.201900344
  • Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Yuan, H. H., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science, 328(5986), 1662–1668. https://doi.org/10.1126/science.1188302
  • Park, J., Koito, H., Li, J., & Han, A. (2009). Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical Microdevices, 11, 1145–1153. https://doi.org/10.1007/s10544-009-9331-7
  • Yu, Y., Zhou, T. T., & Cao, L. (2023). Use and application of organ-on-a-chip platforms in cancer research. Journal of Cell Communication and Signaling, 17, 1163–1176. https://doi.org/10.1007/s12079-023-00790-7
  • Singh, D., Mathur, A., Arora, S., Roy, S., & Mahindroo, N. (2022). Journey of organ-on-a-chip technology and its role in future healthcare scenario. Applied Surface Science Advances, 9, 100246. https://doi.org/10.1016/j.apsadv.2022.100246
  • Caballero, D., Kaushik, S., Correlo, V. M., Oliveira, J. M., Reis, R. L., & Kundu, S. C. (2017). Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials, 149, 98–115. https://doi.org/10.1016/j.biomaterials.2017.10.005
  • Huh, D. (2015). A human breathing lung-on-a-chip. Annals of the American Thoracic Society, 12(Supplement 1), S42–S44. https://doi.org/10.1513/annalsats.201410-442MG
  • Palucka, A. K., & Coussens, L. M. (2016). The basis of oncoimmunology. Cell, 164, 1233–1247. https://doi.org/10.1016/j.cell.2016.01.049
  • Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437. https://doi.org/10.1038/nm.3394
  • Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14, 1014–1022. https://doi.org/10.1038/ni.2703
  • Houot, R., Kohrt, H. E., Marabelle, A., & Levy, R. (2011). Targeting immune effector cells to promote antibody-induced cytotoxicity in cancer immunotherapy. Trends in Immunology, 32, 510–516. https://doi.org/10.1016/j.it.2011.07.003
  • Demaria, O., Cornen, S., Daëron, M., Morel, Y., Medzhitov, R., & Vivier, E. (2019). Harnessing innate immunity in cancer therapy. Nature, 574, 45–56. https://doi.org/10.1038/s41586-019-1593-5
  • Yuki, K., Cheng, N., Nakano, M., & Kuo, C. J. (2020). Organoid models of tumor immunology. Trends in Immunology, 41, 652–664. https://doi.org/10.1016/j.it.2020.06.010
  • Riedl, A., Schlederer, M., Pudelko, K., Stadler, M., Walter, S., Unterleuthner, D., et al. (2017). Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. Journal of Cell Science, 130, 203–218. https://doi.org/10.1242/jcs.188102
  • Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., et al. (2018). Organoid modeling of the tumor immune microenvironment. Cell, 175, 1972–1988.e16. https://doi.org/10.1016/j.cell.2018.11.021
  • Sontheimer-Phelps, A., Hassell, B. A., & Ingber, D. E. (2019). Modelling cancer in microfluidic human organs-on-chips. Nature Reviews Cancer, 19, 65–81. https://doi.org/10.1038/s41568-018-0104-6
  • Aref, A. R., Campisi, M., Ivanova, E., Portell, A., Larios, D., Piel, B. P., et al. (2018). 3D microfluidic: Ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on a Chip, 18, 3129–3143. https://doi.org/10.1039/c8lc00322j
  • Deng, J., Wang, E. S., Jenkins, R. W., Li, S., Dries, R., Yates, K., et al. (2018). CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discovery, 8, 216–233. https://doi.org/10.1158/2159-8290.cd-17-0915
  • Jenkins, R. W., Aref, A. R., Lizotte, P. H., Ivanova, E., Stinson, S., Zhou, C. W., et al. (2018). Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discovery, 8, 196–215. https://doi.org/10.1158/2159-8290.cd-17-0833
  • Gunti, S., Hoke, A. T. K., Vu, K. P., & London, N. R. (2021). Organoid and spheroid tumor models: Techniques and applications. Cancers (Basel), 13, 874. https://doi.org/10.3390/cancers13040874
  • Lv, J., Du, X., Wang, M., Su, J., Wei, Y., & Xu, C. (2024). Construction of tumor organoids and their application to cancer research and therapy. Theranostics, 14, 1101–1125. https://doi.org/10.7150/thno.91362
  • Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345, 1247125. https://doi.org/10.1126/science.1247125
  • Licata, J. P., Schwab, K. H., Har-El, Y., Gerstenhaber, J. A., & Lelkes, P. I. (2023). Bioreactor technologies for enhanced organoid culture. International Journal of Molecular Sciences, 24(14), 11427. https://doi.org/10.3390/ijms241411427
  • Kretzschmar, K., & Clevers, H. (2016). Organoids: Modeling development and the stem cell niche in a dish. Developmental Cell, 38, 590–600. https://doi.org/10.1016/j.devcel.2016.08.014
  • Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., & Kunz-Schughart, L. A. (2010). Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 148, 3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012
  • Stacey, G. (2006). Primary cell cultures and immortal cell lines. Encyclopedia of Life Sciences. https://doi.org/10.1038/npg.els.0003960
  • Young, M., & Reed, K. R. (2016). Organoids as a model for colorectal cancer. Current Colorectal Cancer Reports, 12, 281–287. https://doi.org/10.1007/s11888-016-0335-4
  • Hassanshahi, J., Mirzahosseini-Pourranjbar, A., Hajializadeh, Z., & Kaeidi, A. (2020). Anticancer and cytotoxic effects of troxerutin on HeLa cell line: An in-vitro model of cervical cancer. Molecular Biology Reports, 47, 6135–6142. https://doi.org/10.1007/s11033-020-05694-y
  • Burdall, S. E., Hanby, A. M., Lansdown, M. R. J., & Speirs, V. (2003). Breast cancer cell lines: Friend or foe? Breast Cancer Research, 5, 89–95. https://doi.org/10.1186/bcr577
  • Arı, M., Karul, A., & Sakarya, S. (2018). Investigation of antiproliferative, apoptotic and antioxidant effects of oleuropein and vitamin D on breast cancer cell lines (MCF-7). Proceedings, 2(25), 1534. https://doi.org/10.3390/proceedings2251534
  • Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., et al. (2018). A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 172, 373–386.e10. https://doi.org/10.1016/j.cell.2017.11.010
  • Liebau, S., Achberger, K., Breunig, M., Noorani, S., Nelson, S. R., Conlon, N. T., et al. (2022). Pancreatic cancer 3D cell line organoids (CLOs) maintain the phenotypic characteristics of organoids and accurately reflect the cellular architecture and heterogeneity in vivo. Organoids, 1, 168–183. https://doi.org/10.3390/organoids1020013
  • Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596. https://doi.org/10.1242/jcs.116392
  • Emon, B., Bauer, J., Jain, Y., Jung, B., & Saif, T. (2018). Biophysics of tumor microenvironment and cancer metastasis - A mini review. Computational and Structural Biotechnology Journal, 16, 279–287. https://doi.org/10.1016/j.csbj.2018.07.003
  • Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322. https://doi.org/10.1016/j.ccr.2012.02.022
  • Neesse, A., Bauer, C. A., Öhlund, D., Lauth, M., Buchholz, M., Michl, P., et al. (2019). Stromal biology and therapy in pancreatic cancer: Ready for clinical translation? Gut, 68, 159–171. https://doi.org/10.1136/gutjnl-2018-316451
  • Belgodere, J. A., King, C. T., Bursavich, J. B., Burow, M. E., Martin, E. C., & Jung, J. P. (2018). Engineering breast cancer microenvironments and 3D bioprinting. Frontiers in Bioengineering and Biotechnology, 6, 66. https://doi.org/10.3389/fbioe.2018.00066
  • Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel), 9, 157. https://doi.org/10.3390/cancers9110157
  • Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine, 4, 38. https://doi.org/10.1186/1741-7015-4-38
  • Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., et al. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Medicine, 6, 11. https://doi.org/10.1186/1741-7015-6-11
  • Egeblad, M., Rasch, M. G., & Weaver, V. M. (2010). Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 22, 697–706. https://doi.org/10.1016/j.ceb.2010.08.015
  • Furuta, S., Ren, G., Mao, J. H., & Bissell, M. J. (2018). Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53, and microRNAs. eLife, 7, e26148. https://doi.org/10.7554/elife.26148
  • Kim, B. G., An, H. J., Kang, S., Choi, Y. P., Gao, M. Q., Park, H., et al. (2011). Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer. American Journal of Pathology, 178, 373–381. https://doi.org/10.1016/j.ajpath.2010.11.028
  • Deng, Z., Cheng, Z., Xiang, X., Yan, J., Zhuang, X., Liu, C., et al. (2012). Tumor cell cross talk with tumor-associated leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. American Journal of Pathology, 180, 390–398. https://doi.org/10.1016/j.ajpath.2011.09.023
  • Jagadeeshan, S., Krishnamoorthy, Y. R., Singhal, M., Subramanian, A., Mavuluri, J., Lakshmi, A., et al. (2015). Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene, 34, 455–464. https://doi.org/10.1038/ONC.2013.576
  • Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., et al. (2019). Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. Journal of Hematology & Oncology, 12. https://doi.org/10.1186/S13045-019-0770-1
  • Gascard, P., & Tlsty, T. D. (2016). Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes & Development, 30, 1002–1019. https://doi.org/10.1101/GAD.279737.116
  • Devarasetty, M., Forsythe, S. D., & Shelkey, E., Soker, S. (2020). In vitro modeling of the tumor microenvironment in tumor organoids. Tissue Engineering and Regenerative Medicine, 17, 759–771. https://doi.org/10.1007/S13770-020-00258-4
  • Spiering, M. J. (2015). Primer on the immune system. Alcohol Research, 37, 171.
  • Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., et al. (2017). İmmün sistem ve barsak mikrobiyotası. Journal of Biotechnology and Strategic Health Research, 1, 7–16. https://doi.org/10.1016/J.CELL.2014.09.053
  • Songu, M., & Katılmış, H. (2012). Enfeksiyondan korunma ve immün sistem. Journal of Medical Updates, 2, 31–42. https://doi.org/10.2399/JMU.2012001006
  • Diniz, G., Yaşın, Y., Çoban, C., Evcimen, Ş., & Karakayalı, M. (2022). Immune system: Is a trusted friend, is a collaborative enemy? Forbes Journal of Medicine, 3. https://doi.org/10.4274/forbes.galenos.2021.30974
  • Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. https://doi.org/10.1146/ANNUREV.IMMUNOL.20.083001.084359
  • Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045. https://doi.org/10.1146/ANNUREV.IY.12.040194.005015
  • Solchaga, L. A., Tognana, E., Penick, K., Baskaran, H., Goldberg, V. M., Caplan, A. I., et al. (2006). A rapid seeding technique for the assembly of large cell/scaffold composite construct. Tissue Engineering, 12, 1851–1863. https://doi.org/10.1089/TEN.2006.12.1851
  • Bogoslowski, A., An, M., & Penninger, J. M. (2023). Incorporating immune cells into organoid models: Essential for studying human disease. Organoids, 2, 140–155. https://doi.org/10.3390/ORGANOIDS2030011
  • Collin de l’Hortet, A., Takeishi, K., Guzman-Lepe, J., Morita, K., Achreja, A., Popovic, B., et al. (2019). Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metabolism, 30, 385–401.e9. https://doi.org/10.1016/J.CMET.2019.06.017
  • Rana, D., Arulkumar, S., Vishwakarma, A., & Ramalingam, M. (2015). Considerations on designing scaffold for tissue engineering. In Stem Cell Biology and Tissue Engineering in Dental Sciences (pp. 133–148). https://doi.org/10.1016/B978-0-12-397157-9.00012-6
  • Rogoz, A., Reis, B. S., Karssemeijer, R. A., & Mucida, D. (2015). A 3-D enteroid-based model to study T-cell and epithelial cell interaction. Journal of Immunological Methods, 421, 89–95. https://doi.org/10.1016/J.JIM.2015.03.014
  • Popova, G., Soliman, S. S., Kim, C. N., Keefe, M. G., Hennick, K. M., Jain, S., et al. (2021). Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 28, 2153–2166.e6. https://doi.org/10.1016/J.STEM.2021.08.015
  • Noel, G., Baetz, N. W., Staab, J. F., Donowitz, M., Kovbasnjuk, O., Pasetti, M. F., et al. (2017). A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scientific Reports, 7, 1–14. https://doi.org/10.1038/srep45270
  • Koh, V., Chakrabarti, J., Torvund, M., Steele, N., Hawkins, J. A., Ito, Y., et al. (2021). Hedgehog transcriptional effector GLI mediates mTOR-induced PD-L1 expression in gastric cancer organoids. Cancer Letters, 518, 59–71. https://doi.org/10.1016/J.CANLET.2021.06.007
  • Dijkstra, K. K., Cattaneo, C. M., Weeber, F., Chalabi, M., van de Haar, J., Fanchi, L. F., et al. (2018). Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 174, 1586–1598.e12. https://doi.org/10.1016/J.CELL.2018.07.009
  • Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernández-Mateos, J., Khan, K., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 359(6378), 920–926. https://doi.org/10.1126/science.aao2774
  • Seo, H. R., Han, H. J., Lee, Y., Noh, Y. W., Cho, S. J., & Kim, J. H. (2022). Human pluripotent stem cell-derived alveolar organoid with macrophages. International Journal of Molecular Sciences, 23, 9211. https://doi.org/10.3390/IJMS23169211/S1
  • Wu, W., Li, X., & Yu, S. (2022). Patient-derived tumour organoids: A bridge between cancer biology and personalised therapy. Acta Biomaterialia, 146, 23–36. https://doi.org/10.1016/J.ACTBIO.2022.04.050
  • Noorintan, S. T., Angelius, C., & Torizal, F. G. (2024). Organoid models in cancer immunotherapy: Bioengineering approach for personalized treatment. Immuno, 4, 312–324. https://doi.org/10.3390/IMMUNO4040020
  • Yao, N., Jing, N., Lin, J., Niu, W., Yan, W., Yuan, H., et al. (2025). Patient-derived tumor organoids for cancer immunotherapy: Culture techniques and clinical application. Investigational New Drugs, 1–11. https://doi.org/10.1007/S10637-025-01523-W/TABLES/2
  • Qiu, Y., Su, M., Liu, L., Tang, Y., Pan, Y., & Sun, J. (2021). Clinical application of cytokines in cancer immunotherapy. Drug Design, Development and Therapy, 15, 2269–2287. https://doi.org/10.2147/DDDT.S308578
  • Magré, L., Verstegen, M. M. A., Buschow, S., Van Der Laan, L. J. W., Peppelenbosch, M., & Desai, J. (2023). Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. Journal for ImmunoTherapy of Cancer, 11, e006290. https://doi.org/10.1136/JITC-2022-006290
  • Votanopoulos, K. I., Forsythe, S., Sivakumar, H., Mazzocchi, A., Aleman, J., Miller, L., et al. (2020). Model of patient-specific immune-enhanced organoids for immunotherapy screening: Feasibility study. Annals of Surgical Oncology, 27, 1956–1967. https://doi.org/10.1245/S10434-019-08143-8/FIGURES/4
  • Forsythe, S. D., Erali, R. A., Sasikumar, S., Laney, P., Shelkey, E., D’Agostino, R., et al. (2021). Organoid platform in preclinical investigation of personalized immunotherapy efficacy in appendiceal cancer: Feasibility study. Clinical Cancer Research, 27, 5141–5151. https://doi.org/10.1158/1078-0432.CCR-21-0982/673891/AM/ORGANOID-PLATFORM-IN-PRECLINICAL-INVESTIGATION-OF
  • Johnston, A., Wan, Z., Chen, T., Lim, Y., Lee, C., Du, W., et al. (2023). Abstract 4710: Novel 3D cytotoxicity assay to assess the impact of chimeric antigen receptor (CAR) domain design on the tumor infiltration and cytotoxicity efficacy of CAR T-cell therapies for solid tumors. Cancer Research, 83, 4710. https://doi.org/10.1158/1538-7445.AM2023-4710
  • Drost, J., & Clevers, H. (2018). Organoids in cancer research. Nature Reviews Cancer, 18, 407–418. https://doi.org/10.1038/s41568-018-0007-6
  • Eralp, Y. (2022). Application of mRNA technology in cancer therapeutics. Vaccines (Basel), 10. https://doi.org/10.3390/VACCINES10081262
  • Faghfuri, E., Pourfarzi, F., Faghfouri, A. H., Abdoli Shadbad, M., Hajiasgharzadeh, K., & Baradaran, B. (2021). Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opinion on Biological Therapy, 21, 201–218. https://doi.org/10.1080/14712598.2020.1815704
  • Liu, Y., Chen, J., Xu, Y., & Sun, Q. (2022). Novel insight into the role of immunotherapy in gastrointestinal cancer (Review). Molecular and Clinical Oncology, 17. https://doi.org/10.3892/MCO.2022.2590
  • Karimi-Sani, I., Molavi, Z., Naderi, S., Mirmajidi, S. H., Zare, I., Naeimzadeh, Y., et al. (2024). Personalized mRNA vaccines in glioblastoma therapy: From rational design to clinical trials. Journal of Nanobiotechnology, 22, 1–31. https://doi.org/10.1186/S12951-024-02882-X
  • Van der Bruggen, P., Zhang, Y., Chaux, P., Stroobant, V., Panichelli, C., Schultz, E. S., et al. (2002). Tumor-specific shared antigenic peptides recognized by human T cells. Immunological Reviews, 188, 51–64. https://doi.org/10.1034/J.1600-065X.2002.18806.X
  • Shiihara, M., & Furukawa, T. (2022). Application of patient-derived cancer organoids to personalized medicine. Journal of Personalized Medicine, 12, 789. https://doi.org/10.3390/JPM12050789
  • Hwang, T. J., Carpenter, D., Lauffenburger, J. C., Wang, B., Franklin, J. M., & Kesselheim, A. S. (2016). Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Internal Medicine, 176, 1826–1833. https://doi.org/10.1001/JAMAINTERNMED.2016.6008
  • Dowden, H., & Munro, J. (2019). Trends in clinical success rates and therapeutic focus. Nature Reviews Drug Discovery, 18, 495–496. https://doi.org/10.1038/D41573-019-00074-Z
  • Rassomakhina, N. V., Ryazanova, A. Y., Likhov, A. R., Bruskin, S. A., Maloshenok, L. G., & Zherdeva, V. V. (2024). Tumor organoids: The era of personalized medicine. Biochemistry (Moscow), 89, S127–S147. https://doi.org/10.1134/S0006297924140086
  • Swain, B., & Maddi, S. (2024). Patient-derived tumor organoids: Generation and applications in disease modeling and personalized therapy. Nature Cell Science, 000, 000–000. https://doi.org/10.61474/NCS.2024.00008
  • Hastings, A. L. (2021). Text - H.R.1744 - 117th Congress (2021–2022): Humane Research and Testing Act of 2021. U.S. House of Representatives.
  • European Parliament. (2021). Plans and actions to accelerate a transition to innovation without the use of animals in research, regulatory testing and education. 16 September 2021. Retrieved June 30, 2025, from https://www.europarl.europa.eu/doceo/document/TA-9-2021-0387_EN.html
  • Avula, L. R., & Grodzinski, P. (2024). How organ-on-a-chip is advancing cancer research and oncology – A cancer hallmarks’ perspective. Frontiers in Lab on a Chip Technologies, 3, 1487377. https://doi.org/10.3389/frlct.2024.1487377
  • Arrowsmith, J., & Miller, P. (2013). Trial watch: Phase II and Phase III attrition rates 2011–2012. Nature Reviews Drug Discovery, 12, 569. https://doi.org/10.1038/NRD4090
  • Kondo, J., & Inoue, M. (2019). Application of cancer organoid model for drug screening and personalized therapy. Cells, 8, 470. https://doi.org/10.3390/CELLS8050470
  • Bertolini, F., Sukhatme, V. P., & Bouche, G. (2015). Drug repurposing in oncology – patient and health systems opportunities. Nature Reviews Clinical Oncology, 12, 732–742. https://doi.org/10.1038/nrclinonc.2015.130
  • Fennell, D. A., Summers, Y., Cadranel, J., Benepal, T., Christoph, D., Lal, R., et al. (2016). Malignant pleural mesothelioma. The Lancet, 387, 1941–1953. https://doi.org/10.1016/S0140-6736(15)01250-0
  • Groth, C., Hu, W., & Atala, A. (2019). Organoid technology for personalized medicine: Advances and challenges. Trends in Molecular Medicine, 25, 451–463. https://doi.org/10.1016/J.MOLMED.2019.02.004
  • Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897. https://doi.org/10.1158/0008-5472.CAN-13-1081
  • Ashikawa, K., Takizawa, S., Yamazaki, K., Ito, R., Maeda, T., Miki, Y., et al. (2021). Patient-derived organoids as a preclinical platform for precision medicine in head and neck cancer. Cancer Science, 112, 4218–4230. https://doi.org/10.1111/CAS.15157
  • Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345, 1247125. https://doi.org/10.1126/science.1247125
  • Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597. https://doi.org/10.1016/J.CELL.2016.05.082
Toplam 202 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hücre Gelişimi, Proliferasyon ve Ölümü, Biyokimya ve Hücre Biyolojisi (Diğer), Nanobiyoteknoloji, Hayvan Fizyolojisi - Hücre
Bölüm Derleme
Yazarlar

Tuğba Topal 0000-0002-8865-9656

Zehra Ece Uzun 0009-0007-7581-3478

Yayımlanma Tarihi 29 Kasım 2025
Gönderilme Tarihi 18 Ağustos 2025
Kabul Tarihi 9 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Topal, T., & Uzun, Z. E. (2025). Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(2), 343-374. https://doi.org/10.63716/guffd.1768168
AMA Topal T, Uzun ZE. Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler. GÜFFD. Kasım 2025;6(2):343-374. doi:10.63716/guffd.1768168
Chicago Topal, Tuğba, ve Zehra Ece Uzun. “Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, sy. 2 (Kasım 2025): 343-74. https://doi.org/10.63716/guffd.1768168.
EndNote Topal T, Uzun ZE (01 Kasım 2025) Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler. Gazi Üniversitesi Fen Fakültesi Dergisi 6 2 343–374.
IEEE T. Topal ve Z. E. Uzun, “Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler”, GÜFFD, c. 6, sy. 2, ss. 343–374, 2025, doi: 10.63716/guffd.1768168.
ISNAD Topal, Tuğba - Uzun, Zehra Ece. “Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/2 (Kasım2025), 343-374. https://doi.org/10.63716/guffd.1768168.
JAMA Topal T, Uzun ZE. Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler. GÜFFD. 2025;6:343–374.
MLA Topal, Tuğba ve Zehra Ece Uzun. “Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 6, sy. 2, 2025, ss. 343-74, doi:10.63716/guffd.1768168.
Vancouver Topal T, Uzun ZE. Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler. GÜFFD. 2025;6(2):343-74.