Research Article
BibTex RIS Cite

Effect of mycorrhiza application and different irrigation level on yield and yield components of cucumber grown in late period

Year 2020, , 241 - 249, 24.06.2020
https://doi.org/10.29050/harranziraat.660670

Abstract

This study aimed to investigate the effect of the mycorrhiza application on yield and yield components of cucumber plant at different irrigation levels. The design of the experiment was established with randomized blocks design with three replicates in Şanlıurfa province in the fall season (august-october 2017). The main parcel was the mycorrhiza application and the lower parcels were irrigation water levels. Irrigation water amount was calculated according to class A evaporation pan and applied by drip irrigation method. According to the results obtained from the research, the amount of irrigation water given to the cucumber plant in the period of the fall season was 334-673 mm, and the seasonal evapotranspiration values ranged from 379-673 mm and the water consumption values of the plant showed parallelism with the applied irrigation water amounts. The yield of cucumber in the fall season was changed between 20.54-33.66 t ha-1. The highest yield was obtained from the mycorrhiza application and 133% of irrigation water requirement was met. Fruit diameter, fruit size, and fruit weight values were 29-36 mm, 134-161 mm, and 103-135 g respectively. As a result of the study, it was determined that the application of the mycorrhiza had a significant effect on yield and yield parameters of cucumber.

References

  • Abd El-Mageed, T. A., Semida, W. M., Taha, R. S., and Rady, M. M. (2018). Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Scientia horticulturae, 237, 148–155.
  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109(1), 1-7.
  • Al-Karaki, G. N. ve Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7(2), 83-88.
  • Al-Omran A. M., and Louki, I. I. (2011). Yield response of cucumber to deficit irrigation in greenhouses. WIT Transactions on Ecology and the Environment, Vol 145. ISSN 1743-3541. doi:10.2495/WRM110451
  • Anonim (2017a). Sulama Çalışma Grubu Çalışma Belgesi. 2.Ormancılık ve Su Şurası, 5-7 Mayıs 2017, Afyon.
  • Anonim (2017b). http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 (Erişim tarihi: 12.11.2017)
  • Anonim (2018). Şanlıurfa Meteoroloji Bölge Müdürlüğü, T.C. Tarım ve Orman Bakanlığı, Şanlıurfa.
  • Anonim (2019). http://haseltarim.com/eastern-seeds/hiyar/ (Erişim tarihi: 22.10.2019)
  • Dhillon, N. P. S., Monforte, A. J., Pitrat, M., Pandey, S., Singh, P. K., Reitsma, K. R., … McCreight, J. M. (2012). Melon Landraces of India: Contributions and Importance. Plant Breeding Reviews, 35, 85-150.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., … Kara, E. E. (1988). Güneydoğu Anadolu Bölgesi Toprakları. (GAT): I. Harran Ovası. TÜBİTAK Tarım ve Ormancılık Araştırma Grubu Güdümlü Araştırma Projesi Kesin Raporu. Proje No: TOAG-534, Adana.
  • Doorenbos, J., ve Pruitt, W.O. (1977) Crop Water Requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome, (p 144).
  • Evelin, H., Kapoor, R., ve Giri, B. (2009). Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: a Review. Ann Bot., 104, 1263–80.
  • Howell, T. A., Cuenca, R. H., Solomon, K. H. (1990). Crop yield response. Manamegent of farm irrigation systems. (ed Hoffman et al.). ASAE, 312 s.
  • James, D. W., Hanks, R. J., ve Jurinak., J. J. (1982). Modern irrigated soils. Published by John Wiley and Sons Inc. New York USA.
  • Jones, H. G., ve Corlett, J.E. (1992). Current Topics in Drought Physiology. Journal of Agricultural Science, 119, 291-296.
  • Kramer, P. J., ve Boyer, J. S. (1995). Water Relations of Plants and Soils. Academic press, San Diego.
  • Lambers, H., Chapin, F. S., and Pons, T. L. (2008). Plant Physiological Ecology. 2nd ed. New York: Springer. DOI: 10.1007/978-0-387-78341-3
  • Lizana, C., Wentworth, M., Martinez, J. P., Villegas, D., Meneses, R., Murchie, E. H., … Pinto, M. (2006). Differential adaptation of two varieties of common bean to abiotic stress I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 57 (3), 685–697.
  • MamunHossain, S. A., Wang, L. X., ve Liu, H. S. (2018). Improved greenhouse cucumber production under deficit water and fertilization in Northern China. Int J Agric&Biol Eng., 11(4), 58–64.
  • Mao, X., Liu, M., Wang, X., Liu, C., Hou, Z., ve Shi, J. (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agric. Water Manage., 61, 219–228.
  • Marschner, H. ve Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159(1), 89-102.
  • Ment, D., Shikano, I., ve Glazer, I. (2017). AbioticFactors. In: Hajek AE, Shapiro-Ilan DI (eds) Ecol. Invertebr. Dis. Wiley, Ltd, Hoboken, pp 143–186.
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol., 12, 563–9.
  • Nadeem, S. M., Ahmad, M., Zahir, A. Z., Javaid, A., ve Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environmens. Bio technol. Adv., 32, 429–448.
  • Şahin, U., Kuslu, Y., ve Kiziloglu, F. M. (2015). Response of cucumbers to different irrigation regimes applied through drip-irrigation system. Journal of Animal and Plant Sciences, 25(1), 198-205.
  • Şimşek, M., Tonkaz, T., Kaçıra, M., Çömlekçioğlu, N., ve Doğan, Z. (2005). The effects of different irrigation regimes on cucumber (Cucumbissativus L.) yield and yield characteristics under open field conditions. Agric. Water Manage., 73 (3), 173-191.
  • Wang, W., Vinocur, B., ve Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1–14.
  • Zhang, X., Qina, W., Chena, S., Shaoa, L., ve Suna, H. (2017). Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain. Agric. Water Manage., 179, 47–54.

Mikoriza uygulaması ve farklı sulama seviyelerinin geç dönemde yetiştirilen hıyarın verim ve verim bileşenleri üzerine etkisi

Year 2020, , 241 - 249, 24.06.2020
https://doi.org/10.29050/harranziraat.660670

Abstract

Bu çalışmanın amacı, mikoriza uygulamasının farklı sulama seviyelerinde hıyar bitkisinin verim ve verim bileşenleri üzerine etkisinin belirlenmesidir. Şanlıurfa ilinde 2017 yılı güz döneminde (ağustos-ekim) yürütülen bu araştırma, tesadüf blokları bölünmüş parseller deneme desenine göre 3 tekerrürlü olacak şekilde kurulmuştur. Ana parsel mikoriza uygulaması, alt parseller ise sulama suyu seviyelerinden olmuştur. Sulama suyu miktarı A sınıfı buharlaşma kabına göre hesaplanmış ve damla sulama yöntemi ile parsellere uygulanmıştır. Araştırmadan elde edilen sonuçlara göre, hıyar bitkisine güz dönemde uygulanan sulama suyu miktarı 334-673 mm, bitki su tüketim değerleri ise 379-673 mm arasında değişmiş, bitki su tüketim değerleri ile sulama suyu miktarları paralellik göstermiştir. Hıyar bitkisinin güz dönemindeki verimi 20.54-33.66 t ha-1 arasında değişmiştir. En yüksek verim mikoriza uygulamasının yapıldığı ve sulama suyu ihtiyacının %133’ünün karşılandığı konudan elde edilmiştir. Meyve çapı, meyve boyu ve meyve ağırlığı değerleri; sırasıyla 29-36 mm, 134-161 mm ve 103-135 g arasında değişmiştir. Çalışma sonucunda, mikoriza uygulamasının hıyar bitkisinin verim ve verim parametreleri üzerinde önemli bir etkiye sahip olduğu tespit edilmiştir.

References

  • Abd El-Mageed, T. A., Semida, W. M., Taha, R. S., and Rady, M. M. (2018). Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Scientia horticulturae, 237, 148–155.
  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109(1), 1-7.
  • Al-Karaki, G. N. ve Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7(2), 83-88.
  • Al-Omran A. M., and Louki, I. I. (2011). Yield response of cucumber to deficit irrigation in greenhouses. WIT Transactions on Ecology and the Environment, Vol 145. ISSN 1743-3541. doi:10.2495/WRM110451
  • Anonim (2017a). Sulama Çalışma Grubu Çalışma Belgesi. 2.Ormancılık ve Su Şurası, 5-7 Mayıs 2017, Afyon.
  • Anonim (2017b). http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 (Erişim tarihi: 12.11.2017)
  • Anonim (2018). Şanlıurfa Meteoroloji Bölge Müdürlüğü, T.C. Tarım ve Orman Bakanlığı, Şanlıurfa.
  • Anonim (2019). http://haseltarim.com/eastern-seeds/hiyar/ (Erişim tarihi: 22.10.2019)
  • Dhillon, N. P. S., Monforte, A. J., Pitrat, M., Pandey, S., Singh, P. K., Reitsma, K. R., … McCreight, J. M. (2012). Melon Landraces of India: Contributions and Importance. Plant Breeding Reviews, 35, 85-150.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., … Kara, E. E. (1988). Güneydoğu Anadolu Bölgesi Toprakları. (GAT): I. Harran Ovası. TÜBİTAK Tarım ve Ormancılık Araştırma Grubu Güdümlü Araştırma Projesi Kesin Raporu. Proje No: TOAG-534, Adana.
  • Doorenbos, J., ve Pruitt, W.O. (1977) Crop Water Requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome, (p 144).
  • Evelin, H., Kapoor, R., ve Giri, B. (2009). Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: a Review. Ann Bot., 104, 1263–80.
  • Howell, T. A., Cuenca, R. H., Solomon, K. H. (1990). Crop yield response. Manamegent of farm irrigation systems. (ed Hoffman et al.). ASAE, 312 s.
  • James, D. W., Hanks, R. J., ve Jurinak., J. J. (1982). Modern irrigated soils. Published by John Wiley and Sons Inc. New York USA.
  • Jones, H. G., ve Corlett, J.E. (1992). Current Topics in Drought Physiology. Journal of Agricultural Science, 119, 291-296.
  • Kramer, P. J., ve Boyer, J. S. (1995). Water Relations of Plants and Soils. Academic press, San Diego.
  • Lambers, H., Chapin, F. S., and Pons, T. L. (2008). Plant Physiological Ecology. 2nd ed. New York: Springer. DOI: 10.1007/978-0-387-78341-3
  • Lizana, C., Wentworth, M., Martinez, J. P., Villegas, D., Meneses, R., Murchie, E. H., … Pinto, M. (2006). Differential adaptation of two varieties of common bean to abiotic stress I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 57 (3), 685–697.
  • MamunHossain, S. A., Wang, L. X., ve Liu, H. S. (2018). Improved greenhouse cucumber production under deficit water and fertilization in Northern China. Int J Agric&Biol Eng., 11(4), 58–64.
  • Mao, X., Liu, M., Wang, X., Liu, C., Hou, Z., ve Shi, J. (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agric. Water Manage., 61, 219–228.
  • Marschner, H. ve Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159(1), 89-102.
  • Ment, D., Shikano, I., ve Glazer, I. (2017). AbioticFactors. In: Hajek AE, Shapiro-Ilan DI (eds) Ecol. Invertebr. Dis. Wiley, Ltd, Hoboken, pp 143–186.
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol., 12, 563–9.
  • Nadeem, S. M., Ahmad, M., Zahir, A. Z., Javaid, A., ve Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environmens. Bio technol. Adv., 32, 429–448.
  • Şahin, U., Kuslu, Y., ve Kiziloglu, F. M. (2015). Response of cucumbers to different irrigation regimes applied through drip-irrigation system. Journal of Animal and Plant Sciences, 25(1), 198-205.
  • Şimşek, M., Tonkaz, T., Kaçıra, M., Çömlekçioğlu, N., ve Doğan, Z. (2005). The effects of different irrigation regimes on cucumber (Cucumbissativus L.) yield and yield characteristics under open field conditions. Agric. Water Manage., 73 (3), 173-191.
  • Wang, W., Vinocur, B., ve Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1–14.
  • Zhang, X., Qina, W., Chena, S., Shaoa, L., ve Suna, H. (2017). Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain. Agric. Water Manage., 179, 47–54.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Araştırma Makaleleri
Authors

Sabri Akın 0000-0002-9196-3157

Mehmet Şimşek 0000-0002-9552-1743

Ali Sarıoğlu 0000-0001-6269-4990

Ali Demir Keskiner 0000-0002-7930-9363

Publication Date June 24, 2020
Submission Date December 17, 2019
Published in Issue Year 2020

Cite

APA Akın, S., Şimşek, M., Sarıoğlu, A., Keskiner, A. D. (2020). Mikoriza uygulaması ve farklı sulama seviyelerinin geç dönemde yetiştirilen hıyarın verim ve verim bileşenleri üzerine etkisi. Harran Tarım Ve Gıda Bilimleri Dergisi, 24(2), 241-249. https://doi.org/10.29050/harranziraat.660670

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.