Research Article
BibTex RIS Cite

Bulanık Diferansiyel Modelleme ile Obezite Sınıflarının Manuel Kaldırma Üzerindeki Etkisinin Analizi

Year 2025, Volume: 14 Issue: 3, 1075 - 1085, 25.09.2025
https://doi.org/10.37989/gumussagbil.1760698

Abstract

Obezite, küresel ölçekte önemli bir halk sağlığı sorunu olarak ortaya çıkarken, kas-iskelet sistemi hastalıkları (MSD'ler), dünya genelinde yaralanma, sakatlık ve işe bağlı devamsızlığın başlıca nedeni olmaya devam etmektedir. Artan vücut kütlesi, kaldırma görevleri sırasında kas-iskelet sistemi üzerine binen mekanik yükü önemli ölçüde artırmaktadır. Bu çalışmada, farklı vücut ağırlıkları arasında elle malzeme taşımanın biyomekanik etkilerini değerlendirmek amacıyla bulanık diferansiyel denklemlere dayalı bir model geliştirilmiştir. Geliştirilen model, model parametrelerinde bulunan belirsizlikleri açıkça hesaba katarak alt bel bölgesindeki eklem kuvvetleri ve momentlerini nicel olarak ortaya koymaktadır.
Biyomekanik modellemede obezite, temel olarak bireyler arası vücut kompozisyonu farklılıklarından kaynaklanan doğal belirsizlikleri beraberinde getirmektedir. Özellikle yağ ve kas dokularının miktarı ve dağılımındaki bireysel değişiklikler, yük ve hareket karşısındaki mekanik tepkileri farklı biçimlerde etkilemektedir. Bu belirsizliklerin üstesinden gelmek amacıyla, bulanık diferansiyel denklemler (BDD’ler), bulanık mantık kullanarak belirsiz parametreleri, başlangıç koşullarını ve biyolojik değişkenliği modele dahil eden yapılandırılmış bir yaklaşım sunmaktadır. Klasik yöntemlerden farklı olarak, BDD’ler değişkenleri bulanık sayılar şeklinde temsil ederek, gerçek dünya koşullarındaki belirsizliklerin daha etkili biçimde simüle edilmesine olanak tanımaktadır.
Elde edilen sonuçlar, obezite düzeyi arttıkça kaldırma görevleri sırasında alt bel bölgesine etki eden kuvvetlerin ve momentlerin belirgin şekilde arttığını göstermiştir. Bu eğilim, farklı yük ağırlıkları ve beden boyları arasında tutarlı biçimde gözlemlenmiş; dolayısıyla daha yüksek BMI değerlerinin kas-iskelet sistemi üzerinde daha fazla biyomekanik strese neden olduğu ortaya konmuştur. BDD modeli, obezitenin neden olduğu vücut kompozisyonu farklılıkları ve denge değişimlerinden kaynaklanan belirsizlikleri başarılı bir şekilde yakalamıştır. Bu yaklaşım, mekanik yüklerin modellenmesinde geleneksel yöntemlere kıyasla daha gerçekçi bir anlayış sunmaktadır.

References

  • 1. Kebekova A, Mashirapova S, Kumar R, Quadri GAR, Kamran A, Yadav RK. Obesity. InterConf; 2024 Jan 19;(41(185)):390–8. Prague, Czech Republic.
  • 2. Fuller T, Newberry Z, Nasir M, Tondt J. Obesity. Primary Care - Clinics in Office Practice. 2024;51(3):511–22.
  • 3. Milano W, Capasso A. Diseases and health risks associated with obesity. Integrative Obesity and Diabetes. 2018;4(1-4).
  • 4. Abid AR, El‐Menyar A, Singh R, Gomaa M, Habib SMS, Abdelrahman AS, et al. Patterns and Outcomes of Obesity Using Body Mass Index in Patients Hospitalized With Acute Cardiovascular Disorders: A Retrospective Analysis of 7284 Patients in a Middle Eastern Country. Journal of Clinical Medicine. 2023;12(23):7263. doi: 10.3390/jcm12237263
  • 5. Sharma A, Lavie CJ, Borer J, Vallakati A, Goel S, López-Jiménez F, et al. Meta-Analysis of the Relation of Body Mass Index to All-Cause and Cardiovascular Mortality and Hospitalization in Patients With Chronic Heart Failure. The American Journal of Cardiology. 2015;115(10):1428-34. doi: 10.1016/j.amjcard.2015.02.024
  • 6. Demirci D, Demirci DE. Association Between Obesity Grade and the Age of the First Acute Coronary Syndrome: Cross-Sectional Observational Study. International Journal of Cardiology. 2021;351:93-9. doi: 10.1016/j.ijcard.2021.11.080
  • 7. Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obesity reviews. 2006;7(3):239-50. doi: 10.1111/j.1467-789X.2006.00251.x
  • 8. Colim A, Arezes P, Flores P, Vardasca R, Braga AC. Thermographic Differences Due to Dynamic Work Tasks on Individuals With Different Obesity Levels: A Preliminary Study. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2019;8(3):323–33. doi: 10.1080/21681163.2019.1697757
  • 9. Fortunato LM, Kruk T, Lima Júnior E. Relationship between obesity and musculoskeletal disorders: systematic review and meta-analysis. Research, Society and Development. 2021;10(13):e119101320212. doi: 10.33448/rsd-v10i13.20212
  • 10. Colim A, Arezes P, Flores P, Monteiro PR. Mesquita I, Braga AC. Obesity effects on muscular activity during lifting and lowering tasks. International Journal of Occupational Safety and Ergonomics. 2021;27(1):217–25. doi: 10.1080/10803548.2019.1587223
  • 11. Singh D, Park W, Hwang D, Levy M. Severe obesity effect on low back biomechanical stress of manual load lifting. Work. 2015;51(2):337–48. doi: 10.3233/WOR-141945
  • 12. Bahramian M, Arjmand N, El-Rich M, Parnianpour M. Effect of obesity on spinal loads during load-reaching activities: A subject-and kinematics-specific musculoskeletal modeling approach. Journal of Biomechanics. 2023;161:111770. doi: 0.1016/j.jbiomech.2023.111770
  • 13. Ghezelbash F, Shirazi-Adl A, Plamondon A, Arjmand N, Parnianpour M. Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model. Annals of biomedical engineering. 2017; 45(10):2373–82. doi: 10.1007/s10439-017-1868-7
  • 14. Jonnalagadda SS, Skinner R, Moore L. Overweight Athlete: Fact or Fiction?. Current sports medicine reports. 2004;3(4):198-205.
  • 15. Rothman KJ. BMI-related errors in the measurement of obesity. International journal of obesity. 2008;32(3):S56–9. doi: 10.1038/ijo.2008.87
  • 16. Zenani S, Obileke K, Ndiweni O, Mukumba P. A Review of the Application of Fuzzy Logic in Bioenergy Technology. Processes. 2025;13(7):2251. doi: 10.3390/pr13072251
  • 17. Safaei M, A. Sundararajan E, Asadi S, Nilashi M, Ab Aziz MJ, Saravanan MS, et al. A Hybrid MCDM Approach Based on Fuzzy-Logic and DEMATEL to Evaluate Adult Obesity. International Journal of Environmental Research and Public Health. 2022;19(23):15432. doi: 10.3390/ijerph192315432
  • 18. Nawarycz T, Pytel K, Drygas W, Gazicki-Lipman M, Ostrowska-Nawarycz L. A fuzzy logic approach to the evaluation of health risks associated with obesity. 2013 Federated Conference on Computer Science and Information Systems; 2013 September 08;(231–4). Krakow, Poland.
  • 19. Almohammadi K. Conceptual Framework Based On Type-2 Fuzzy Logic Theory for Predicting Childhood Obesity Risk. International Journal of Online and Biomedical Engineering. 2020;16(03):95–106.
  • 20. Chakraverty S, Tapaswini S, Behera D. Fuzzy differential equations and applications for engineers and scientists. Fuzzy Differential Equations and Applications for Engineers and Scientists. 2016;1–222. doi: 10.1201/9781315372853
  • 21. Pauk J. Fuzzy Logic In Biomechanics Of The Human Gait. International Journal of Design & Nature and Ecodynamics 2006;1(2):174–85. doi: 10.2495/D&N-V1-N2-174-185
  • 22. Mahata A, Mondal SP, Alam S, Chakraborty A, De SK, Goswami A. Mathematical model for diabetes in fuzzy environment with stability analysis. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2923–32. doi: 10.3233/JIFS-171571
  • 23. Allahviranloo T, Keshavarz M, Islam S. The prediction of cardiovascular disorders by fuzzy difference equations. 2016 IEEE International Conference on Fuzzy Systems; 2016 Jul 14;(1465–72). Vancouver, BC, Canada. Doi: 10.1109/FUZZ-IEEE.2016.7737862
  • 24. Hanss M. Applied fuzzy arithmetic: an introduction with engineering applications. Berlin, Heidelberg: Springer Berlin Heidelberg: 2005.
  • 25. Garg A, Singh SR. Solving fuzzy system of equations using Gaussian membership function. International Journal of computational cognition. 2009;7(4):25–30.
  • 26. Buckley JJ, Feuring T. Fuzzy differential equations. Fuzzy Sets and Systems. 2000;110(1):43–54.
  • 27. Buckley JJ, Eslami E, Feuring T. Fuzzy mathematics in economics and engineering. Physica: 2013.
  • 28. Syropoulos A, Grammenos T. A modern introduction to fuzzy mathematics. John Wiley & Sons: 2020.
  • 29. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed tools and applications. 2021;80(5):8091–126. doi: 10.1007/s11042-020-10139-6
  • 30. Lambora A, Gupta K, Chopra K. Genetic Algorithm- A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing; 2019 Feb 14;(380–4). Faridabad, India. doi: 10.1109/COMITCon.2019.8862255
  • 31. Gundogdu O. Quantification and assessment of objective function performance in manual materials handling [Doctoral dissertation]. Troy, New York. Rensselaer Polytechnic Institute; 2000.
  • 32. Gündogdu Ö, Anderson KS, Parnianpour M. Simulation of manual materials handling: Biomechanial assessment under different lifting conditions. Technology and Health Care 2005;13(1):57–66. doi: 10.3233/THC-2005-1310
  • 33. Usanmaz B. Modelling manual material handling tasks with fuzzy differential equations [Doctoral dissertation]. Erzurum. Graduate School of Natural and Applied Sciences; 2014.

Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling

Year 2025, Volume: 14 Issue: 3, 1075 - 1085, 25.09.2025
https://doi.org/10.37989/gumussagbil.1760698

Abstract

Obesity has emerged as a major global public health challenge, while musculoskeletal disorders (MSDs) remain the leading cause of injury, disability, and work-related absenteeism worldwide. Increased body mass amplifies the mechanical load exerted on the musculoskeletal system during lifting tasks. In this study, a fuzzy differential equation-based model was developed to evaluate the biomechanical impact of manual material handling across varying body weights. The model quantifies the joint forces and moments at the lower back, explicitly accounting for uncertainties inherent in the model parameters.
In biomechanical modeling, obesity introduces inherent uncertainties, primarily due to inter-individual variations in body composition, particularly the relative amounts and distribution of adipose and muscle tissue, which differentially affect mechanical responses to load and movement. To address these uncertainties, fuzzy differential equations (FDEs) offer a structured approach by incorporating imprecise parameters, initial conditions, and biological variability using fuzzy logic. Unlike classical methods, FDEs represent variables as fuzzy numbers, enabling simulations to better capture the imprecision of the real world.
The results showed that with increasing obesity levels, both the forces and moments acting on the lower back during lifting tasks was increased noticeably. This pattern was observed consistently across different load weights and body heights, indicating that higher BMI leads to more greater biomechanical stress on the musculoskeletal system. The FDE model was successful in capturing the uncertainties caused by variations in body composition and changes in balance due to obesity. This approach provides a more realistic understanding of mechanical loads compared to traditional models.

References

  • 1. Kebekova A, Mashirapova S, Kumar R, Quadri GAR, Kamran A, Yadav RK. Obesity. InterConf; 2024 Jan 19;(41(185)):390–8. Prague, Czech Republic.
  • 2. Fuller T, Newberry Z, Nasir M, Tondt J. Obesity. Primary Care - Clinics in Office Practice. 2024;51(3):511–22.
  • 3. Milano W, Capasso A. Diseases and health risks associated with obesity. Integrative Obesity and Diabetes. 2018;4(1-4).
  • 4. Abid AR, El‐Menyar A, Singh R, Gomaa M, Habib SMS, Abdelrahman AS, et al. Patterns and Outcomes of Obesity Using Body Mass Index in Patients Hospitalized With Acute Cardiovascular Disorders: A Retrospective Analysis of 7284 Patients in a Middle Eastern Country. Journal of Clinical Medicine. 2023;12(23):7263. doi: 10.3390/jcm12237263
  • 5. Sharma A, Lavie CJ, Borer J, Vallakati A, Goel S, López-Jiménez F, et al. Meta-Analysis of the Relation of Body Mass Index to All-Cause and Cardiovascular Mortality and Hospitalization in Patients With Chronic Heart Failure. The American Journal of Cardiology. 2015;115(10):1428-34. doi: 10.1016/j.amjcard.2015.02.024
  • 6. Demirci D, Demirci DE. Association Between Obesity Grade and the Age of the First Acute Coronary Syndrome: Cross-Sectional Observational Study. International Journal of Cardiology. 2021;351:93-9. doi: 10.1016/j.ijcard.2021.11.080
  • 7. Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obesity reviews. 2006;7(3):239-50. doi: 10.1111/j.1467-789X.2006.00251.x
  • 8. Colim A, Arezes P, Flores P, Vardasca R, Braga AC. Thermographic Differences Due to Dynamic Work Tasks on Individuals With Different Obesity Levels: A Preliminary Study. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2019;8(3):323–33. doi: 10.1080/21681163.2019.1697757
  • 9. Fortunato LM, Kruk T, Lima Júnior E. Relationship between obesity and musculoskeletal disorders: systematic review and meta-analysis. Research, Society and Development. 2021;10(13):e119101320212. doi: 10.33448/rsd-v10i13.20212
  • 10. Colim A, Arezes P, Flores P, Monteiro PR. Mesquita I, Braga AC. Obesity effects on muscular activity during lifting and lowering tasks. International Journal of Occupational Safety and Ergonomics. 2021;27(1):217–25. doi: 10.1080/10803548.2019.1587223
  • 11. Singh D, Park W, Hwang D, Levy M. Severe obesity effect on low back biomechanical stress of manual load lifting. Work. 2015;51(2):337–48. doi: 10.3233/WOR-141945
  • 12. Bahramian M, Arjmand N, El-Rich M, Parnianpour M. Effect of obesity on spinal loads during load-reaching activities: A subject-and kinematics-specific musculoskeletal modeling approach. Journal of Biomechanics. 2023;161:111770. doi: 0.1016/j.jbiomech.2023.111770
  • 13. Ghezelbash F, Shirazi-Adl A, Plamondon A, Arjmand N, Parnianpour M. Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model. Annals of biomedical engineering. 2017; 45(10):2373–82. doi: 10.1007/s10439-017-1868-7
  • 14. Jonnalagadda SS, Skinner R, Moore L. Overweight Athlete: Fact or Fiction?. Current sports medicine reports. 2004;3(4):198-205.
  • 15. Rothman KJ. BMI-related errors in the measurement of obesity. International journal of obesity. 2008;32(3):S56–9. doi: 10.1038/ijo.2008.87
  • 16. Zenani S, Obileke K, Ndiweni O, Mukumba P. A Review of the Application of Fuzzy Logic in Bioenergy Technology. Processes. 2025;13(7):2251. doi: 10.3390/pr13072251
  • 17. Safaei M, A. Sundararajan E, Asadi S, Nilashi M, Ab Aziz MJ, Saravanan MS, et al. A Hybrid MCDM Approach Based on Fuzzy-Logic and DEMATEL to Evaluate Adult Obesity. International Journal of Environmental Research and Public Health. 2022;19(23):15432. doi: 10.3390/ijerph192315432
  • 18. Nawarycz T, Pytel K, Drygas W, Gazicki-Lipman M, Ostrowska-Nawarycz L. A fuzzy logic approach to the evaluation of health risks associated with obesity. 2013 Federated Conference on Computer Science and Information Systems; 2013 September 08;(231–4). Krakow, Poland.
  • 19. Almohammadi K. Conceptual Framework Based On Type-2 Fuzzy Logic Theory for Predicting Childhood Obesity Risk. International Journal of Online and Biomedical Engineering. 2020;16(03):95–106.
  • 20. Chakraverty S, Tapaswini S, Behera D. Fuzzy differential equations and applications for engineers and scientists. Fuzzy Differential Equations and Applications for Engineers and Scientists. 2016;1–222. doi: 10.1201/9781315372853
  • 21. Pauk J. Fuzzy Logic In Biomechanics Of The Human Gait. International Journal of Design & Nature and Ecodynamics 2006;1(2):174–85. doi: 10.2495/D&N-V1-N2-174-185
  • 22. Mahata A, Mondal SP, Alam S, Chakraborty A, De SK, Goswami A. Mathematical model for diabetes in fuzzy environment with stability analysis. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2923–32. doi: 10.3233/JIFS-171571
  • 23. Allahviranloo T, Keshavarz M, Islam S. The prediction of cardiovascular disorders by fuzzy difference equations. 2016 IEEE International Conference on Fuzzy Systems; 2016 Jul 14;(1465–72). Vancouver, BC, Canada. Doi: 10.1109/FUZZ-IEEE.2016.7737862
  • 24. Hanss M. Applied fuzzy arithmetic: an introduction with engineering applications. Berlin, Heidelberg: Springer Berlin Heidelberg: 2005.
  • 25. Garg A, Singh SR. Solving fuzzy system of equations using Gaussian membership function. International Journal of computational cognition. 2009;7(4):25–30.
  • 26. Buckley JJ, Feuring T. Fuzzy differential equations. Fuzzy Sets and Systems. 2000;110(1):43–54.
  • 27. Buckley JJ, Eslami E, Feuring T. Fuzzy mathematics in economics and engineering. Physica: 2013.
  • 28. Syropoulos A, Grammenos T. A modern introduction to fuzzy mathematics. John Wiley & Sons: 2020.
  • 29. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed tools and applications. 2021;80(5):8091–126. doi: 10.1007/s11042-020-10139-6
  • 30. Lambora A, Gupta K, Chopra K. Genetic Algorithm- A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing; 2019 Feb 14;(380–4). Faridabad, India. doi: 10.1109/COMITCon.2019.8862255
  • 31. Gundogdu O. Quantification and assessment of objective function performance in manual materials handling [Doctoral dissertation]. Troy, New York. Rensselaer Polytechnic Institute; 2000.
  • 32. Gündogdu Ö, Anderson KS, Parnianpour M. Simulation of manual materials handling: Biomechanial assessment under different lifting conditions. Technology and Health Care 2005;13(1):57–66. doi: 10.3233/THC-2005-1310
  • 33. Usanmaz B. Modelling manual material handling tasks with fuzzy differential equations [Doctoral dissertation]. Erzurum. Graduate School of Natural and Applied Sciences; 2014.
There are 33 citations in total.

Details

Primary Language English
Subjects Biomechanics in Sports Science
Journal Section Original Article
Authors

Bilal Usanmaz 0000-0003-0531-4618

Ömer Gündoğdu 0000-0003-2656-4181

Vecihi Yiğit 0000-0003-0625-3140

Early Pub Date September 25, 2025
Publication Date September 25, 2025
Submission Date August 8, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Usanmaz, B., Gündoğdu, Ö., & Yiğit, V. (2025). Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 14(3), 1075-1085. https://doi.org/10.37989/gumussagbil.1760698
AMA Usanmaz B, Gündoğdu Ö, Yiğit V. Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. September 2025;14(3):1075-1085. doi:10.37989/gumussagbil.1760698
Chicago Usanmaz, Bilal, Ömer Gündoğdu, and Vecihi Yiğit. “Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14, no. 3 (September 2025): 1075-85. https://doi.org/10.37989/gumussagbil.1760698.
EndNote Usanmaz B, Gündoğdu Ö, Yiğit V (September 1, 2025) Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14 3 1075–1085.
IEEE B. Usanmaz, Ö. Gündoğdu, and V. Yiğit, “Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling”, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 14, no. 3, pp. 1075–1085, 2025, doi: 10.37989/gumussagbil.1760698.
ISNAD Usanmaz, Bilal et al. “Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14/3 (September2025), 1075-1085. https://doi.org/10.37989/gumussagbil.1760698.
JAMA Usanmaz B, Gündoğdu Ö, Yiğit V. Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2025;14:1075–1085.
MLA Usanmaz, Bilal et al. “Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 1075-8, doi:10.37989/gumussagbil.1760698.
Vancouver Usanmaz B, Gündoğdu Ö, Yiğit V. Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential Modeling. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2025;14(3):1075-8.