Research Article
BibTex RIS Cite

Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications

Year 2022, , 275 - 285, 01.08.2022
https://doi.org/10.15671/hjbc.1033151

Abstract

This study aimed to utilize the lignin-based structures extracted from chestnut shells, an agricultural waste, in chitosan (CH) films. In addition, black liquor was treated with ozone to obtain more homogeneous and compatible lignin fractions. Lignin was isolated from chestnut shells by alkali treatment (8% NaOH, 120°C/15 min), then sulfuric acid precipitation (0.5M) and drying. Black liquor obtained after an alkali treatment was further treated with ozone at ambient conditions to gain alkali combined ozone-treated lignin (OL). L and OL were added to CH film-forming solutions to fabricate CH-L and CH-OL films and films were characterized by barrier against water (WVP), morphologic, thermal properties, optical and antioxidant properties. Fourier transform infrared (FTIR) data confirmed that the isolated L and OL had different structures, and the films indicated a potential interaction between lignin-based structures and CH matrices. Moreover, incorporating L and OL into the CH films increased the opacity and antioxidant activity of films. The addition of lignin-based structures caused a plasticizing effect on the CH films, corresponding with the tensile and thermal properties. The WVP of CH was not significantly influenced upon the addition of lignin-based structures.

References

  • [1] M. Michelin, A.M. Marques, L.M. Pastrana, J.A. Teixeira, M.A. Cerqueira, Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties, J. Food Eng., 285 (2020) 110107.
  • [2] L.F. Ballesteros, M. Michelin, A.A. Vicente, J.A. Teixeira, M.Â. Cerqueira, Lignocellulosic Materials and Their Use in Bio-based Packaging. Food Applications of Lignocellulosic-Based Packaging Materials, Springer Briefs in Molecular Science. Springer, Cham, AG., Switzerland, 2018.
  • [3] K. Crouvisier-Urion, P.R. Bodart, P. Winckler, J. Raya, R.D. Gougeon, P. Cayot, S. Domenek, F. Debeaufort, T. Karbowiak, Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture, ACS Sustain. Chem. Eng., 4 (2016) 6371–6381.
  • [4] M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: A state of the art review, Int. J. Food Microbiol., 144 (2010) 51–63.
  • [5] E. Sogut, A.C. Seydim, Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract, Carbohydr. Polym., 195 (2018) 180–188.
  • [6] E. Sogutt, A.C. Seydim, Characterization of cyclic olefin copolymer-coated chitosan bilayer films containing nanocellulose and grape seed extract, Packag. Technol. Sci., 31 (2018) 499–508.
  • [7] E. Sogut, H. Cakmak, Utilization of carrot (daucus carota l.) Fiber as a filler for chitosan based films, Food Hydrocoll., 106 (2020) 105861.
  • [8] J.K. Saini, R. Saini, L. Tewari, Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments, 3 Biotech, 5 (2015) 337–353.
  • [9] C. Shi, S. Zhang, W. Wang, R.J. Linhardt, A.J. Ragauskas, Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties, ACS Sustain. Chem. Eng., 8 (2020) 22–28.
  • [10] K.R. Aadil, D. Prajapati, H. Jha, Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin, Food Packag. Shelf Life, 10 (2016) 25–33.
  • [11] O. Gordobil, I. Egüés, R. Llano-Ponte, J. Labidi, Physicochemical properties of PLA lignin blends, Polym. Degrad. Stab., 108 (2014) 330–338.
  • [12] C. Miao, W.Y. Hamad, Controlling lignin particle size for polymer blend applications, J. Appl. Polym. Sci., 134(14) (2017) 44669.
  • [13] S. Sahoo, M. Misra, A.K. Mohanty, Biocomposites from switchgrass and lignin hybrid and poly (butylene succinate) bioplastic: Studies on reactive compatibilization and performance evaluation, Macromol. Mater. Eng., 299 (2014) 178–189.
  • [14] A.E. Kazzaz, Z.H. Feizi, P. Fatehi, Grafting strategies for hydroxy groups of lignin for producing materials, Green Chem., 21 (2019) 5714–5752.
  • [15] T. Zhang, Y. Zhou, D. Liu, L. Petrus, Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol, Bioresour. Technol., 98 (2007) 1454–1459.
  • [16] R.M. Rowell, J.P. Dickerson, Deterioration and Protection of Sustainable Biomaterials. Acetylation of wood, ACS Publications, Washington, DC., USA, 2014.
  • [17] N.A. Mohamad Aini, N. Othman, M.H. Hussin, K. Sahakaro, N. Hayeemasae, Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites, Processes, 7 (2019) 315.
  • [18] R. Ma, Y. Xu, X. Zhang, Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production, ChemSusChem, 8 (2015) 24–51.
  • [19] W. Schutyser, T. Renders, S. Van Den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev., 47 (2018) 852–908.
  • [20] American Society for Testing and Materials, Standard Test Method for Tensile Properties of Thin Plastic Sheeting: D882, Annual book of American society for testing and materials standards, Annu. B. Am. Stand. Test. Methods, 08.01, 2018.
  • [21] American Society for Testing and Materials Standard, Standard test methods for water vapor transmission of materials: E96/E96M- 16, Annual book of American society for testing and materials standards, Annu. B. Am. Stand. Test. Methods, 04.06, 2016.
  • [22] Y. Zhang, R. Yan, T. Ngo dung, Q. Zhao, J. Duan, X. Du, Y. Wang, B. Liu, Z. Sun, W. Hu, H. Xie, Ozone oxidized lignin-based polyurethane with improved properties, Eur. Polym. J., 117 (2019) 114–122.
  • [23] J.A. Souza-Correîa, M.A. Ridenti, C. Oliveira, S.R. Araújo, J. Amorim, Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries, J. Phys. Chem. B, 117 (2013) 3110–3119.
  • [24] N. Schultz-Jensen, F. Leipold, H. Bindslev, A.B. Thomsen, Plasma-assisted pretreatment of wheat straw, Appl. Biochem. Biotechnol., 163 (2011) 558–572.
  • [25] J.Y. Kwon, P.G. Chung, I.H. Lim, Removal of residual COD in biologically treated paper-mill effluent and degradation of lignin using nonthermal plasma unit, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 39 (2004) 1853–1865.
  • [26] I. Barrera-Martínez, N. Guzmán, E. Peña, T. Vázquez, R. Cerón-Camacho, J. Folch, J.A.H. Salazar, J. Aburto, Ozonolysis of alkaline lignin and sugarcane bagasse: Structural changes and their effect on saccharification, Biomass and Bioenergy, 94 (2016) 167–172.
  • [27] N.A. Mamleeva, N.A. Babayeva, A.N. Kharlanov, V.V. Lunin, Destruction of Lignin during the Ozonation of Pine Wood, Russ. J. Phys. Chem. A, 93 (2019) 28–33.
  • [28] N. Izaguirre, O. Gordobil, E. Robles, J. Labidi, Enhancement of UV absorbance and mechanical properties of chitosan films by the incorporation of solvolytically fractionated lignins, Int. J. Biol. Macromol., 155 (2020) 447–455.
  • [29] N.M.S.M. Sá, A.L.A. Mattos, L.M.A. Silva, E.S. Brito, M.F. Rosa, H.M.C. Azeredo, From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films, Int. J. Biol. Macromol., 161 (2020) 1337–1345.
  • [30] S. Shankar, J.W. Rhim, Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties, Food Hydrocoll., 71 (2017) 76–84.
  • [31] Y. Chen, D. Fan, Y. Han, S. Lyu, Y. Lu, G. Li, F. Jiang, S. Wang, Effect of high residual lignin on the properties of cellulose nanofibrils/films, Cellulose, 25 (2018) 6421–6431.
  • [32] W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G.M. Balestra, J.M. Kenny, D. Puglia, Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films, Int. J. Biol. Macromol., 89 (2016) 360–368.
  • [33] S. Rai, P.K. Dutta, G.K. Mehrotra, Lignin incorporated antimicrobial chitosan film for food packaging application, J. Polym. Mater., 34 (2017) 171–183.
  • [34] W. Yang, Weng Y., D. Puglia, G. Qi, W. Dong, J.M. Kenny, P. Ma, Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging, Int. J. Biol. Macromol., 144 (2020) 102–110.
  • [35] A. Aradmehr, V. Javanbakht, A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization, Colloids Surfaces A Physicochem. Eng. Asp., 600 (2020) 124952.
  • [36] L. Chen, C. Tang, N. Ning, C. Wang, Q. Fu, Q. Zhang, Preparation and properties of chitosan/lignin composite films, Chinese J. Polym. Sci., 27 (2009) 739–746.
  • [37] V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater, Chem. Eng. J., 254 (2014) 491–502.
  • [38] S. Shankar, J.P. Reddy, J.W. Rhim, Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films, Int. J. Biol. Macromol., 81 (2015) 267–273.
  • [39] W. Xie, P. Xu, Q. Liu, Antioxidant activity of water-soluble chitosan derivatives, Bioorganic Med. Chem. Lett., 11 (2001) 1699–1701.
  • [40] K. Crouvisier-Urion, A. Lagorce-Tachon, C. Lauquin, P. Winckler, W. Tongdeesoontorn, S. Domenek, F. Debeaufortad, T. Karbowiaka, Impact of the homogenization process on the structure and antioxidant properties of chitosan-lignin composite films, Food Chem., 236 (2017) 120–126.
  • [41] K. Van De Velde, P. Kiekens, Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state13C NMR, Carbohydr. Polym., 58 (2004) 409–416.
  • [42] E. Rosova, N. Smirnova, E. Dresvyanina, V. Smirnova, E. Vlasova, E. Ivankova, M. Sokolova, T. Maslennikova, K. Malafeev, K. Kolbe, M. Kanerva, V. Yudin, Biocomposite materials based on chitosan and lignin: Preparation and characterization, Cosmetics, 8 (2021) 1–17.

Sürdürülebilir Gıda Ambalajlama Uygulamaları için Alkali Lignin ve Ozonla İşlem Görmüş Alkali Lignin Kullanımı

Year 2022, , 275 - 285, 01.08.2022
https://doi.org/10.15671/hjbc.1033151

Abstract

References

  • [1] M. Michelin, A.M. Marques, L.M. Pastrana, J.A. Teixeira, M.A. Cerqueira, Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties, J. Food Eng., 285 (2020) 110107.
  • [2] L.F. Ballesteros, M. Michelin, A.A. Vicente, J.A. Teixeira, M.Â. Cerqueira, Lignocellulosic Materials and Their Use in Bio-based Packaging. Food Applications of Lignocellulosic-Based Packaging Materials, Springer Briefs in Molecular Science. Springer, Cham, AG., Switzerland, 2018.
  • [3] K. Crouvisier-Urion, P.R. Bodart, P. Winckler, J. Raya, R.D. Gougeon, P. Cayot, S. Domenek, F. Debeaufort, T. Karbowiak, Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture, ACS Sustain. Chem. Eng., 4 (2016) 6371–6381.
  • [4] M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: A state of the art review, Int. J. Food Microbiol., 144 (2010) 51–63.
  • [5] E. Sogut, A.C. Seydim, Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract, Carbohydr. Polym., 195 (2018) 180–188.
  • [6] E. Sogutt, A.C. Seydim, Characterization of cyclic olefin copolymer-coated chitosan bilayer films containing nanocellulose and grape seed extract, Packag. Technol. Sci., 31 (2018) 499–508.
  • [7] E. Sogut, H. Cakmak, Utilization of carrot (daucus carota l.) Fiber as a filler for chitosan based films, Food Hydrocoll., 106 (2020) 105861.
  • [8] J.K. Saini, R. Saini, L. Tewari, Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments, 3 Biotech, 5 (2015) 337–353.
  • [9] C. Shi, S. Zhang, W. Wang, R.J. Linhardt, A.J. Ragauskas, Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties, ACS Sustain. Chem. Eng., 8 (2020) 22–28.
  • [10] K.R. Aadil, D. Prajapati, H. Jha, Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin, Food Packag. Shelf Life, 10 (2016) 25–33.
  • [11] O. Gordobil, I. Egüés, R. Llano-Ponte, J. Labidi, Physicochemical properties of PLA lignin blends, Polym. Degrad. Stab., 108 (2014) 330–338.
  • [12] C. Miao, W.Y. Hamad, Controlling lignin particle size for polymer blend applications, J. Appl. Polym. Sci., 134(14) (2017) 44669.
  • [13] S. Sahoo, M. Misra, A.K. Mohanty, Biocomposites from switchgrass and lignin hybrid and poly (butylene succinate) bioplastic: Studies on reactive compatibilization and performance evaluation, Macromol. Mater. Eng., 299 (2014) 178–189.
  • [14] A.E. Kazzaz, Z.H. Feizi, P. Fatehi, Grafting strategies for hydroxy groups of lignin for producing materials, Green Chem., 21 (2019) 5714–5752.
  • [15] T. Zhang, Y. Zhou, D. Liu, L. Petrus, Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol, Bioresour. Technol., 98 (2007) 1454–1459.
  • [16] R.M. Rowell, J.P. Dickerson, Deterioration and Protection of Sustainable Biomaterials. Acetylation of wood, ACS Publications, Washington, DC., USA, 2014.
  • [17] N.A. Mohamad Aini, N. Othman, M.H. Hussin, K. Sahakaro, N. Hayeemasae, Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites, Processes, 7 (2019) 315.
  • [18] R. Ma, Y. Xu, X. Zhang, Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production, ChemSusChem, 8 (2015) 24–51.
  • [19] W. Schutyser, T. Renders, S. Van Den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev., 47 (2018) 852–908.
  • [20] American Society for Testing and Materials, Standard Test Method for Tensile Properties of Thin Plastic Sheeting: D882, Annual book of American society for testing and materials standards, Annu. B. Am. Stand. Test. Methods, 08.01, 2018.
  • [21] American Society for Testing and Materials Standard, Standard test methods for water vapor transmission of materials: E96/E96M- 16, Annual book of American society for testing and materials standards, Annu. B. Am. Stand. Test. Methods, 04.06, 2016.
  • [22] Y. Zhang, R. Yan, T. Ngo dung, Q. Zhao, J. Duan, X. Du, Y. Wang, B. Liu, Z. Sun, W. Hu, H. Xie, Ozone oxidized lignin-based polyurethane with improved properties, Eur. Polym. J., 117 (2019) 114–122.
  • [23] J.A. Souza-Correîa, M.A. Ridenti, C. Oliveira, S.R. Araújo, J. Amorim, Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries, J. Phys. Chem. B, 117 (2013) 3110–3119.
  • [24] N. Schultz-Jensen, F. Leipold, H. Bindslev, A.B. Thomsen, Plasma-assisted pretreatment of wheat straw, Appl. Biochem. Biotechnol., 163 (2011) 558–572.
  • [25] J.Y. Kwon, P.G. Chung, I.H. Lim, Removal of residual COD in biologically treated paper-mill effluent and degradation of lignin using nonthermal plasma unit, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 39 (2004) 1853–1865.
  • [26] I. Barrera-Martínez, N. Guzmán, E. Peña, T. Vázquez, R. Cerón-Camacho, J. Folch, J.A.H. Salazar, J. Aburto, Ozonolysis of alkaline lignin and sugarcane bagasse: Structural changes and their effect on saccharification, Biomass and Bioenergy, 94 (2016) 167–172.
  • [27] N.A. Mamleeva, N.A. Babayeva, A.N. Kharlanov, V.V. Lunin, Destruction of Lignin during the Ozonation of Pine Wood, Russ. J. Phys. Chem. A, 93 (2019) 28–33.
  • [28] N. Izaguirre, O. Gordobil, E. Robles, J. Labidi, Enhancement of UV absorbance and mechanical properties of chitosan films by the incorporation of solvolytically fractionated lignins, Int. J. Biol. Macromol., 155 (2020) 447–455.
  • [29] N.M.S.M. Sá, A.L.A. Mattos, L.M.A. Silva, E.S. Brito, M.F. Rosa, H.M.C. Azeredo, From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films, Int. J. Biol. Macromol., 161 (2020) 1337–1345.
  • [30] S. Shankar, J.W. Rhim, Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties, Food Hydrocoll., 71 (2017) 76–84.
  • [31] Y. Chen, D. Fan, Y. Han, S. Lyu, Y. Lu, G. Li, F. Jiang, S. Wang, Effect of high residual lignin on the properties of cellulose nanofibrils/films, Cellulose, 25 (2018) 6421–6431.
  • [32] W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G.M. Balestra, J.M. Kenny, D. Puglia, Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films, Int. J. Biol. Macromol., 89 (2016) 360–368.
  • [33] S. Rai, P.K. Dutta, G.K. Mehrotra, Lignin incorporated antimicrobial chitosan film for food packaging application, J. Polym. Mater., 34 (2017) 171–183.
  • [34] W. Yang, Weng Y., D. Puglia, G. Qi, W. Dong, J.M. Kenny, P. Ma, Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging, Int. J. Biol. Macromol., 144 (2020) 102–110.
  • [35] A. Aradmehr, V. Javanbakht, A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization, Colloids Surfaces A Physicochem. Eng. Asp., 600 (2020) 124952.
  • [36] L. Chen, C. Tang, N. Ning, C. Wang, Q. Fu, Q. Zhang, Preparation and properties of chitosan/lignin composite films, Chinese J. Polym. Sci., 27 (2009) 739–746.
  • [37] V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater, Chem. Eng. J., 254 (2014) 491–502.
  • [38] S. Shankar, J.P. Reddy, J.W. Rhim, Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films, Int. J. Biol. Macromol., 81 (2015) 267–273.
  • [39] W. Xie, P. Xu, Q. Liu, Antioxidant activity of water-soluble chitosan derivatives, Bioorganic Med. Chem. Lett., 11 (2001) 1699–1701.
  • [40] K. Crouvisier-Urion, A. Lagorce-Tachon, C. Lauquin, P. Winckler, W. Tongdeesoontorn, S. Domenek, F. Debeaufortad, T. Karbowiaka, Impact of the homogenization process on the structure and antioxidant properties of chitosan-lignin composite films, Food Chem., 236 (2017) 120–126.
  • [41] K. Van De Velde, P. Kiekens, Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state13C NMR, Carbohydr. Polym., 58 (2004) 409–416.
  • [42] E. Rosova, N. Smirnova, E. Dresvyanina, V. Smirnova, E. Vlasova, E. Ivankova, M. Sokolova, T. Maslennikova, K. Malafeev, K. Kolbe, M. Kanerva, V. Yudin, Biocomposite materials based on chitosan and lignin: Preparation and characterization, Cosmetics, 8 (2021) 1–17.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ece Söğüt 0000-0003-4052-993X

Atıf Can Seydim 0000-0003-3808-509X

Publication Date August 1, 2022
Acceptance Date April 7, 2022
Published in Issue Year 2022

Cite

APA Söğüt, E., & Seydim, A. C. (2022). Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications. Hacettepe Journal of Biology and Chemistry, 50(3), 275-285. https://doi.org/10.15671/hjbc.1033151
AMA Söğüt E, Seydim AC. Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications. HJBC. August 2022;50(3):275-285. doi:10.15671/hjbc.1033151
Chicago Söğüt, Ece, and Atıf Can Seydim. “Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications”. Hacettepe Journal of Biology and Chemistry 50, no. 3 (August 2022): 275-85. https://doi.org/10.15671/hjbc.1033151.
EndNote Söğüt E, Seydim AC (August 1, 2022) Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications. Hacettepe Journal of Biology and Chemistry 50 3 275–285.
IEEE E. Söğüt and A. C. Seydim, “Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications”, HJBC, vol. 50, no. 3, pp. 275–285, 2022, doi: 10.15671/hjbc.1033151.
ISNAD Söğüt, Ece - Seydim, Atıf Can. “Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications”. Hacettepe Journal of Biology and Chemistry 50/3 (August 2022), 275-285. https://doi.org/10.15671/hjbc.1033151.
JAMA Söğüt E, Seydim AC. Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications. HJBC. 2022;50:275–285.
MLA Söğüt, Ece and Atıf Can Seydim. “Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 3, 2022, pp. 275-8, doi:10.15671/hjbc.1033151.
Vancouver Söğüt E, Seydim AC. Alkali Lignin and Alkali Combined Ozone-Treated Lignin for Sustainable Food Packaging Applications. HJBC. 2022;50(3):275-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc