Research Article
BibTex RIS Cite

Yenilenebilir Enerji Kaynaklarından Beslenen Bir Mikro Şebekenin Enerji Depolama Sistemleri Desteği ile Optimum Çalışması

Year 2024, , 1018 - 1034, 31.12.2024
https://doi.org/10.29109/gujsc.1533522

Abstract

Elektrik şebekesinin temel enerji kaynağı olan geleneksel fosil yakıtların tükenmesi ve onlara dair uluslararası çevresel kaygılar ile süreksiz karaktere sahip yenilenebilir enerji kaynaklarının (YEK) sistem içerisindeki kurulu güç oranının her geçen gün artmasının getirdiği zorluklar sistem yöneticilerinin konu üzerine ilgisini artırmaktadır. Diğer yandan ulaşım sektörünün özellikle ilk aşamada hafif vasıta kısmının elektrikli hale gelmesi şebeke tarafında yükü bir miktar daha artırmaktadır. Bu çalışmada, kendine yetmesi amaçlanan fakat şebeke bağlantısı mevcut elektrikli araç (EA) yükünü de karşılayacak bir mikro şebekenin tasarımı yapılmaktadır. Oluşturulan optimizasyon algoritması ile enerji santrallerinin sisteme vermeyi teklif ettikleri enerji miktarı ve fiyat bilgisini alınıp, yük talebi ve enerji depolama (ED) sistemlerinin mevcut durumlarını analiz edilerek optimum şebeke şartlarının oluşması hedeflenmektedir. Oluşturulan 4 farklı durum çalışması üzerinden tasarlanan algoritmanın üretici ve tüketici açısından hem ekonomik hem teknik sonuçları analiz edilmektedir. Elde edilen sonuçlar oluşturulan algoritma sayesinde arz talep dengesinin tüm durumlarda sağlandığını, ekonomik faydaların ise bazı durumlarda üretici bazı durumlarda tüketici lehine gerçekleştiğini göstermektedir.

References

  • [1] Uluslararası Enerji Ajansı (IEA), “World Energy Outlook 2023,” IEA Publ., 2023.
  • [2] Enerji Bilgi Dairesi (EIA), “International Energy Outlook 2023,” ABD Enerji Bakanlığı, pp. 1–70, 2023.
  • [3] M. Khalid, “Smart grids and renewable energy systems: Perspectives and grid integration challenges,” 2024. doi: 10.1016/j.esr.2024.101299.
  • [4] Z. Zheng, M. Shafique, X. Luo, and S. Wang, “A systematic review towards integrative energy management of smart grids and urban energy systems,” 2024. doi: 10.1016/j.rser.2023.114023.
  • [5] F. Sattar, S. Ghosh, Y. J. Isbeih, M. S. El Moursi, A. Al Durra, and T. H. M. El Fouly, “A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration,” Appl Energy, vol. 353, 2024, doi: 10.1016/j.apenergy.2023.122226.
  • [6] R. S. El-Emam, A. Constantin, R. Bhattacharyya, H. Ishaq, and M. E. Ricotti, “Nuclear and renewables in multipurpose integrated energy systems: A critical review,” 2024. doi: 10.1016/j.rser.2023.114157.
  • [7] K. Liang, H. Wang, D. Pozo, and V. Terzija, “Power system restoration with large renewable Penetration: State-of-the-Art and future trends,” 2024. doi: 10.1016/j.ijepes.2023.109494.
  • [8] S. Liu et al., “Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate,” Appl Energy, vol. 357, 2024, doi: 10.1016/j.apenergy.2023.122455.
  • [9] Q. Yang, J. Wang, J. Liang, and X. Wang, “Chance-constrained coordinated generation and transmission expansion planning considering demand response and high penetration of renewable energy,” International Journal of Electrical Power and Energy Systems, vol. 155, 2024, doi: 10.1016/j.ijepes.2023.109571.
  • [10] M. Al-Dhaifallah, M. M. Refaat, Z. Alaas, S. H. E. A. Aleem, E. E. El-kholy, and Z. M. Ali, “Multi-objectives transmission expansion planning considering energy storage systems and high penetration of renewables and electric vehicles under uncertain conditions,” Energy Reports, vol. 11, pp. 4143–4164, Jun. 2024, doi: 10.1016/J.EGYR.2024.03.060.
  • [11] M. I. Saleem and S. Saha, “Assessment of frequency stability and required inertial support for power grids with high penetration of renewable energy sources,” Electric Power Systems Research, vol. 229, 2024, doi: 10.1016/j.epsr.2024.110184.
  • [12] A. Emrani and A. Berrada, “A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy,” 2024. doi: 10.1016/j.est.2024.111010.
  • [13] Wangmo, A. Helwig, and J. Bell, “What energy storage technologies will Australia need as renewable energy penetration rises?,” J Energy Storage, vol. 95, p. 112701, Aug. 2024, doi: 10.1016/J.EST.2024.112701.
  • [14] A. Amiruddin, A. Liebman, R. Dargaville, and R. Gawler, “Optimal energy storage configuration to support 100 % renewable energy for Indonesia,” Energy for Sustainable Development, vol. 81, p. 101509, Aug. 2024, doi: 10.1016/J.ESD.2024.101509.
  • [15] A. D. A. Bin Abu Sofian, H. R. Lim, H. Siti Halimatul Munawaroh, Z. Ma, K. W. Chew, and P. L. Show, “Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage,” 2024. doi: 10.1002/sd.2885.
  • [16] M. Alhuyi Nazari, V. Blazek, L. Prokop, S. Misak, and N. Prabaharan, “Electric vehicle charging by use of renewable energy technologies: A comprehensive and updated review,” Computers and Electrical Engineering, vol. 118, p. 109401, Sep. 2024, doi: 10.1016/J.COMPELECENG.2024.109401.
  • [17] Z. Zhong, W. Hu, and X. Zhao, “Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement,” Appl Energy, vol. 361, p. 122904, May 2024, doi: 10.1016/J.APENERGY.2024.122904.
  • [18] D. Kanakadhurga and N. Prabaharan, “Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources,” Appl Energy, vol. 364, p. 123062, Jun. 2024, doi: 10.1016/J.APENERGY.2024.123062.
  • [19] S. Iqbal, N. F. Alshammari, M. Shouran, and J. Massoud, “Smart and Sustainable Wireless Electric Vehicle Charging Strategy with Renewable Energy and Internet of Things Integration,” Sustainability 2024, Vol. 16, Page 2487, vol. 16, no. 6, p. 2487, Mar. 2024, doi: 10.3390/SU16062487.
  • [20] M. Jansen, R. Gross, and I. Staffell, “Quantitative evidence for modelling electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 199, p. 114524, Jul. 2024, doi: 10.1016/J.RSER.2024.114524.
  • [21] J. Gerlach et al., “Navigating the energy transition: Identifying critical success factors for ancillary services provision and sustainable energy solutions in Germany,” Heliyon, vol. 10, no. 5, p. e27643, Mar. 2024, doi: 10.1016/j.heliyon.2024.e27643.
  • [22] A. K. Aktar, A. Taşcıkaraoğlu, and J. P. S. Catalão, “Scheduling of mobile charging stations with local renewable energy sources,” Sustainable Energy, Grids and Networks, vol. 37, 2024, doi: 10.1016/j.segan.2023.101257.
  • [23] M. Karakılıç and M. N. Almalı, “Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source,” Journal of Electrical Engineering and Technology, pp. 1–12, Feb. 2024, doi: 10.1007/S42835-024-01832-9/FIGURES/16.
  • [24] Elektrikli Araç Özellikleri Çevrimiçi Erişim: https://ev-database.org/

Optimal Operation of a Microgrid Powered by Renewable Energy Sources with the Support of Energy Storage Systems

Year 2024, , 1018 - 1034, 31.12.2024
https://doi.org/10.29109/gujsc.1533522

Abstract

The depletion of conventional fossil fuels, which are the main energy source of the electricity grid, and the international environmental concerns about them, as well as the challenges brought by the increasing installed power ratio of renewable energy sources (RES), which have an intermittent nature, in the system, are increasing the interest of system operators on the subject. Besides, especially in the first phase, the electrification of the light vehicle part of the transportation sector increases the pressure on the grid to an additional extent. In this study, a microgrid which is intended to be self-sufficient but has a grid connection, is designed to meet the load demand of electric vehicles (EV). The optimization algorithm aims to create optimum grid conditions by obtaining the amount of energy and price information that power plants offer to the system and analyzing the current conditions of load demand and energy storage (ES) systems. The economic and technical results of the algorithm designed through 4 different case studies are analyzed in terms of both producers and consumers. The results show that the supply and demand balance is achieved in all cases and economic benefits are realized in favor of the producer in some cases and the consumer in others.

References

  • [1] Uluslararası Enerji Ajansı (IEA), “World Energy Outlook 2023,” IEA Publ., 2023.
  • [2] Enerji Bilgi Dairesi (EIA), “International Energy Outlook 2023,” ABD Enerji Bakanlığı, pp. 1–70, 2023.
  • [3] M. Khalid, “Smart grids and renewable energy systems: Perspectives and grid integration challenges,” 2024. doi: 10.1016/j.esr.2024.101299.
  • [4] Z. Zheng, M. Shafique, X. Luo, and S. Wang, “A systematic review towards integrative energy management of smart grids and urban energy systems,” 2024. doi: 10.1016/j.rser.2023.114023.
  • [5] F. Sattar, S. Ghosh, Y. J. Isbeih, M. S. El Moursi, A. Al Durra, and T. H. M. El Fouly, “A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration,” Appl Energy, vol. 353, 2024, doi: 10.1016/j.apenergy.2023.122226.
  • [6] R. S. El-Emam, A. Constantin, R. Bhattacharyya, H. Ishaq, and M. E. Ricotti, “Nuclear and renewables in multipurpose integrated energy systems: A critical review,” 2024. doi: 10.1016/j.rser.2023.114157.
  • [7] K. Liang, H. Wang, D. Pozo, and V. Terzija, “Power system restoration with large renewable Penetration: State-of-the-Art and future trends,” 2024. doi: 10.1016/j.ijepes.2023.109494.
  • [8] S. Liu et al., “Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate,” Appl Energy, vol. 357, 2024, doi: 10.1016/j.apenergy.2023.122455.
  • [9] Q. Yang, J. Wang, J. Liang, and X. Wang, “Chance-constrained coordinated generation and transmission expansion planning considering demand response and high penetration of renewable energy,” International Journal of Electrical Power and Energy Systems, vol. 155, 2024, doi: 10.1016/j.ijepes.2023.109571.
  • [10] M. Al-Dhaifallah, M. M. Refaat, Z. Alaas, S. H. E. A. Aleem, E. E. El-kholy, and Z. M. Ali, “Multi-objectives transmission expansion planning considering energy storage systems and high penetration of renewables and electric vehicles under uncertain conditions,” Energy Reports, vol. 11, pp. 4143–4164, Jun. 2024, doi: 10.1016/J.EGYR.2024.03.060.
  • [11] M. I. Saleem and S. Saha, “Assessment of frequency stability and required inertial support for power grids with high penetration of renewable energy sources,” Electric Power Systems Research, vol. 229, 2024, doi: 10.1016/j.epsr.2024.110184.
  • [12] A. Emrani and A. Berrada, “A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy,” 2024. doi: 10.1016/j.est.2024.111010.
  • [13] Wangmo, A. Helwig, and J. Bell, “What energy storage technologies will Australia need as renewable energy penetration rises?,” J Energy Storage, vol. 95, p. 112701, Aug. 2024, doi: 10.1016/J.EST.2024.112701.
  • [14] A. Amiruddin, A. Liebman, R. Dargaville, and R. Gawler, “Optimal energy storage configuration to support 100 % renewable energy for Indonesia,” Energy for Sustainable Development, vol. 81, p. 101509, Aug. 2024, doi: 10.1016/J.ESD.2024.101509.
  • [15] A. D. A. Bin Abu Sofian, H. R. Lim, H. Siti Halimatul Munawaroh, Z. Ma, K. W. Chew, and P. L. Show, “Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage,” 2024. doi: 10.1002/sd.2885.
  • [16] M. Alhuyi Nazari, V. Blazek, L. Prokop, S. Misak, and N. Prabaharan, “Electric vehicle charging by use of renewable energy technologies: A comprehensive and updated review,” Computers and Electrical Engineering, vol. 118, p. 109401, Sep. 2024, doi: 10.1016/J.COMPELECENG.2024.109401.
  • [17] Z. Zhong, W. Hu, and X. Zhao, “Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement,” Appl Energy, vol. 361, p. 122904, May 2024, doi: 10.1016/J.APENERGY.2024.122904.
  • [18] D. Kanakadhurga and N. Prabaharan, “Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources,” Appl Energy, vol. 364, p. 123062, Jun. 2024, doi: 10.1016/J.APENERGY.2024.123062.
  • [19] S. Iqbal, N. F. Alshammari, M. Shouran, and J. Massoud, “Smart and Sustainable Wireless Electric Vehicle Charging Strategy with Renewable Energy and Internet of Things Integration,” Sustainability 2024, Vol. 16, Page 2487, vol. 16, no. 6, p. 2487, Mar. 2024, doi: 10.3390/SU16062487.
  • [20] M. Jansen, R. Gross, and I. Staffell, “Quantitative evidence for modelling electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 199, p. 114524, Jul. 2024, doi: 10.1016/J.RSER.2024.114524.
  • [21] J. Gerlach et al., “Navigating the energy transition: Identifying critical success factors for ancillary services provision and sustainable energy solutions in Germany,” Heliyon, vol. 10, no. 5, p. e27643, Mar. 2024, doi: 10.1016/j.heliyon.2024.e27643.
  • [22] A. K. Aktar, A. Taşcıkaraoğlu, and J. P. S. Catalão, “Scheduling of mobile charging stations with local renewable energy sources,” Sustainable Energy, Grids and Networks, vol. 37, 2024, doi: 10.1016/j.segan.2023.101257.
  • [23] M. Karakılıç and M. N. Almalı, “Design of Hybrid Switched Diode Multilevel Inverter Using Single DC Source,” Journal of Electrical Engineering and Technology, pp. 1–12, Feb. 2024, doi: 10.1007/S42835-024-01832-9/FIGURES/16.
  • [24] Elektrikli Araç Özellikleri Çevrimiçi Erişim: https://ev-database.org/
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Storage, Electrical Energy Transmission, Networks and Systems, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Renewable Energy Resources , Hybrid and Electric Vehicles and Powertrains
Journal Section Tasarım ve Teknoloji
Authors

Abdullah Kürşat Aktar 0000-0003-3185-452X

Murat Karakılıç 0000-0001-5323-2583

Early Pub Date December 21, 2024
Publication Date December 31, 2024
Submission Date August 14, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2024

Cite

APA Aktar, A. K., & Karakılıç, M. (2024). Yenilenebilir Enerji Kaynaklarından Beslenen Bir Mikro Şebekenin Enerji Depolama Sistemleri Desteği ile Optimum Çalışması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 1018-1034. https://doi.org/10.29109/gujsc.1533522

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526